JPH07238455A - Complex elastic network material, its production and product using the same - Google Patents

Complex elastic network material, its production and product using the same

Info

Publication number
JPH07238455A
JPH07238455A JP2798394A JP2798394A JPH07238455A JP H07238455 A JPH07238455 A JP H07238455A JP 2798394 A JP2798394 A JP 2798394A JP 2798394 A JP2798394 A JP 2798394A JP H07238455 A JPH07238455 A JP H07238455A
Authority
JP
Japan
Prior art keywords
layer
composite
elastic
resin
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2798394A
Other languages
Japanese (ja)
Other versions
JP3430446B2 (en
Inventor
Hideo Isoda
英夫 磯田
Takaharu Nishida
高治 西田
Yasushi Yamada
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2798394A priority Critical patent/JP3430446B2/en
Publication of JPH07238455A publication Critical patent/JPH07238455A/en
Application granted granted Critical
Publication of JP3430446B2 publication Critical patent/JP3430446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain a complex elastic network material, capable of cutting off the vibration, excellent in heat resistance, durability, shape retaining and cushioning properties, hardly becoming musty and suitable as a cushioning material and a product using the complex elastic network material such as a FUTON (a thick bedquilt and a mattress), furniture, a bed or a vehicular cushion and provide a method for producing the complex elastic network material. CONSTITUTION:This complex elastic network material is obtained by meandering continuous filaments, having 500 to 100000 denier size and comprising compounded two kinds of thermoplastic elastic resins, bringing the filaments into mutual contact, forming a three-dimensional steric structure layer (complex filamentous layer) in which most of the contact parts are fused, sandwiching the resultant three-dimensional steric structural layer between layers (elastic resin layers) prepared by meandering filaments, having >=100 to <=30000 denier size and comprising a single component of a thermoplastic elastic resin, bringing the filaments into mutual contact, fusing most of the contact parts and forming a three-dimensional steric structure, fusing and integrating the resultant layer even with the complex layer, substantially flattening the surface of the single layer and fusing most of the contact parts. The resultant material has >=0.01 to <=0.20g/cm<3> average apparent density. Furthermore, this method for producing the network material and its product using the same are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な複合弾性網状体と製法および複合弾性網状体を用いた
布団、家具、ベッド、車両用クッション材等の製品に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recyclable composite elastic mesh body having excellent cushioning property, heat resistance durability and vibration absorption property, a manufacturing method, and a futon, furniture using the composite elastic mesh body. Products related to beds, cushioning materials for vehicles, etc.

【0002】[0002]

【従来の技術】現在、布団、家具、ベッド、電車、自動
車等のクッション材で、発泡ウレタン、非弾性捲縮繊維
詰綿、及び非弾性捲縮繊維を接着した樹脂綿や硬綿など
が使用されている。
2. Description of the Related Art Currently, as cushion materials for futons, furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimp fiber stuffed cotton, and resin cotton or hard cotton to which non-elastic crimp fiber is adhered are used. Has been done.

【0003】しかしながら、発泡−架橋型ウレタンはク
ッション材としての耐久性は良好だが、透湿透水性に劣
り蓄熱性があるため蒸れやすく、かつ、熱可塑性では無
いためリサイクルが困難となり焼却される場合、焼却炉
の損傷が大きく、かつ、有毒ガス除去に経費が掛かる。
このため埋め立てされることが多くなったが、地盤の安
定化が困難なため埋め立て場所が限定され経費も高くな
っていく問題がある。また、加工性は優れるが製造中に
使用される薬品の公害問題などもある。また、熱可塑性
ポリエステル繊維詰綿では繊維間が固定されていないた
め、使用時形態が崩れたり、繊維が移動して、かつ、捲
縮のへたりで嵩高性の低下や弾力性の低下が問題にな
る。
However, although the foamed-crosslinked urethane has good durability as a cushioning material, it is apt to be stuffy due to its poor moisture permeability and heat storage and has a heat storage property, and it is difficult to recycle because it is not thermoplastic, and is burned. The damage to the incinerator is large and the cost for removing toxic gas is high.
For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りクッション材には使用ができない
ものである。また、特公平3−17666号公報には繊
度の異なる吐出線条を互いに融着してモ−ル状物を作る
方法があるがクッション材には適さない網状構造体であ
る。特公平3−55583号公報には、ごく表面のみ冷
却前に回転体等の細化装置で細くする方法が記載されて
いる。この方法では表面をフラット化できず、厚みのあ
る細い線条層を作ることできない。したがって座り心地
の良好なクッション材にはならない。特開平1−207
462号公報では、塩化ビニ−ル製のフロアマットの開
示があるが、室温での圧縮回復性が悪く、耐熱性は著し
く悪いので、クッション材としては好ましくないもので
ある。なお、上述構造体は振動減衰に関する配慮が全く
なされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a cushion material. In Japanese Patent Publication No. 3-17666, there is a method in which ejection filaments having different fineness are fused to each other to form a mold, but a net-like structure which is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 describes a method of thinning only a very surface with a thinning device such as a rotating body before cooling. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. JP-A-1-207
Japanese Patent Laid-Open No. 462 discloses a vinyl chloride floor mat, but it is not preferable as a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、クッション材に適した複合弾性網状
体と製法及び複合弾性網状体を用いた布団、家具、ベッ
ド、車両用クッション材等の製品を提供することを目的
とする。
To solve the above problems,
Cushioning material for furniture, bed, and vehicle that uses a composite elastic mesh body and a manufacturing method and a composite elastic mesh body that is suitable for a cushioning material, which is excellent in heat resistance and durability, shape retention, cushioning properties The purpose is to provide such products.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、連続線状体自体が、2種類の熱
可塑性弾性樹脂が複合化された繊度が500〜1000
00デニ−ルの連続複合線状体を曲がりくねらせ互いに
接触させて該接触部の大部分を融着せしめた三次元立体
網状構造体層を中層とし、一方、熱可塑性弾性樹脂から
なる繊度が100〜30000デニ−ルの連続線状を曲
がりくねらせ互いに接触させて該接触部の大部分を融着
せしめた三次元立体網状構造体層で前記中層を両側から
挟み込むように積層融着一体化した複合網状体であり表
面が実質的にフラット化されており、平均見掛け密度が
0.01〜0.20g/cm3 であることを特徴とする複
合弾性網状体、複数のオリフィスを持つ多列ノズルの内
層に、複数の熱可塑性弾性樹脂を複合化できるようにノ
ズルオリフィス前で分配合流させると共に、該ノズルの
1列目側及び最終列目側から複合分配されたオリフィス
列を挟み込むように単成分の熱可塑性弾性樹脂を該ノズ
ルに分配して、低融点樹脂の融点より20〜120℃高
い温度〜高融点樹脂の融点より10〜50℃高い温度
で、該ノズルより下方に向けて吐出させ、溶融状態で互
いに接触させて融着させ3次元構造を形成しつつ、引取
り装置で挟み込み冷却槽で冷却せしめることを特徴とす
る複合弾性網状体の製法および前記複合弾性網状体を用
いた製品である。
[Means for Solving the Problems] Means for solving the above problems, that is, the present invention, the continuous linear body itself has a fineness of 500 to 1000 in which two kinds of thermoplastic elastic resins are compounded.
A three-dimensional three-dimensional network structure layer in which a continuous composite linear body of 00 denier is bent and brought into contact with each other to fuse most of the contact portions to form an intermediate layer, on the other hand, a fineness composed of a thermoplastic elastic resin A three-dimensional three-dimensional network structure layer in which a continuous linear line of 100 to 30,000 denier is curved and brought into contact with each other to fuse most of the contact portions, and the intermediate layer is sandwiched from both sides to be fusion-bonded and integrated. Composite reticulated body, the surface of which is substantially flattened, and the average apparent density is 0.01 to 0.20 g / cm 3 , the composite elastic reticulated body, multiple rows having a plurality of orifices In the inner layer of the nozzle, a plurality of thermoplastic elastic resins are mixed and mixed in front of the nozzle orifice so that they can be composited, and the orifice row that is compositely distributed is sandwiched from the first row side and the last row side of the nozzle. A single-component thermoplastic elastic resin is distributed to the nozzle and discharged downward from the nozzle at a temperature 20 to 120 ° C. higher than the melting point of the low melting point resin to a temperature 10 to 50 ° C. higher than the melting point of the high melting point resin. A method for producing a composite elastic network and a method for producing a composite elastic network, characterized in that they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, sandwiched by a take-up device and cooled in a cooling tank. It is a product.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体等のポリアルキレンジオ−ルが好ましく、
(B)のポリイソシアネ−トとしては、従来公知のポリ
イソシアネ−トを用いることができるが、ジフェニルメ
タン4・4’ジイソシアネ−トを主体としたイソシアネ
−トを用い、必要に応じ従来公知のトリイソシアネ−ト
等を微量添加使用してもよい。(C)のポリアミンとし
ては、エチレンジアミン、1・2プロピレンジアミン等
公知のジアミンを主体とし、必要に応じて微量のトリア
ミン、テトラアミンを併用してもよい。これらのポリウ
レタン系エラストマ−は単独又は2種類以上混合して用
いてもよい。なお、本発明の熱可塑性弾性樹脂の融点は
耐熱耐久性が保持できる140℃以上が好ましく、16
0℃以上のものを用いると耐熱耐久性が向上するのでよ
り好ましい。なお、必要に応じ、抗酸化剤や耐光剤等を
添加して耐久性を向上させることができる。本発明の目
的である単成分層、及び複合化層の振動や応力の吸収機
能をもたせる成分を構成する熱可塑性弾性樹脂のソフト
セグメント含有量は好ましくは30重量%以上、より好
ましくは50重量%以上であり、耐熱耐へたり性からは
80重量%以下が好ましく、より好ましくは70重量%
以下である。即ち、単成分層または複合化層の振動や応
力の吸収機能をもたせる成分のソフトセグメント含有量
は好ましくは30重量%以上80重量%以下であり、よ
り好ましくは50重量%以上70重量%以下である。複
合化層の抗圧縮性を持ち体型保持機能をもたせる成分の
ソフトセグメント含有量は好ましくは5重量%以上60
重量%以下であり、より好ましくは10重量%以上50
重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylene glycols such as polypropylene, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. .
Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and poly The alkylene diol is particularly preferably a terpolymer block copolymer of polytetramethylene glycol or the terpolymer block copolymer of polylactone as the polyester diol. In a special case,
You can also use a kotatsu that has a polysiloxane-based soft segment introduced. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, the hard segment includes nylon 6, nylon 66, nylon 610, nylon 612,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 11, nylon 12, etc. and their copolymerized nylon.
A block copolymer composed of at least one kind of polyalkylenediol such as ethylene oxide-propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention.
The polyurethane-based elastomer is (A) number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
00 has a hydroxyl group-terminated polyether and / or polyester, and (B) an organic diisocyanate-based polyisocyanate as a main component.
As a typical example, a polyurethane elastomer in which a chain-extended polyamine having a diamine (C) as a main component is added to a prepolymer which is a group having a hydroxyl group can be exemplified. The polyester or polyether of (A) has an average molecular weight of about 1,000.
To 6000, preferably 1300 to 5000, polybutylene adipate copolyester, polyalkylene glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol and ethylene oxide-propylene oxide copolymer. Is preferred,
As the polyisocyanate of (B), a conventionally known polyisocyanate can be used, but an isocyanate mainly composed of diphenylmethane 4,4 ′ diisocyanate is used, and if necessary, a conventionally known triisocyanate. Etc. may be used in a trace amount. As the polyamine (C), known diamines such as ethylenediamine and 1.2-propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained.
It is more preferable to use one having a temperature of 0 ° C. or higher because the heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the single component layer, which is the object of the present invention, and the component having the function of absorbing vibration and stress of the composite layer is preferably 30% by weight or more, more preferably 50% by weight. From the above, from the viewpoint of heat resistance and sag resistance, 80% by weight or less is preferable, and 70% by weight is more preferable.
It is the following. That is, the content of the soft segment of the component having the vibration and stress absorbing function of the single component layer or the composite layer is preferably 30% by weight or more and 80% by weight or less, more preferably 50% by weight or more and 70% by weight or less. is there. The soft segment content of the component having the anti-compression property of the composite layer and the function of maintaining the body shape is preferably 5% by weight or more and 60
% By weight or less, more preferably 10% by weight or more and 50
It is less than or equal to weight%.

