JPS6039891A - Method of producing conductor circuit for printed circuit - Google Patents

Method of producing conductor circuit for printed circuit

Info

Publication number
JPS6039891A
JPS6039891A JP14781283A JP14781283A JPS6039891A JP S6039891 A JPS6039891 A JP S6039891A JP 14781283 A JP14781283 A JP 14781283A JP 14781283 A JP14781283 A JP 14781283A JP S6039891 A JPS6039891 A JP S6039891A
Authority
JP
Japan
Prior art keywords
circuit
metal
aluminum
alloy
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14781283A
Other languages
Japanese (ja)
Inventor
安立 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP14781283A priority Critical patent/JPS6039891A/en
Publication of JPS6039891A publication Critical patent/JPS6039891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はプリント回路用導体回路の製造方法に関し、特
に電気メツキ処理により回路パターンを形成するフルア
ディティブ法によるプリント回路用導体回路の製造方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a conductive circuit for a printed circuit, and more particularly to a method for manufacturing a conductive circuit for a printed circuit using a fully additive method in which a circuit pattern is formed by electroplating.

近年、プリント回路用導体回路の製造方法として、銅張
積層板を出発基材とする方法に代って、金属板表面に回
路パターンとなる部分以外をレジスト材料でマスクし、
電気メツキ法により銅等の金属を非マスク部に堆積させ
、高分子材料上に転写する方法や、高分子材料に接着剤
を塗布し、回路パターン以外の表面をし2スト拐料でマ
スクし無電解メッキにより回路パターンを形成する方法
が実用化されてきている。
In recent years, as a method of manufacturing conductor circuits for printed circuits, instead of using a copper-clad laminate as a starting material, a method has been adopted in which the surface of the metal plate is masked with a resist material except for the part that will become the circuit pattern.
Metals such as copper are deposited on non-mask areas by electroplating and transferred onto the polymer material, or adhesive is applied to the polymer material, the surface other than the circuit pattern is masked with a two-stroke stripping agent, A method of forming a circuit pattern by electroless plating has been put into practical use.

ところで、上述した無電解メヴキによる回路パターンの
形成は、回路パターン以外の表面を回路基板毎にレジス
ト材料でマスクする必要があり能率的でない。曲述した
電気メヴキ法による方法は一枚のメッキ用ベース治具を
作れば何回も使用できるというメリットがある。メツキ
レシストとしては金属板との強固な密着性、itI酸性
、耐摩耗性。
By the way, forming a circuit pattern using the above-mentioned electroless meshing method is inefficient because it is necessary to mask the surface other than the circuit pattern with a resist material for each circuit board. The electric Mevki method described above has the advantage that once a single plating base jig is made, it can be used many times. As a metsukiresist, it has strong adhesion to metal plates, itI acidity, and wear resistance.

耐熱性、非粘着性が要求される。これらの諸要求を満す
レジスト材料としてエポキシ樹脂、変性ポリアミド樹脂
やポリイミド樹脂等の上に連索樹脂ヤシリコン樹脂、あ
るいは二硫化モリブデン等tコーティングする事により
満す事ができる。しかしながらこれらの樹脂をマスクと
して必要な部分のみ塗布する方法はスクリーン印刷法に
より行なわれる為、パターン精度は100ミクロン程度
が限度であり、メッキ堆積に伴ない総合的なパターン精
度はさらに悪くなる。ポリイミド樹脂の一部に紫外線で
硬化するタイプがありこれを用いる事によ抄パターン精
度の高い印刷が可能となるが、金属板との密着力が低く
、耐久性に乏しい。
Heat resistance and non-stick properties are required. These requirements can be met by coating a resist material such as epoxy resin, modified polyamide resin, or polyimide resin with a continuous resin, silicone resin, or molybdenum disulfide. However, since the method of applying these resins to only necessary areas using a mask is carried out by screen printing, the pattern accuracy is limited to about 100 microns, and the overall pattern accuracy becomes worse as the plating is deposited. Some polyimide resins are cured by ultraviolet rays, and their use makes it possible to print paper patterns with high accuracy, but they have low adhesion to metal plates and lack durability.

本発明はこれらの欠点を一掃すべくなされたものであり
、高精度なプリント回路用導体回路をフルアディティブ
法によha造可能にしたものである。以下図面と共に本
発明の実施例について詳細に説明する。
The present invention has been made to eliminate these drawbacks, and makes it possible to manufacture highly accurate conductor circuits for printed circuits by a fully additive method. Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は従来の電気メツキ法によるもので金属製元板1
にメツキレシスト2を施し、さらに非粘着性材料3を施
した後、銅メッキ4をした断面を示す略図で、第2図は
本発明の電気メッキ法によるものでアルミ製元板11+
の窒化チタン51上に銅メッキ41をした断面を示す略
図である。第3図は埴2図の銅メッキ4,1を転写した
後の回路基板製造用ペース治具の断面略図である。
Figure 1 shows the conventional electroplating method.
This is a schematic diagram showing a cross section of a metal plate 2 coated with a non-adhesive material 3, and then copper plated 4. FIG.
2 is a schematic diagram showing a cross section of copper plating 41 on titanium nitride 51 of FIG. FIG. 3 is a schematic cross-sectional view of the circuit board manufacturing paste jig after the copper plating 4, 1 shown in Figure 2 has been transferred.