【0010】本発明の複合網状体を構成する熱可塑性弾
性樹脂からなる線条は、示差走査型熱量計にて測定した
融解曲線において、融点以下に吸熱ピ−クを有するのが
好ましい。融点以下に吸熱ピ−クを有するものは、耐熱
耐へたり性が吸熱ピ−クを有しないものより著しく向上
する。例えば、本発明の好ましいポリエステル系熱可塑
性樹脂として、ハ−ドセグメントの酸成分に剛直性のあ
るテレフタル酸やナフタレン2・6ジカルボン酸などを
90モル%以上含有するもの、より好ましくはテレフタ
ル酸やナフタレン2・6ジカルボン酸の含有量は95モ
ル%以上、特に好ましくは100モル%とグリコ−ル成
分をエステル交換後、必要な重合度まで重合し、次い
で、ポリアルキレンジオ−ルとして、好ましくは平均分
子量が500以上5000以下、特に好ましくは100
0以上3000以下のポリテトラメチレングリコ−ルを
15重量%以上70重量%以下、より好ましくは30重
量%以上60重量%以下共重合量させた場合、ハ−ドセ
グメントの酸成分に剛直性のあるテレフタル酸やナフタ
レン2・6ジカルボン酸の含有量が多いとハ−ドセグメ
ントの結晶性が向上し、塑性変形しにくく、かつ、耐熱
抗へたり性が向上するが、溶融熱接着後更に融点より少
なくとも10℃以上低い温度でアニ−リング処理すると
より耐熱抗へたり性が向上する。圧縮歪みを付与してか
らアニ−リングすると更に耐熱抗へたり性が向上する。
このような処理をした網状構造体の線条を示差走査型熱
量計(DSC)で測定した融解曲線に室温以上融点以下
の温度で吸熱ピークをより明確に発現する。なおアニ−
リングしない場合は融解曲線に室温以上融点以下に吸熱
ピ−クを発現しない。このことから類推するに、アニ−
リングにより、ハ−ドセグメントが再配列され、疑似結
晶化様の架橋点が形成され、耐熱抗へたり性が向上して
いるのではないかとも考えられる。(この処理を疑似結
晶化処理と定義する)この疑似結晶化処理効果は、ポリ
アミド系弾性樹脂やポリウレタン系弾性樹脂にも有効で
ある。
It is preferable that the filament made of the thermoplastic elastic resin constituting the composite network of the present invention has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably The average molecular weight is 500 or more and 5000 or less, particularly preferably 100.
When the polytetramethylene glycol of 0 or more and 3000 or less is copolymerized in an amount of 15% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 60% by weight or less, the acid component of the hard segment has rigidity. When the content of a certain terephthalic acid or naphthalene 2.6 dicarboxylic acid is high, the crystallinity of the hard segment is improved, the plastic deformation is less likely to occur, and the heat resistance and sag resistance are improved. When the annealing treatment is performed at a temperature lower by at least 10 ° C. or more, the heat resistance and sag resistance is further improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved.
The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter (DSC) of the linear structure of the network structure treated in this manner at a temperature of room temperature or higher and melting point or lower. Anniversary
If not ringed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this,
It is also considered that the hard segments are rearranged by the ring to form pseudo-crystallization-like cross-linking points, and the heat resistance and sag resistance are improved. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明は、複数の熱可塑性弾性樹脂が複合
化された繊度が500デニ−ルから100000デニ−
ルの線状を曲がりくねらせ互いに接触させて該接触部の
大部分が融着した3次元立体構造体層(複合化層)を挟
んで、単成分の熱可塑性弾性樹脂からなる繊度が100
デニ−ル以上30000デニ−ル以下の線条を曲がりく
ねらせ互いに接触させて該接触部の大部分を融着せしめ
た3次元立体構造を形成した層(単成分層)が該複合化
層とも融着一体化され、単成分層の表面が実質的にフラ
ット化されて、接触部の大部分が融着した平均の見掛け
密度が0.01g/cm3 以上0.20g/cm3 以下の複
合弾性網状体である。本発明の複合弾性網状体は、熱可
塑性弾性樹脂からなる複合化層の両面に単成分層が融着
一体化され、単成分層からなる表面が実質的にフラット
化されており、外部から与えられた振動は表面または裏
面の熱可塑性弾性樹脂からなる単成分層で大部分の振動
を吸収減衰し、単成分層で吸収できなかった振動は複合
化層でさらに吸収減衰して座席に座った、又は寝た人間
に出来るだけ到達させない、または人間が発生する振動
を外部に出来るだけ出さない構造を形成している。局部
的に大きい変形応力を与えられた場合でも単成分層の面
が実質的にフラット化され接触部の大部分が融着してい
るので、単成分層の面で変形応力を受け止め変形応力を
分散させ、構造体全体が変形して変形応力を吸収できる
機能を持つ。大きい応力で変形を与えても、まず、単成
分層が容易に変形して変形応力を吸収し、変形応力が解
除されるとゴム弾性で容易に元の形態に回復する。単成
分層で吸収できなかった変形応力は熱可塑性弾性樹脂か
らなる繊度の太い、好ましくは中空断面又は、及び異形
断面化してやや硬い複合化層で抗圧縮性を示しつつ弾性
限界を越えない変形を生じ、連続した線状が融着一体化
した3次元網状構造全体で変形して応力を吸収し、応力
が解除されると熱可塑性弾性樹脂のゴム弾性を発現し
て、構造体は元の形態に回復することができる。このこ
とで、圧縮時の応力−歪み曲線(SS曲線)が応力に対
しての変形歪みが直線的に変化し、座ったときの沈み込
みが適度で、振動を受けたときの上下運動による応力変
化を床つき感なく適度に沈み込み臀部を低い反発力で支
える好ましいショックアブソ−バ−の働きを発現できる
クッション材としては好ましい特性を付与できる。更に
は、良好な耐へたり性も保持できる。熱可塑性弾性樹脂
からなる単一繊度の丸断面の線状からなる網状体では、
タッチをソフトにするため繊度を細くすると柔らかいた
め座った時及び振動による上下運動での沈み込みを大き
くし易い欠点があり、繊度を太くするとタッチが悪くな
る欠点を本発明では解決し、タッチをソフトにして体型
保持性が向上できる。公知の非弾性樹脂のみからなる線
条で構成したクッション材では、形態保持できる構造に
すると著しい反発力を示し床つき感が大きくなり、圧縮
変形による塑性変形も生じて回復性が不充分となり耐熱
耐久性も劣る。単成分層の表面が実質的にフラット化さ
れてない場合、表面に局部的な外力が掛かると、表面の
線条及び接着点部分までに選択的に応力集中が発生する
場合があり、このような外力に対しては応力集中による
疲労が発生して耐へたり性が低下する場合がある。な
お、該線条が熱可塑性弾性樹脂からなる場合は3次元構
造部分で構造全体が変形するので応力集中は緩和される
が、非弾性樹脂では、そのまま応力が接着点に集中して
構造破壊を生じ回復しなくなる。なお、線状が連続して
いない場合は、接着点が応力の伝達点となるため接着点
に著しい応力集中が起こり構造破壊を生じ前記従来技術
にも例示した特開昭60−11352号公報、特開昭6
1−137732号公報、WO91−19032号公報
等に開示された構造体の如く耐熱耐久性が劣り好ましく
ない。融着していない場合は、形態保持が出来ず、構造
体が一体で変形しないため、応力集中による疲労現象が
起こり耐久性が劣ると同時に、形態が変形して体型保持
ができなくなり好ましくない。本発明のより好ましい融
着の程度は、線条が接触している部分の大半が融着した
状態であり、もっとも好ましくは接触部分が全て融着し
た状態である。なお、本発明の構造体を形成する単成分
層の線状の繊度は100デニ−ル以下では抗圧縮性が低
くなり過ぎて変形による応力吸収性が低下するので好ま
しくない。30000デニ−ル以上では変形しにくくな
ると共に、構成本数の低下による単成分層及び面の緻密
性を損ない応力吸収機能と応力分散機能が低下するので
好ましくない。好ましい単成分層の線状の繊度は300
デニ−ル以上、10000デニ−ル以下、より好ましく
は500デニ−ル以上、7000デニ−ル以下である。
複合化層の線条の繊度は500デニ−ル以下では体型保
持に必要な抗圧縮性が劣るので好ましくない。1000
00デニ−ル以上では線状体の個々の抗圧縮性は大きい
が構成本数が少なくなり密度斑を生じて部分的に力の分
散が悪くなり100kg/cm2 以上の著しく大きい圧縮力
を受けた場合応力集中によるへたりが発生するので使用
部分が制限される場合がある。好ましくは800〜50
000デニ−ル、より好ましくは1500〜30000
デニ−ルである。なお、本発明においては繊度の異なる
線状を見掛け密度との組合せで最適な構成とする異繊度
積層構造とする方法も好ましい構成として選択できる。
本発明の弾性複合網状体の平均の見掛け密度は0.00
5g/cm3 では反発力が失われクッション機能を発現さ
れにくいので好ましくない。0.20g/cm3 以上では
反発力が高すぎて座り心地が悪くなるので好ましくな
い。本発明の弾性複合網状体の好ましい見掛け密度はク
ッション体としての機能が発現されやすい0.01g/
cm3 以上0.15g/cm3 以下が好ましく、より好まし
くは0.03g/cm3 以上0.06g/cm3 以下であ
る。クッション材に用いる場合のクッション層の働きは
基本の繊度を太くして少し硬くして体型保持を受け持つ
層と振動減衰性の良い成分で密度を少し高くした振動吸
収して振動を遮断する層で構成し、表面はやや繊度を細
くし構成線条本数を多くした少し柔らかな層として適度
の沈み込みにより快適な臀部のタッチを与えて臀部の圧
力分布を均一分散化する層が一体化されることで、応力
や振動を一体で変形し吸収させることで座り心地を向上
させることができる。しかして、本発明弾性複合網状体
は、熱可塑性弾性樹脂からなる単成分層と複合化層から
なる少なくとも3層が融着一体化しているので、各層の
繊度と見掛け密度を任意に変え目的に応じた好ましい特
性を付与することができる。例えば、単成分層を繊度の
細い表面層とし、複合化層を繊度の太い基本層とする場
合は、表面層の密度はやや高くして構成本数を多くし線
条の一本が受ける応力を少なくして応力の分散を良く
し、且つ臀部を支えるクッション性も向上させることで
座り心地を向上させることもできる。基本層を介して座
席フレ−ムと接する単成分層の面はより緻密な層とする
ため、やや繊度の細い線条で、且つ高密度とすることに
よりフレ−ム面から受ける振動や反発応力を面で受け止
め、単成分層内に均一に伝達して層全体で振動や反発応
力をエネルギ−変換して減衰、遮断する。遮断出来ない
振動や反発応力は更に一体化したクッション層が全体で
変形してエネルギ−変換できるようにし、座り心地を良
くすると共にクッションの耐久性も向上させることがで
きる。又、座席のサイドの厚みと張りを付与させるため
に部分的に繊度をやや細くして高密度化することもでき
る。なお、複合網状体の各層の厚みは特に限定されない
が、全体の厚みを100mmとする場合は、単成分層は力
の分散をする面機能と振動や変形応力吸収機能が発現で
きる厚みとして3mm以上40mm以下とするのが好まし
く、より好ましくは5mm以上20mm以下である。複合化
層は体型保持とクッション層の機能が発現できる厚みと
して20mm以上94mm以下とするのが好ましく、より好
ましくは30mm以上90mm以下、更に好ましくは40mm
以上70mm以下である。
According to the present invention, a fineness of a composite of a plurality of thermoplastic elastic resins is 500 denier to 100,000 denier.
The three-dimensional three-dimensional structure layer (composite layer) in which most of the contact portions are fused by contacting each other by winding the linear shape of the wire, and sandwiching the three-dimensional structure layer (composite layer), the fineness of the single component thermoplastic elastic resin is 100.
A layer (single-component layer) having a three-dimensional three-dimensional structure in which filaments having a denier or more and 30,000 denier or less are meandered and brought into contact with each other to fuse most of the contact portions (mono-component layer) is also the composite layer. A composite having an average apparent density of 0.01 g / cm 3 or more and 0.20 g / cm 3 or less in which the surface of the single-component layer is substantially flattened by fusion bonding and most of the contact portion is fused. It is an elastic mesh. The composite elastic network of the present invention has a single-component layer fused and integrated on both sides of a composite layer made of a thermoplastic elastic resin, and the surface of the single-component layer is substantially flattened. The vibrations absorbed and absorbed in most of the single component layer consisting of the thermoplastic elastic resin on the front or back surface, and the vibrations that could not be absorbed in the single component layer were further absorbed and attenuated in the composite layer and sat on the seat. Or, a structure is formed that does not reach a sleeping person as much as possible, or does not generate the vibration generated by the person to the outside as much as possible. Even when a large deformation stress is locally applied, the surface of the single-component layer is substantially flattened and most of the contact portion is fused. It has the function of dispersing and absorbing the deformation stress by deforming the entire structure. Even if deformation is applied with a large stress, first, the single-component layer easily deforms and absorbs the deformation stress, and when the deformation stress is released, rubber elasticity easily restores the original form. The deformation stress that could not be absorbed by the single component layer is a deformation that does not exceed the elastic limit while exhibiting anti-compression in a composite layer with a fineness, preferably a hollow cross section or a modified cross section made of a thermoplastic elastic resin Occurs, the entire linear three-dimensional network structure fused and integrated deforms to absorb the stress, and when the stress is released, the rubber elasticity of the thermoplastic elastic resin is developed, and the structure returns to the original structure. Can be restored to form. As a result, the stress-strain curve (SS curve) at the time of compression changes the deformation strain linearly with respect to the stress, the subsidence when sitting is moderate, and the stress due to vertical movement when subjected to vibration. It is possible to impart preferable characteristics as a cushioning material capable of exhibiting a preferable shock absorber function for appropriately supporting the buttocks with a low repulsive force by appropriately sinking the change without feeling a floor. Furthermore, good sag resistance can be maintained. In the net-like body consisting of a linear cross section of a single fineness made of thermoplastic elastic resin,
If the fineness is made thin to make the touch soft, there is a drawback that it is easy to increase the subsidence due to softness when sitting and in vertical movement due to vibration, and the present invention solves the drawback that the touch becomes worse when the fineness is made thicker. It can be made soft and the body retention can be improved. With a cushioning material composed of known filaments made only of non-elastic resin, if a structure that can hold the shape is used, a marked repulsive force is exhibited and the floor feeling becomes large, and plastic deformation due to compression deformation also occurs and recovery is insufficient and heat resistance Inferior in durability. If the surface of the single-component layer is not substantially flattened, when a local external force is applied to the surface, stress concentration may be selectively generated up to the filaments and the bonding points of the surface. With respect to such external force, fatigue due to stress concentration may occur and sag resistance may decrease. When the filaments are made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure portion, so stress concentration is relieved. However, in the non-elastic resin, stress is concentrated at the bonding point and structural damage is caused. It will not occur and will not recover. When the linear shape is not continuous, the adhesion point serves as a stress transmission point, so that significant stress concentration occurs at the adhesion point and structural destruction occurs. JP-A-6
The structures such as those disclosed in JP-A 1-137732 and WO 91-19032 are inferior in heat resistance and durability, which is not preferable. If they are not fused, the shape cannot be maintained and the structure is not integrally deformed, so that fatigue phenomenon occurs due to stress concentration and durability is deteriorated, and at the same time, the shape is deformed and the body shape cannot be maintained, which is not preferable. The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. If the linear fineness of the single-component layer forming the structure of the present invention is 100 denier or less, the anti-compression property becomes too low and the stress absorbability due to deformation decreases, which is not preferable. If it is more than 30,000 denier, it becomes difficult to deform, and the density of the single component layer and the surface are impaired due to the decrease in the number of constituents, so that the stress absorbing function and the stress dispersing function are deteriorated, which is not preferable. The preferred linear fineness of the monocomponent layer is 300.
Denier or more and 10,000 denier or less, more preferably 500 denier or more and 7,000 denier or less.
If the fineness of the filaments of the composite layer is 500 denier or less, the anti-compression property required for maintaining the body shape is poor, which is not preferable. 1000
When it is more than 00 denier, the individual compressive properties of the linear body are large, but the number of constituents is small and density unevenness is generated, the dispersion of force is partially deteriorated, and a remarkably large compressive force of 100 kg / cm 2 or more is received. In this case, since settling due to stress concentration occurs, the use part may be limited. Preferably 800-50
000 denier, more preferably 1500-30000
Denier. In the present invention, a method of forming a different fineness laminated structure in which a linear shape having a different fineness is combined with an apparent density to obtain an optimal configuration can also be selected as a preferable configuration.
The average apparent density of the elastic composite network of the present invention is 0.00
When it is 5 g / cm 3 , the repulsive force is lost and the cushioning function is hardly exhibited, which is not preferable. When it is 0.20 g / cm 3 or more, the resilience is too high and the comfort of sitting becomes unfavorable. A preferable apparent density of the elastic composite reticulate body of the present invention is 0.01 g /
cm 3 or more and 0.15 g / cm 3 or less are preferable, and more preferably 0.03 g / cm 3 or more and 0.06 g / cm 3 or less. When used as a cushioning material, the function of the cushioning layer is to increase the basic fineness and make it a little harder to support body shape, and a layer with a good vibration damping property to increase the density a little to absorb vibration and block vibration. As a slightly soft layer with a slightly finer surface and a larger number of filaments, the layer that integrates the pressure distribution of the buttocks by giving a comfortable touch to the buttocks by moderate depression is integrated. As a result, the sitting comfort can be improved by integrally deforming and absorbing stress and vibration. In the elastic composite reticulate body of the present invention, since the single component layer made of the thermoplastic elastic resin and at least three layers made of the composite layer are fused and integrated, the fineness and the apparent density of each layer can be arbitrarily changed. It is possible to impart suitable characteristics. For example, when the single-component layer is a surface layer with a fineness and the composite layer is a basic layer with a fineness, the density of the surface layer is set to be slightly high to increase the number of constituents to reduce the stress received by one filament. It is also possible to improve the sitting comfort by reducing the stress to improve the stress distribution and improving the cushioning property for supporting the buttocks. Since the surface of the single-component layer that contacts the seat frame through the basic layer is a more dense layer, it is a fine line and has a high density, so vibration and repulsive stress from the frame surface Is uniformly received in the single-component layer, and vibration and repulsive stress are energy-converted and attenuated and blocked in the entire layer. Vibrations and repulsive stress that cannot be blocked can be transformed into energy by further transforming the integrated cushion layer as a whole to improve the sitting comfort and the durability of the cushion. Further, in order to add thickness and tension to the side of the seat, the fineness can be made slightly thin to increase the density. The thickness of each layer of the composite network is not particularly limited, but when the total thickness is 100 mm, the single component layer has a thickness of 3 mm or more as a surface function to disperse force and a function to absorb vibration and deformation stress. It is preferably 40 mm or less, more preferably 5 mm or more and 20 mm or less. The thickness of the composite layer is preferably 20 mm or more and 94 mm or less, more preferably 30 mm or more and 90 mm or less, and further preferably 40 mm as a thickness capable of exerting the function of holding the figure and the function of the cushion layer.
It is 70 mm or less.

【0012】本発明の弾性複合網状体を構成する複合化
層の線条の複合化形態としては、シ−スコア構造または
サイドバイサイド構造及びそれらの組合せ構造などが挙
げられる。が、特には単成分層が大変形してもエネルギ
−変換できない振動や変形応力をエネルギ−変換して回
復できる立体3次元構造となるために線状の表面の50
%以上を単成分層に用いた柔らかい熱可塑性弾性樹脂が
占めるシ−スコア構造またはサイドバイサイド構造及び
それらの組合せ構造などが挙げられる。すなわち、シ−
スコア構造ではシ−ス成分はコア成分よりソフトセグメ
ント含有量が多い熱可塑性弾性樹脂であり、サイドバイ
サイド構造ではソフトセグメント含有量が多い熱可塑性
弾性樹脂の溶融粘度をソフトセグメント含有量が少ない
熱可塑性弾性樹脂の溶融粘度より低くして線状の表面を
占めるソフトセグメント含有量が多い熱可塑性弾性樹脂
の割合を多くした構造(比喩的には偏芯シ−ス・コア構
造のシ−スに熱可塑性弾性樹脂を配した様な構造)とし
て線状の表面を占めるソフトセグメント含有量が多い熱
可塑性弾性樹脂の割合を80%以上としたものが特に好
ましく、最も好ましくは線状の表面を占めるソフトセグ
メント含有量が多い熱可塑性弾性樹脂の割合を100%
としたシ−スコアである。ソフトセグメント含有量が多
い熱可塑性弾性樹脂の線状の表面を占める割合が多くな
ると、溶融して融着するときの流動性が高いので接着が
強固になる効果があり、構造が一体で変形する場合、接
着点の応力集中に対する耐疲労性が向上し、耐熱性や耐
久性がより向上する。断面形状は特には限定されない
が、中空断面や異形断面にすることで、クッション機能
を受け持つ複合化層を構成する線条が中空断面又は及び
異形断面とすることで、抗圧縮性を高くし体型保持性を
向上できるので好ましい。抗圧縮性は用いる素材のモジ
ュラスにより調整して、柔らかい素材では中空率や異形
度を高くし初期圧縮応力の勾配を調整できるし、ややモ
ジュラスの高い素材では中空率や異形度を低くして座り
心地が良好な抗圧縮性を付与する。中空断面や異形断面
の他の効果として中空率や異形度を高くすることで、同
一の抗圧縮性を付与した場合、より軽量化が可能とな
り、自動車等の座席に用いると省エネルギ−化ができ、
布団などの場合は、上げ下ろし時の取扱性が向上する。
なお、弾性樹脂層の線状も必要に応じて中空断面又は及
び異形断面とすることでタッチや座り心地の調整及び軽
量化等をはかることができる。
The composite form of the filaments of the composite layer constituting the elastic composite network of the present invention includes a sheath core structure or a side-by-side structure and a combination structure thereof. However, in particular, since a three-dimensional three-dimensional structure capable of energy-converting and recovering vibrations and deformation stress that cannot be energy-converted even if the single-component layer is largely deformed, the linear surface 50
Examples of the structure include a core-score structure or a side-by-side structure and a combination thereof, which is occupied by a soft thermoplastic elastic resin in which a mono-component layer is used in an amount of at least 100%. That is, see
In the score structure, the sheath component is a thermoplastic elastic resin that has a higher soft segment content than the core component, and in the side-by-side structure, the melt viscosity of the thermoplastic elastic resin that has a high soft segment content is the thermoplastic elasticity that has a low soft segment content. A structure in which the ratio of thermoplastic elastic resin, which has a large soft segment content and occupies a linear surface and is lower than the melt viscosity of the resin, is increased (metaphorically, the eccentric sheath-core structure is thermoplastic. It is particularly preferable that the proportion of the thermoplastic elastic resin occupying the linear surface is large as 80% or more, and most preferably the soft segment occupying the linear surface. 100% content of thermoplastic elastic resin with high content
And the score. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved. The cross-sectional shape is not particularly limited, but by making it a hollow cross section or an irregular cross section, the filaments that compose the composite layer responsible for the cushioning function have a hollow cross section and / or an irregular cross section, thereby increasing the anti-compression property and increasing the body shape. This is preferable because the holding property can be improved. The anti-compression property can be adjusted by the modulus of the material used, and the softness of the material can increase the hollowness and the degree of irregularity to adjust the gradient of the initial compression stress, and the material with a slightly higher modulus can reduce the hollowness and the degree of irregularity to allow sitting. It gives a comfortable and anti-compression property. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. You can
In the case of a futon, the handling property when raising and lowering is improved.
The elastic resin layer may have a hollow cross section and / or a modified cross section, if necessary, so that the touch and sitting comfort can be adjusted and the weight can be reduced.