〔実施例〕〔Example〕

チタン粉末を真空イオン化メッキ装着の蒸発用ヒーター
に入れ、アルミ製元板11を陰極部にセントし、10 
””Torrの高真空にした後、9素ガスを導入し直流
電圧を印加し放電させながらチタン粉末を蒸発させ、陰
極上にセ・ソトしたアルミ製元板11上に窒化チタン膜
を1〜2ミクロンの厚さにコーティングした。窒素ガス
はチタン膜のみではアルミ1元板11と色調的に差が少
なく見にくいので窒化チタンにし色調的にわかりやすく
するため導入したものである。次に付着した窒化チタン
膜の表面にロールコータ−等で紫外線硬化型のレジスト
剤を塗布し、プリベーク、紫外線照射。
Put the titanium powder in an evaporation heater equipped with vacuum ionization plating, place the aluminum base plate 11 on the cathode part, and
After creating a high vacuum of "" Torr, nine elemental gases are introduced and a DC voltage is applied to evaporate the titanium powder while discharging it, and a titanium nitride film is deposited on the aluminum base plate 11 that has been set on the cathode. Coated to a thickness of 2 microns. Nitrogen gas is difficult to see because there is little difference in color tone from the aluminum primary plate 11 if only a titanium film is used, so titanium nitride was introduced to make it easier to understand the color tone. Next, a UV-curable resist agent is applied to the surface of the attached titanium nitride film using a roll coater, etc., followed by pre-baking and UV irradiation.

現像、ボストベークの工程を経て、回路パターンとなる
部分の窒化チタン51をレジスト剤でマスクした。次に
硫酸10重を俤、硫酸アルミ2重量係、他純水の硫酸洛
中に前記アルミ製元板11を浸漬し1、アルミ製元板1
1を陽極とし、陰極に純アルミ板を設置し、両椿板を対
向させて3 A/dm、’の電流を加えながら10分間
通電させた。数分の内に非レジスト部のや化チタンが溶
解し、その下地部分のアルミが酸化され、不導体化層1
2が形成された。不導体化層12を充分形成した後、ア
ルミ製元板11を水洗した後、純水槽にアルミ製元板1
1を浸漬し、純水槽95〜9 q ”cK加熱し15分
から20分保持し、陽極酸化した不導体化1ii12を
封孔処理した。封孔処理後、レジストマスクを専用剥離
剤で剥離した稜、水洗し2、硫酸銅水溶液にアルミ製元
板11を入れて陰極とし、陽筆に純銅を用いて%5 A
/dm’で10分間通電し、アルミ製元板11の9化チ
タン51上に7〜8ミクロンの厚さで銅メ・ツキ41を
施した。不導体化処理層12上が開孔し覗スグリーマス
クを用い、印刷液として連索樹脂と接着剤を混合させた
溶液を −用いて、スクリーン印′刷し、接着剤を加熱
硬化させ非粘着性材料61をコーティングした後、絹メ
ッキ41を粘着テープでハクリし、第3図の断面を有す
る回路基板製造用ペース治具を作成した。
After the development and post-baking steps, the portion of the titanium nitride 51 that would become the circuit pattern was masked with a resist agent. Next, add 10 parts of sulfuric acid, 2 parts of aluminum sulfate, and immerse the aluminum base plate 11 in sulfuric acid of pure water.
1 was used as an anode, a pure aluminum plate was installed as a cathode, both camellia plates were placed facing each other, and current was applied for 10 minutes while applying a current of 3 A/dm,'. Within a few minutes, the titanium anhydride in the non-resist area dissolves, and the aluminum underlying it is oxidized, forming the passivation layer 1.
2 was formed. After sufficiently forming the passivation layer 12, the aluminum base plate 11 is washed with water, and then the aluminum base plate 1 is placed in a pure water tank.
1 was immersed in a pure water bath of 95 to 9 q"cK and held for 15 to 20 minutes to seal the anodized and passivated 1ii12. After the sealing process, the resist mask was peeled off using a special stripping agent. , washing with water 2, placing the aluminum base plate 11 in a copper sulfate aqueous solution as a cathode, and using pure copper as a positive brush, %5 A
/dm' for 10 minutes to form a copper plating 41 with a thickness of 7 to 8 microns on the titanium 9ide 51 of the aluminum base plate 11. The top of the passivation treatment layer 12 is made perforated, and screen printing is performed using a see-through grease mask using a solution containing a mixture of connecting resin and adhesive as a printing liquid, and the adhesive is heated and cured to make it non-conductive. After coating with the adhesive material 61, the silk plating 41 was peeled off with an adhesive tape to create a paste jig for manufacturing a circuit board having the cross section shown in FIG. 3.