【0013】熱可塑性弾性樹脂からなる線条で構成され
た単成分層は実質的に面がフラット化されて、接触部の
大部分が融着していることで、弾性複合網状体と他の網
状体、不織布、編織物、硬綿、フイルム、発泡体、金属
等の被熱接着体とを接着するのに、他の熱接着成分(熱
接着不織布、熱接着繊維、熱接着フィルム、熱接着レジ
ン等)や接着剤等を用いて一体積層構造体化し、車両用
座席、船舶用座席、車両用、船舶用、病院用等の業務用
及び家庭用ベット、家具用椅子、事務用椅子、布団類等
の製品を得る場合、被接着体面との接触面積を広くでき
るので、接着面積が広くなり強固に接着した接着耐久性
も良好な製品を得ることができる。なお、複合網状体形
成段階から製品化される任意の段階で上述の疑似結晶化
処理を施すことにより、構造体中の熱可塑性弾性樹脂か
らなる線条を示差走査型熱量計で測定した融解曲線に室
温以上融点以下の温度に吸熱ピークを持つようにすると
製品の耐熱耐久性が格段に向上するのでより好ましい。
本発明の弾性複合網状体は単成分層の熱可塑性弾性樹脂
の融点を複合化層の高融点樹脂の融点より10℃以上低
くしたもので構成することにより熱接着層の機能も付与
できる。熱接着層の機能を発現させるに好ましい弾性樹
脂層の熱可塑性弾性樹脂の融点は高融点樹脂の融点より
15℃から80℃低い融点であり、より好ましくは20
℃から50℃低い融点である。熱可塑性弾性樹脂からな
る線条で構成された単成分層は実質的に面がフラット化
されて、接触部の大部分が融着していることで、網状
体、不織布、編織物、硬綿、フイルム、発泡体、金属等
の被熱接着体面との接触面積を広くできるので、熱接着
面積が広くなり、強固に熱接着した新たな成形体を得る
ことができる。熱接着時に被接着体を伸張した状態で接
着すると、被接着体は接着層のゴム弾性で伸張された状
態が緩和しないので張りのある、皺になりにくい成形体
とすることができる。
The single component layer composed of filaments made of thermoplastic elastic resin has a substantially flat surface, and most of the contact portions are fused, so that the elastic composite reticulate body and other Other heat-adhesive components (heat-adhesive non-woven fabric, heat-adhesive fiber, heat-adhesive film, heat-adhesive, etc.) are used for adhering to heat-adhered materials such as nets, non-woven fabrics, knitted fabrics, hard cotton, films, foams and metals. (Resin, etc.) or adhesive, etc. to make an integral laminated structure, commercial seats for vehicles, seats for ships, seats for vehicles, ships, ships, hospitals, etc., household chairs, furniture chairs, office chairs, futons When a product such as a product is obtained, the contact area with the surface to be adhered can be widened, so that the product can have a wide adhesive area and can be firmly adhered to provide a product having good adhesive durability. In addition, by performing the above-mentioned pseudo-crystallization treatment at any stage of commercialization from the step of forming a composite network, the melting curve obtained by measuring the filaments made of the thermoplastic elastic resin in the structure with a differential scanning calorimeter It is more preferable to have an endothermic peak at a temperature of room temperature or higher and melting point or lower, because the heat resistance and durability of the product is remarkably improved.
The elastic composite reticulate body of the present invention can be provided with the function of a heat-adhesive layer by comprising the thermoplastic elastic resin of the single component layer having a melting point lower than that of the high melting point resin of the composite layer by 10 ° C. or more. The melting point of the thermoplastic elastic resin of the elastic resin layer that is preferable for exhibiting the function of the heat-bonding layer is 15 ° C. to 80 ° C. lower than the melting point of the high melting point resin, and more preferably 20.
The melting point is lower by 50 ° C to 50 ° C. The single-component layer composed of filaments made of thermoplastic elastic resin has a substantially flat surface, and most of the contact portions are fused to form a net, a non-woven fabric, a knitted fabric, a hard cotton. Since the contact area with the surface of the film, foam, metal, or the like to be heat-bonded can be widened, the heat-bonded area can be widened, and a new molded body that is strongly heat-bonded can be obtained. If the adherend is adhered in a stretched state at the time of heat bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that a molded body with tension and less likely to wrinkle can be obtained.

【0014】次に、本発明の製法を述べる。本発明の製
法は複数のオリフィスを持つ多列ノズルの内層に、複数
の熱可塑性弾性樹脂を複合化できるようにノズルオリフ
ィス前で分配合流させると共に、該ノズルの1列目側及
び最終列目側から複合分配されたオリフィス列を挟み込
むように単成分の熱可塑性弾性樹脂を該ノズルに分配し
て、高融点樹脂の融点より10℃以上高く、低融点樹脂
の融点より80℃未満高い溶融温度で、該ノズルより下
方に向けて吐出させ、溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、引取り装置で挟み込み冷
却槽で冷却せしめる複合弾性網状体の製法である。複合
層を形成する場合、複数の熱可塑性弾性樹脂を一般的な
溶融押出機を用いて別々に溶融し、多列ノズルの内側の
列に一般的な複合紡糸の方法と同様にオリフィス直前で
複合化するように分配合流させて下方に吐出する。シ−
スコアではコア成分を中央から供給し、その回りからシ
−ス成分を合流させ吐出する。サイドバイサイドでは左
右又は前後から各成分を合流させて下方に吐出させる。
この時の溶融温度は、低融点樹脂の融点より80℃以上
高い溶融温度にすると熱分解が著しくなり熱可塑性弾性
樹脂のゴム弾性特性が低下するので好ましくない。他
方、高融点弾性樹脂の融点より10℃以上高くしないと
高融点弾性樹脂がメルトフラクチャ−を発生し正常な線
条形成が出来なくなり、また、サイドバイサイドの場合
は高融点弾性樹脂の溶融粘度が極端に高くなり互いの樹
脂が合流できなくなったり、接着できなくなったり、著
しい孔曲がりを生じて所望の線条形成が不可能になる場
合があり、更には、吐出線条がル−プ形成して互いに接
触しても高融点弾性樹脂同士は融着しなくなり接着が不
充分な弾性複合網状体となる場合があり好ましくない。
好ましい溶融温度は低融点弾性樹脂の融点より20℃か
ら60℃高い温度、高融点弾性樹脂の融点より15℃か
ら40℃高い温度となる同一の溶融温度であり、より好
ましくは低融点弾性樹脂の融点より30℃から50℃高
い温度であり、高融点弾性樹脂の融点より20℃から3
0℃高い温度となる同一の溶融温度で合流吐出させる。
単成分層を形成する場合は一般的な溶融押出機を用いて
溶融し、又は複合化層形成に溶融した熱可塑性弾性樹脂
を複合化層を挟み込むように該ノズルの1列目側及び最
終列目側からノズル列の内側の各オリフィスに必要な列
まで複合化層形成樹脂と同一の溶融温度で分配し吐出す
る。同一の熱可塑性弾性樹脂を用いる場合は、所望の供
給量が複合化層と単成分層で異なるので熱可塑性弾性樹
脂を個々にギヤポンプで定量供給するのが望ましい。オ
リフィスの形状は特に限定されないが複合化層を中空断
面(例えば三角中空、丸型中空、突起つきの中空等とな
るよう形状)及び、又は異形断面(例えば三角形、Y
型、星型等の断面二次モ−メントが高くなる形状)とす
ることで前記効果以外に溶融状態の吐出線条が形成する
3次元構造が流動緩和し難くし、逆に接触点での流動時
間を長く保持して接着点を強固にできるので特に好まし
い。必要に応じ単成分層も異形断面及びまたは中空断面
化することができる。特開平1−2075号公報に記載
の接着のための加熱をする場合、3次元構造が緩和し易
くなり平面的構造化し、3次元立体構造化が困難となる
ので好ましくない。弾性複合網状体の特性向上効果とし
ては、見掛けの嵩を高くでき軽量化になり、また抗圧縮
性が向上し、弾発性も改良できへたり難くなる。中空断
面では中空率が80%を越えると断面が潰れ易くなるの
で、好ましくは軽量化の効果が発現できる10%以上7
0%以下、より好ましくは20%以上60%以下であ
る。オリフィスの孔間ピッチは線状が形成するル−プが
充分接触できるピッチとする必要がある。緻密な構造に
するには孔間ピッチを短くし、粗密な構造にするには孔
間ピッチを長くする。本発明の孔間ピッチは好ましくは
3mm〜20mm、より好ましくは5mm〜10mmである。本
発明では所望に応じ異密度化や異繊度化もできる。列間
のピッチ又は孔間のピッチも変えた構成、及び列間と孔
間の両方のピッチも変える方法などで異密度層を形成で
きる。また、オリフィスの断面積を変えて吐出時の圧力
損失差を付与すると、溶融した熱可塑性弾性樹脂を同一
ノズルから一定の圧力で押し出される吐出量が圧力損失
の大きいオリフィスほど少なくなる原理を使って長手方
向の区間でオリフィスの断面積が異なる列を少なくとも
複数有するノズルを用い異繊度線条からなる網状構造体
を製造することができる。本発明では、このような方法
または単孔吐出量を少なくして単成分層を細い線条で緻
密な網状構造体とするのが特に好ましい。次いで、該ノ
ズルより下方に向けて吐出させ、溶融状態で互いに接触
させて融着させ3次元構造を形成しつつ、引取りネット
で溶融状態の3次元立体構造体両面を挟み込み、単成分
層両面の溶融状態の曲がりくねった吐出線条を45°以
上折り曲げて変形させて表面をフラット化すると同時に
曲げられていない吐出線条との接触点を接着して構造を
形成後、連続して冷却媒体(通常は室温の水を用いるの
が冷却速度を早くでき、コスト面でも安くなるので好ま
しい)で急冷して本発明の3次元立体網状構造体化した
弾性複合網状体を得る。ノズル面と引取り点の距離は少
なくとも40cm以下にすることで吐出線条が冷却され接
触部が融着しなくなることを防ぐのが好ましい。吐出線
条の吐出量5g/分孔以上と多い場合は10cm〜40cm
が好ましく、吐出線条の吐出量5g/分孔未満と少ない
場合は5cm〜20cmが好ましい。次いで水切り乾燥する
が冷却媒体中に界面活性剤等を添加すると、水切りや乾
燥がしにくくなったり、熱可塑性弾性樹脂が膨潤するこ
ともあり好ましくない。本発明の好ましい方法として
は、一旦冷却後、一体成形して製品化に至る任意の工程
で熱可塑性弾性樹脂の融点より少なくとも10℃以下の
温度でアニ−リングよる疑似結晶化処理を行い熱接着複
合網状体又は製品を得るのがより好ましい製法である。
疑似結晶化処理温度は、少なくとも融点(Tm)より1
0℃以上低く、Tanδのα分散立ち上がり温度(Tα
cr)以上で行う。この処理で、融点以下に吸熱ピ−ク
を持ち、疑似結晶化処理しないもの(吸熱ピ−クを有し
ないもの)より耐熱耐へたり性が著しく向上する。本発
明の好ましい疑似結晶化処理温度は(Tαcr+10
℃)から(Tm−20℃)である。単なる熱処理により
疑似結晶化させると耐熱耐へたり性が向上する。が更に
は、10%以上の圧縮変形を付与してアニ−リングする
ことで耐熱耐へたり性が著しく向上するのでより好まし
い。また、一旦冷却後、乾燥工程を経する場合、乾燥温
度をアニ−リング温度とすることで同時に疑似結晶化処
理を行うができる。また、製品化する工程で別途疑似結
晶化処理を行うができる。次いで所望の長さまたは形状
に切断してクッション材に用いる。尚、ノズル面と樹脂
を固化させる冷却媒体上に設置した引取りコンベアとの
距離、樹脂の溶融粘度、オリフィスの孔径と吐出量など
により所望のループ径や線径をきめられる。冷却媒体上
に設置した間隔が調整可能な一対の引取りコンベアで溶
融状態の吐出線条を挟み込み停留させることで互いに接
触した部分を融着させ、連続して冷却媒体中に引込み固
化させ網状構造体を形成する時、上記コンベアの間隔を
調整することで、融着した網状体が溶融状態でいる間で
厚み調節が可能となり、所望の厚みのものが得られる。
コンベア速度も速すぎると、接触点の形成が不充分にな
ったり、融着点が充分に形成されるまでに冷却され、接
触部の融着が不充分になる場合がある。また、速度が遅
過ぎると溶融物が滞留し過ぎ、密度が高くなるので、所
望の見掛け密度に適したコンベア速度を設定する必要が
ある。
Next, the manufacturing method of the present invention will be described. According to the manufacturing method of the present invention, in the inner layer of a multi-row nozzle having a plurality of orifices, a plurality of thermoplastic elastic resins are mixed and mixed in front of the nozzle orifice so that they can be compounded, and the first row side and the last row side of the nozzle are mixed. A single-component thermoplastic elastic resin is distributed to the nozzle so as to sandwich an orifice row that is compositely distributed from the nozzle, and at a melting temperature higher than the melting point of the high melting point resin by 10 ° C. or more and lower than the melting point of the low melting point resin by less than 80 ° C. A method for producing a composite elastic mesh body, in which the composite elastic mesh body is discharged downward from the nozzle, brought into contact with each other in a molten state and fused to form a three-dimensional structure, which is sandwiched by a take-up device and cooled in a cooling tank. When forming a composite layer, multiple thermoplastic elastic resins are separately melted using a general melt extruder, and the inner row of the multi-row nozzle is combined with the composite material just before the orifice in the same manner as the general composite spinning method. The mixture is mixed and discharged so as to be discharged, and then discharged downward. See
In the score, the core component is supplied from the center, and the sheath component is merged and discharged from around the core component. On the side-by-side, the components are merged from the left and right or the front and back, and are discharged downward.
If the melting temperature at this time is higher than the melting point of the low melting point resin by 80 ° C. or more, thermal decomposition is remarkable and the rubber elastic properties of the thermoplastic elastic resin are deteriorated, which is not preferable. On the other hand, unless the melting point of the high melting point elastic resin is higher than 10 ° C., the melt melting point of the high melting point elastic resin will not be able to form normal filaments, and in the case of side-by-side, the melting viscosity of the high melting point elastic resin will be extremely high. In some cases, the resin may not be able to merge with each other, may not be able to adhere to each other, or may have significant hole bending, making it impossible to form the desired filament.In addition, the ejection filament may form a loop. Even if they come into contact with each other, the high melting point elastic resins may not be fused to each other, resulting in an elastic composite reticulate body with insufficient adhesion, which is not preferable.
Preferred melting temperatures are the same melting temperature of 20 ° C. to 60 ° C. higher than the melting point of the low melting point elastic resin and 15 ° C. to 40 ° C. higher than the melting point of the high melting point elastic resin, more preferably the low melting point elastic resin. The temperature is 30 ° C to 50 ° C higher than the melting point, and 20 ° C to 3 ° C higher than the melting point of the high melting point elastic resin.
Combined discharge is performed at the same melting temperature, which is 0 ° C. higher.
When forming a single-component layer, it is melted using a general melt extruder, or the thermoplastic elastic resin melted to form the composite layer is sandwiched between the composite layer so that the composite layer is sandwiched between the first row and the last row. From the eye side to the rows required for each orifice inside the nozzle row, the composite layer forming resin is distributed and discharged at the same melting temperature. When the same thermoplastic elastic resin is used, the desired supply amount differs between the composite layer and the single-component layer, so it is desirable to individually supply the thermoplastic elastic resin in a fixed amount by a gear pump. The shape of the orifice is not particularly limited, but the composite layer may have a hollow cross section (for example, a triangular hollow, a round hollow, a hollow with a projection, etc.) and / or an irregular cross section (for example, triangular, Y
In addition to the above effect, it is difficult for the three-dimensional structure formed by the molten discharge line to relax the flow, and conversely at the contact point It is particularly preferable because the adhesion time can be strengthened by keeping the flow time long. If necessary, the monocomponent layer can also have a modified cross section and / or a hollow cross section. When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the elastic composite reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to achieve. In the case of a hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed.
It is 0% or less, and more preferably 20% or more and 60% or less. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. In the present invention, it is particularly preferable to use such a method or to reduce the single-hole discharge amount to form the single-component layer into a fine net-like structure with fine filaments. Then, the liquid is discharged downward from the nozzle, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, and both sides of the three-dimensional three-dimensional structure in a molten state are sandwiched by a take-up net. The bent winding filament in the molten state is bent by 45 ° or more to be deformed to flatten the surface, and at the same time, the contact point with the unbent ejection filament is adhered to form a structure, and the cooling medium is continuously formed ( Usually, it is preferable to use water at room temperature because the cooling rate can be increased and the cost can be reduced). Thus, the elastic composite reticulated body of the present invention having a three-dimensional three-dimensional reticulated structure is obtained. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. If the discharge amount of the discharge line is 5g / hole or more, 10cm-40cm
Is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge filament is less than 5 g / hole. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. As a preferred method of the present invention, after cooling once, pseudo-crystallization treatment by annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in an arbitrary step of integrally molding and commercialization, and then heat bonding. A more preferred method is to obtain a composite network or product.
Pseudo-crystallization treatment temperature is at least 1 from melting point (Tm)
Lower than 0 ° C, Tan δ α dispersion rising temperature (Tα
cr) or higher. With this treatment, the heat resistance and sag resistance are remarkably improved as compared with those having a heat absorption peak below the melting point and having no pseudo-crystallization treatment (those having no heat absorption peak). The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10
C.) to (Tm-20.degree. C.). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. When the drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments to fuse the parts that are in contact with each other and continuously draw in the cooling medium to solidify it. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained.
If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density.