上記スクリーン印刷時に銅メッキ41を施したのけ印刷
ズレにより窒化チタン51十にインキ流れが発生しても
銅メツキ41士にインキが付着し、窒化チタン51のパ
ターン士にインキが付着させない為で、インキ流れがな
く、かつ印刷ズレがなければ不要である。以」二の工程
により回路基板製造用ペース治具(以下ペース治具とい
う)が完1〜た。
This is because when the copper plating 41 is applied during screen printing, even if ink flows on the titanium nitride 51 due to printing misalignment, the ink will adhere to the copper plating 41 and prevent the ink from adhering to the pattern of the titanium nitride 51. , is unnecessary if there is no ink flow and no printing misalignment. A pace jig for manufacturing circuit boards (hereinafter referred to as a pace jig) was completed through the following two steps.

次にべ一子治具を前11硫酸銅メゾキ液に浸漬Lベース
治具を陰極とし、銅板を陽肇と[7て両極を対向させ、
5 A/dm”で3分間、1o A/drn、”で15
分間通電させ、窒化チタン51上1トッキ41を30ミ
クロンの厚さに析出させ、ff12図の断面の状態を得
た。
Next, the Beichiko jig was immersed in the copper sulfate solution, and the L base jig was used as the cathode, and the copper plate was connected to the positive electrode [7, so that the two poles faced each other,
5 A/dm” for 3 minutes, 1o A/drn, 15 minutes
Electricity was applied for a minute to deposit 1 tokki 41 on titanium nitride 51 to a thickness of 30 microns, resulting in the cross-sectional state shown in Figure ff12.

属人100ミクロンのポリイミドフィルムにエポキシを
主成分と干る接着剤を塗布しBステージ化させ、接着剤
面を前記ペース治具の銅メツー?41面に合せ、加熱し
圧着した後、ポリイミドフィルムと、ペース治具を剥離
すると、ポリイミドフィルムに接着剤を介して銅メッキ
41が転写され、ペース治具は再び第3図の[i而と々
る。
Apply a drying adhesive mainly composed of epoxy to a 100 micron polyimide film to make it into a B stage, and apply the adhesive surface to the copper metal of the pace jig. When the polyimide film and the pace jig are peeled off, the copper plating 41 is transferred to the polyimide film via the adhesive, and the pace jig is then heated and pressed again as shown in Fig. 3. That's it.

以降、同様にペース治具に銅メッキ41し、接着剤を介
1、てポリイミドフィルムVC銅メツ゛キ41を転写し
、回路基板を製造する事ができた。
Thereafter, copper plating 41 was applied to the paste jig in the same manner, and the polyimide film VC copper plating 41 was transferred using an adhesive to manufacture a circuit board.

本発明は以上詳述17た如く製造されるので、従来の製
造法によれば、メツキレシストマスクに高分子材料を使
用する為、メツキレシストマスクの耐久性が劣るが、本
発明ではメ・ツキレジストマスクとして、金属を不導体
イけるため絶縁部分が取られる事なく、耐久性が向上す
るという利点を要する。
Since the present invention is manufactured as described in detail above, according to the conventional manufacturing method, the durability of the metskily resist mask is inferior due to the use of a polymer material for the metskily resist mask, but in the present invention, the durability of the metskily resist mask is inferior.・As a resist mask, it has the advantage of improving durability because the metal can be made into a non-conductor without removing the insulating part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフルアディティブ法による銅メーJギ4
をペース治具に施した断面を水子略図で、第2図および
第3図は本発明によるフルアディティブ法によるペース
治具を示す略図で、第2図(d銅メ・・キ41を施した
ペース治具の断面を示す略図で、第3図は儒メッキ41
を剥離し7た状態のペース治具の断面を示す略図でkI
る。 1 ・・・・・金属製元板 2・・・・・・メソキレシスト 5・・・・・・非粘着性材料 4・・・・・・銅メッキ 11・・・・・・アルミ製元板 12・・・・・・不導体化層 31・・・・・・非粘着性材料 41・・・・・・銅メッキ 51・・・・・・9化チタン 以 −ヒ
Figure 1 shows the conventional full-additive method.
Mizuko schematically shows a cross section of a pace jig with This is a schematic diagram showing the cross section of the pace jig.
This is a schematic diagram showing the cross section of the pace jig in the state where it has been peeled off.
Ru. 1...Metal base plate 2...Methochyrecyst 5...Non-adhesive material 4...Copper plating 11...Aluminum base plate 12 ...... Passivation layer 31 ... Non-adhesive material 41 ... Copper plating 51 ... Titanium 9ide or higher