【0015】本発明の弾性複合網状体をクッション材に
用いる場合、その使用目的、使用部位により使用する樹
脂、繊度、ル−プ径、嵩密度を選択する必要がある。例
えば、表層のワディングに用いる場合は、ソフトなタッ
チと適度の沈み込みと張りのある膨らみを付与するため
に、低密度で細い繊度、細かいル−プ径にするのが好ま
しく、中層のクッション体としては、共振振動数を低く
し、適度の硬さと圧縮時のヒステリシスを直線的に変化
させて体型保持性を良くし、耐久性を保持させるため
に、中密度で太い繊度、やや大きいル−プ径が好まし
い。また、3次元構造を損なわない程度に成形型等を用
いて使用目的にあった形状に成形して側地を被せ車両用
座席、船舶用座席、ベット、椅子、家具等に用いること
ができる。勿論、用途との関係で要求性能に合うべく他
の素材、例えば短繊維集合体からなる硬綿クッション
材、不織布等と組合せて用いることも可能である。ま
た、樹脂製造過程以外でも性能を低下させない範囲で製
造過程から成形体に加工し、製品化する任意の段階で難
燃化、防虫抗菌化、耐熱化、撥水撥油化、着色、芳香等
の機能付与を薬剤添加等の処理加工ができる。
When the elastic composite reticulate body of the present invention is used as a cushion material, it is necessary to select a resin to be used, a fineness, a loop diameter, and a bulk density depending on the purpose and site of use. For example, when used for the wadding of the surface layer, it is preferable to have a low density, a fine fineness, and a fine loop diameter in order to give a soft touch, an appropriate subsidence, and a bulge with tension. In order to lower the resonance frequency, linearly change the appropriate hardness and hysteresis at the time of compression to improve body retention, and to maintain durability, medium density, thick fineness, and slightly large ru Diameter is preferred. Further, it can be used for vehicle seats, boat seats, beds, chairs, furniture, etc. by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired. Of course, it is also possible to use it in combination with other materials, for example, a hard cotton cushion material made of a short fiber aggregate, a non-woven fabric, etc., in order to meet the required performance in relation to the application. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0016】[0016]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0017】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する:単
位%(n=3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する:単位%(n=3の平均値) 座り心地 東洋紡績製熱接着繊維4−64−TE5と東洋紡績製立
体巻縮ステープル10−64−745を30/70重量
比で混合開繊して得たカ−ドウエッブをバケットシ−ト
の芯として切断した厚み5cmの難燃性網状構造体の両面
とサイドをくるむようにクッションにした時の平均の見
掛けの嵩密度を0.05g/cm3 となるように積層して
熱成形用雌金型に入れ、牡金型で圧縮して詰め込み20
0℃の熱風にて10分間熱接着成形してバケットシ−ト
状に成形したクッションに東洋紡績製ハイムからなるポ
リエステルモケットの側地を被って座席用フレ−ムにセ
ットして座席を作成し、30℃RH75%室内で作成し
た座席にパネラ−を座らせ以下の評価をおこなった。
(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Endothermic peak (melting peak) from melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu ) The temperature was determined. Tαcr polymer is heated to a melting point of + 10 ° C. to have a thickness of about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a temperature rising rate of 1 ° C./min. Tan δ (ratio M ″ / imaginary elastic modulus M ″ to real part M ′ of elastic modulus) The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). Apparent Density The sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Fineness of filaments Each filament portion is cut out from 10 points of the sample, embedded in acrylic resin, the cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Fusing Whether or not the sample is fused by visual judgment depends on whether or not the fibers adhering to each other cannot be pulled apart by hand It is determined that something that does not come off is fused. Heat resistance and durability (residual strain at 70 ° C) Cut a sample into a size of 15 cm x 15 cm, compress it by 50%, leave it in dry heat at 70 ° C for 22 hours, then cool to remove compression strain and leave it for 1 day (b) Is calculated from the thickness (a) before treatment by the following formula, that is, (ab) / a × 100: Unit% (average value of n = 3) Repeated compressive strain The sample is made into a size of 15 cm × 15 cm. Cut and use Shimadzu's Servo Pulsar-50% in 25% 65% RH room
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100: Unit% (average value of n = 3) Sitting comfort Thermal bonding fiber 4-64-TE5 manufactured by Toyobo and three-dimensional crimp staple 10-64-745 manufactured by Toyobo are mixed and opened at a weight ratio of 30/70. An average apparent bulk density of 0.05 g / cm when the card web obtained by fiberizing is cut as a core of a bucket sheet and a cushion is formed so as to wrap both sides and sides of a flame-retardant reticulate structure having a thickness of 5 cm. Laminate to 3 and put into a thermoforming female mold, compress with an oyster mold and stuff 20
A cushion was molded by heat-bonding with hot air at 0 ° C for 10 minutes to form a bucket sheet, covered with a side of polyester moquette made of Toyobo Co., Ltd., and set on a seat frame to create a seat. A paneler was placed on a seat prepared in a room at 30 ° C. and RH of 75%, and the following evaluation was performed.
(N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0018】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0019】[0019]

【表1】 [Table 1]

【0020】幅50cm、長さ5cmのノズル有効面に長さ
方向に1列目から5列目は幅方向の孔間ピッチ5mm、長
さ方向の孔間ピッチ3mm、6列目から11列目は幅方向
の孔間ピッチ10mm、長さ方向の孔間ピッチ5mm、12
列目から14列目は幅方向の孔間ピッチ5mm、長さ方向
の孔間ピッチ3mmの千鳥配列とし、6列目から11列目
のオリフィス形状は外径2.5mm、内径1.8mmでトリ
プルブリッジの中空形成性断面とし、他のオリフィスは
φ0.8mmの丸孔断面としたノズルに、得られた熱可塑
性弾性樹脂原料A−1及びA−2を共に重量比50/5
0となるようにノズルの6列目から11列目に供給し、
オリフィス直前でA−1をシ−ス、A−2をコアとなる
ように分配合流させ、溶融温度245℃にて単孔当たり
の吐出量2g/分にて吐出させ複合化層とし、他方、得
られた熱可塑性弾性樹脂原料A−1を単成分として1列
目から5列目及び12列目から14列目に供給し、溶融
温度245℃にて単孔当たりの吐出量0.8g/分にて
吐出させて単成分層としてノズル下方に吐出させ、ノズ
ル面12cm下に冷却水を配し、幅60cmのステンレス製
エンドレスネットを平行に5cm間隔で一対の引取りコン
ベアを水面上に一部出るように配した上に引取り、接触
部分を融着させつつ、両面を挟み込みつつ毎分1mの速
度で25℃の冷却水中へ引込み固化させ、次いで100
℃の熱風乾燥機中で20分疑似結晶化処理した後、所定
の大きさに切断して得られた弾性複合網状体の特性を表
2に示す。実施例1の複合化層はシ−スがA−1樹脂と
コアがA−2からなる断面形状は三角おむすび型の中空
断面で中空率が40%、繊度が9000デニ−ルの線条
で形成しており、単成分層は中実丸断面の繊度が350
0デニ−ルの線条から形成されており、網状体の平均の
見掛け密度が0.05g/cm3 であった。表2で明らか
なごとく、実施例1は耐熱性、常温での耐久性、座り心
地ともに優れたクッション材であった。評価用に作成し
た座席も性能が優れていることが判る。
On the nozzle effective surface having a width of 50 cm and a length of 5 cm, the first to fifth rows in the length direction have a hole-to-hole pitch of 5 mm in the width direction, the hole-to-hole pitch of 3 mm in the length direction, and the sixth to 11th rows. Is a pitch between holes in the width direction of 10 mm, a pitch between holes in the length direction of 5 mm, 12
Rows 14 to 14 have a zigzag arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 3 mm in the length direction. Orifice shapes in rows 6 to 11 are 2.5 mm outer diameter and 1.8 mm inner diameter. The nozzle having a triple bridge hollow forming cross section and the other orifice having a round hole cross section of φ0.8 mm was used, and the resulting thermoplastic elastic resin raw materials A-1 and A-2 were used in a weight ratio of 50/5.
Supply from the 6th row to the 11th row of the nozzle so that it becomes 0,
Immediately before the orifice, A-1 was used as a sheath and A-2 was used as a core so as to be mixed and mixed, and discharged at a melting temperature of 245 ° C. at a discharge rate of 2 g / min per single hole to form a composite layer. The obtained thermoplastic elastic resin raw material A-1 was supplied as a single component to the first to fifth rows and the twelfth to fourteenth rows, and the discharge amount per single hole was 0.8 g / Discharge in minutes to discharge below the nozzle as a single-component layer, place cooling water 12 cm below the nozzle surface, and use stainless steel endless nets with a width of 60 cm parallel to each other with a pair of take-up conveyors at intervals of 5 cm. It is arranged so that it will come out partly, and then it is pulled out, and while the contact parts are fused, both sides are sandwiched and drawn into cooling water at 25 ° C at a speed of 1 m / min to solidify, then 100
Table 2 shows the properties of the elastic composite reticulate body obtained by quasi-crystallization for 20 minutes in a hot air drier at 0 ° C. and cutting into a predetermined size. The composite layer of Example 1 has a triangular cross-sectional shape of a hollow cross section having a sheath of A-1 resin and a core of A-2 with a hollow ratio of 40% and a fineness of 9000 denier. The single-component layer has a fineness of solid round cross section of 350
It was formed from 0 denier filaments, and the average apparent density of the reticulate body was 0.05 g / cm 3 . As is clear from Table 2, Example 1 was a cushioning material excellent in heat resistance, durability at room temperature, and sitting comfort. It can be seen that the seat created for evaluation also has excellent performance.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例2 DMT又はジメチルイソフタレ−ト(DMI)20モル
%とDMT80モル%及び1・4ブタンジオ−ル(1・
4BD)を少量の触媒と仕込み、実施例1の方法と同様
にして得たポリエステル系熱可塑性弾性樹脂の処方を表
1に示す。複合化層を形成するオリフィスの孔形状を孔
径φ1mmの丸断面としたノズルを用い複合化層はシ−ス
がA−4とコアがA−3を分配し、単成分層にA−4を
分配し、溶融温度を240℃にて吐出させた以外実施例
1と同様にして得た弾性複合網状体の特性を表2に示
す。なお、複合化層は断面形状が中実丸断面で、繊度が
9000デニ−ルの線条で形成しており、単成分層は中
実丸断面の繊度が3600デニ−ルの線条から形成され
ており、網状体の平均の見掛け密度が0.05g/cm 3
であった。表2で明らかなごとく、実施例2は耐熱性と
常温での耐久性は実用上使用可能で、座り心地の優れた
クッション材であった。評価用に作成した座席も優れて
いることが判る。
Example 2 20 mol of DMT or dimethyl isophthalate (DMI)
% And DMT 80 mol% and 1.4 butanediol (1.
4BD) was charged with a small amount of catalyst and the same as in Example 1.
The formulation of the polyester-based thermoplastic elastic resin obtained in
Shown in 1. Form the hole shape of the orifice that forms the composite layer
The composite layer uses a nozzle with a round cross section with a diameter of 1 mm.
Distributes A-4 and the core distributes A-3, and A-4 is distributed in the single component layer.
Example except dispensing and discharging at a melting temperature of 240 ° C.
The properties of the elastic composite network obtained in the same manner as in No. 1 are shown in Table 2.
You The composite layer has a solid round cross section and a fineness.
It is made of 9000 denier filaments, and the single component layer is medium
The fineness of the actual round section is formed from filaments of 3600 denier
And the average apparent density of the mesh is 0.05 g / cm 3
Met. As is clear from Table 2, Example 2 has heat resistance.
Durability at room temperature can be used practically and has excellent sitting comfort
It was a cushion material. The seats created for evaluation are also excellent
It is understood that there is.