Claims (1)

【特許請求の範囲】[Claims] 回路パターンをメッキ法により形成するプリント回路用
導体回路の製造において、ステンレス鋼やニッケ乞 ク
ロム、チタンのうら少なぐとも1種以上をアルミニウム
もしくけその合金の元板上に付着せしめる工程と、付着
せしめた合金や金属の一部をエツチングで除去し1回路
パターンとなる部分のみ付着せしめた合金や金属を残し
、エツチングで除去された部分のアルミニウムもしくは
その合金の表面を不導体化処理する工程と、不導体化処
理した表面上にのみ連索樹脂等の非粘着性利料をコーテ
ィングする工程と、付着せしめた合金や金属パターン表
面に、電気メツキ法で銅等の金属を堆積させ、この堆積
した金属を1回路基板のベースとなる高分子材料上に接
着剤を介して転写し、高分子材料上に回路パターンを形
成する事を特徴とするプリント回路用導体回路の製造方
法。
In the production of conductor circuits for printed circuits in which circuit patterns are formed by plating, there is a process of attaching at least one type of stainless steel, nickel, chromium, titanium, etc. to a base plate of aluminum or its alloy. A step in which a part of the aluminum or metal that has been etched is removed by etching, leaving the alloy or metal attached only in the part that will form one circuit pattern, and the surface of the aluminum or its alloy that has been removed by etching is treated to become nonconductive. , a process of coating a non-adhesive material such as a continuous resin only on the surface that has been made non-conductive, and depositing a metal such as copper using an electroplating method on the surface of the attached alloy or metal pattern. 1. A method for manufacturing a conductor circuit for a printed circuit, which comprises transferring the metal onto a polymeric material serving as the base of a circuit board via an adhesive to form a circuit pattern on the polymeric material.
JP14781283A 1983-08-12 1983-08-12 Method of producing conductor circuit for printed circuit Pending JPS6039891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14781283A JPS6039891A (en) 1983-08-12 1983-08-12 Method of producing conductor circuit for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14781283A JPS6039891A (en) 1983-08-12 1983-08-12 Method of producing conductor circuit for printed circuit

Publications (1)

Publication Number Publication Date
JPS6039891A true JPS6039891A (en) 1985-03-01

Family

ID=15438770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14781283A Pending JPS6039891A (en) 1983-08-12 1983-08-12 Method of producing conductor circuit for printed circuit

Country Status (1)

Country Link
JP (1) JPS6039891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486590A (en) * 1987-06-25 1989-03-31 Matsushita Electric Works Ltd Manufacture of insulating substrate with electric path

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486590A (en) * 1987-06-25 1989-03-31 Matsushita Electric Works Ltd Manufacture of insulating substrate with electric path

Similar Documents

Publication Publication Date Title
US3698940A (en) Method of making additive printed circuit boards and product thereof
US3854973A (en) Method of making additive printed circuit boards
JPS60147192A (en) Method of producing printed circuit board
JP4959052B2 (en) Improved method of forming conductive traces and printed circuit manufactured thereby
JPS60207395A (en) Method of producing through-hole plated electric printed circuit board
KR850001363B1 (en) Method for manufacturing a fine patterned thick film conductor structure
JPS62293689A (en) Presensitized circuit material
JPH06152105A (en) Manufacture of printed wiring board
JPS6039891A (en) Method of producing conductor circuit for printed circuit
JPH0219992B2 (en)
JP3935558B2 (en) Pattern formation method
JPH09307216A (en) Manufacture of wiring board, and wiring board
JPH036880A (en) Printed wiring board and manufacture thereof
JP3517286B2 (en) Master for electrodeposition transfer and method of manufacturing the same
JPH10294548A (en) Manufacture of printed wiring board and printed wiring board using the method
JP2004266078A (en) Method of forming conductor pattern
JP3828205B2 (en) Method for manufacturing transfer member and transfer member
JPH0649679A (en) Formation of fine pattern
JPH02113589A (en) Manufacture of printed-wiring board
JPH11266070A (en) Manufacture of transfer member and printed wiring board
JPH11274695A (en) Transferring material and manufacture thereof
JPS647517B2 (en)
JPS5967693A (en) Method of producing conductor circuit for printed circuit board
JPS62242389A (en) Manufacture of flexible printed wiring board
JPS5830190A (en) Method of producing printed board