【0023】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0024】[0024]

【表3】 [Table 3]

【0025】得られた熱可塑性弾性樹脂を複合化層のシ
−ス成分と単成分層にB−1、複合化層のコア成分にB
−2を使用し、溶融温度220℃とした以外実施例1と
同様にして得た弾性複合網状体の特性を表2に示す。実
施例3の複合化層は線条の断面形状が三角おむすび型の
中空断面で中空率は41%、繊度が9300デニ−ルの
線条で形成しており、単成分層は中実丸断面の繊度が3
900デニ−ルの線条から形成されており、網状体の平
均の見掛け密度が0.05g/cm3 であった。実施例3
は耐熱性、常温での耐久性、座り心地ともに優れたクッ
ション材であった。評価用に作成した座席も優れている
ことが判る。
The obtained thermoplastic elastic resin is B-1 for the sheath component and the single component layer of the composite layer, and B for the core component of the composite layer.
Table 2 shows the characteristics of the elastic composite reticulate body obtained in the same manner as in Example 1 except that the melting temperature was 220 ° C. The composite layer of Example 3 was formed with a linear cross section of a triangular rice ball type hollow cross section having a hollow ratio of 41% and a fineness of 9300 denier, and the single-component layer had a solid round cross section. Has a fineness of 3
It was formed from 900 denier filaments, and the average apparent density of the reticulate body was 0.05 g / cm 3 . Example 3
Was a cushioning material with excellent heat resistance, durability at room temperature, and sitting comfort. It can be seen that the seat created for evaluation is also excellent.

【0026】比較例1〜2 複合線条層を構成する樹脂としてイソフタル酸を50モ
ル%含有した固有粘度0.65のポリエチレンテレフタ
レ−ト−ポリエチレンイソフタレ−ト共重合ポリエステ
ル(PES)をシ−ス成分にし、固有粘度0.63のポ
リエチレンテレフタレ−ト(PET)をコア成分に及び
メルトインデックス15のポリエチレン(PE)をシ−
ス成分に、メルトインデックス12のポリプロピレン
(PP)をコア成分に分配し、弾性樹脂層に相当する層
にPES及びPEを分配し、溶融温度を280℃及び2
50℃とし、疑似結晶化処理しなかった以外、実施例2
と同様にして得た複合線条層の繊度が比較例1は880
0デニ−ル、比較例2は13000デニ−ルで、弾性樹
脂層に相当する層の線条の繊度が比較例1は3600デ
ニ−ル、比較例2は9500デニ−ルで、平均の見掛け
密度が共に0.05g/cm3 の複合網状体の特性を表2
に示す。比較例1は繊度のやや低い非弾性ポリエステル
からなる複合網状体のため耐熱耐久性が悪く、硬くて座
り心地も悪いクッション材に適さない例である。比較例
2は繊度がやや太い非弾性オレフィンからなる複合線状
構造体のため、耐熱耐久性が悪く、比較例1より少し柔
らかいが、座席に必要な柔らかさに比較して硬くクッシ
ョン材に適さない例である。
Comparative Examples 1 and 2 Polyethylene terephthalate-polyethylene isophthalate copolymerized polyester (PES) containing 50 mol% of isophthalic acid and having an intrinsic viscosity of 0.65 was used as a resin constituting the composite linear layer. -A polyethylene terephthalate (PET) with an intrinsic viscosity of 0.63 as the core component and polyethylene (PE) with a melt index of 15 as the sheath component.
Polypropylene (PP) having a melt index of 12 is distributed to the core component, PES and PE are distributed to a layer corresponding to the elastic resin layer, and the melting temperature is 280 ° C. and 2
Example 2 except that the temperature was set to 50 ° C. and the pseudo crystallization treatment was not performed.
The fineness of the composite filament layer obtained in the same manner as in Comparative Example 1 was 880.
0 denier, Comparative Example 2 was 13000 denier, and the fineness of the filaments of the layer corresponding to the elastic resin layer was 3600 denier in Comparative Example 1 and 9500 denier in Comparative Example 2, with an average apparent appearance. Table 2 shows the properties of the composite reticulate body with both densities of 0.05 g / cm 3.
Shown in. Comparative Example 1 is an example which is not suitable for a cushion material which is poor in heat resistance and durability, hard and uncomfortable to sit on, because it is a composite reticulate body made of non-elastic polyester having a slightly small fineness. Comparative Example 2 is a composite linear structure composed of a non-elastic olefin with a slightly thicker fineness, and therefore has poor heat resistance and durability, and is slightly softer than Comparative Example 1, but is harder than the softness required for a seat and suitable for a cushioning material. Not an example.

【0027】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た弾性複合網状体の特性の一部を表2
に示す。なお、接着状態が不良で形態保持が悪いため、
見掛け密度、70℃残留歪、繰返圧縮歪み、及び座り心
地の評価はしていない。比較例3は形態が固定されてい
ないので体型保持機能が付与できないクッション材に適
さない例である。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo crystallization treatment was performed after the take-up conveyor net was taken out.
Some of the properties of the elastic composite network obtained in the same manner as in Table 2 are shown in Table 2.
Shown in. In addition, since the adhesion state is poor and the shape retention is poor,
Apparent density, residual strain at 70 ° C., repeated compressive strain, and sitting comfort were not evaluated. Comparative Example 3 is an example that is not suitable for a cushioning material that cannot have a body shape holding function because its shape is not fixed.

【0028】比較例4 幅50cm、長さ5cmのノズル有効面に長さ方向に1列目
から5列目及び14列目から17列目を列間ピッチを3
mm、幅方向に孔間ピッチを4mmとし、6列目から13列
目を列間ピッチを4mm、幅方向に孔間ピッチを5mmとし
た千鳥配列で丸断面のオリフィスをもつノズルより、複
合化層を形成する6列目から13列目部分に単孔当たり
の吐出量0.09g/分にて吐出させ、単成分層を形成
する1列目から5列目及び14列目から17列目部分に
単孔当たりの吐出量0.02g/分にて吐出させて、ノ
ズル面4cm下に引取りコンベアネットを配して0.1m
/分にて引き取った以外、比較例3と同様にして得た複
合化層を形成する線条の繊度は410デニ−ル、単成分
層を形成する線条の繊度は96デニ−ルで、平均の見掛
け密度は0.031g/cm3 の弾性複合網状体の特性を
表2に示す。比較例4は緻密な構造で繊度が著しく細い
ため柔らか過ぎてクッション材としてはそのまま使えな
い例である。
COMPARATIVE EXAMPLE 4 On the effective surface of the nozzle having a width of 50 cm and a length of 5 cm, the first to fifth rows and the fourteenth to 17th rows are arranged in the length direction with an inter-row pitch of 3
mm, the inter-hole pitch is 4 mm in the width direction, the inter-row pitch is 6 mm from the sixth row to the 13 th row, and the inter-hole pitch is 5 mm in the width direction. Discharge at a discharge rate of 0.09 g / min per single hole to the 6th to 13th row portions forming a layer to form a single component layer 1st to 5th row and 14th to 17th row Discharge at a rate of 0.02 g / min per hole, and place a take-up conveyor net under the nozzle surface 4 cm to 0.1 m.
The fineness of the filaments forming the composite layer obtained in the same manner as in Comparative Example 3 was 410 denier, and the filament of the filaments forming the single-component layer had a fineness of 96 denier, except that the filaments were collected at a rate of 1 / min. The properties of the elastic composite network having an average apparent density of 0.031 g / cm 3 are shown in Table 2. Comparative Example 4 is an example which cannot be used as it is as a cushioning material because it has a dense structure and the fineness is remarkably thin.

【0029】比較例5 幅50cm、長さ5cmのノズル有効面に長さ方向に1列目
から4列目及び10列目から11列目を列間ピッチを5
mm、幅方向に孔間ピッチを10mmとし、6列目から9列
目を列間ピッチを6mm、幅方向に孔間ピッチを12.5
mmの千鳥配列とした丸断面のオリフィスをもつノズルよ
り、溶融温度を285℃にて複合化層を形成する6列目
から9列目部分に単孔当たりの吐出量26g/分にて吐
出させ、単成分層を形成する1列目から5列目及び10
列目から11列目部分に単孔当たりの吐出量7g/分に
て吐出させて、ノズル面25cm下に引取りコンベアネッ
トを配して2.5m/分にて引き取った以外、比較例3
と同様にして得た複合化層を形成する線条の繊度は11
7000デニ−ル、単成分層を形成する線条の繊度は3
1500デニ−ルで、平均の見掛け密度は0.12g/
cm3 の弾性複合網状体の特性を表2に示す。比較例5は
繊度が著しく太く密度斑があり、硬い弾性複合網状体の
ため、耐熱耐久性が悪くなり、座り心地も悪くなる例で
ある。
Comparative Example 5 On the effective surface of the nozzle having a width of 50 cm and a length of 5 cm, the 1st to 4th rows and the 10th to 11th rows are arranged in the length direction with an inter-row pitch of 5
mm, the inter-hole pitch in the width direction is 10 mm, the inter-row pitch is 6 mm in the sixth to ninth rows, and the inter-hole pitch is 12.5 in the width direction.
Discharge from a nozzle having a circular cross-section orifice of staggered arrangement of mm at a melting temperature of 285 ° C. at a discharge rate of 26 g / min per single hole from the sixth row to the ninth row forming the composite layer. , 1st to 5th rows and 10 forming a single component layer
Comparative Example 3 except that a discharge amount of 7 g / min per single hole was discharged from the 11th to 11th columns, and a take-up conveyor net was arranged below the nozzle surface 25 cm to take out at 2.5 m / min.
The fineness of the filaments forming the composite layer obtained in the same manner as
7,000 denier, the fineness of the filaments forming the single-component layer is 3
At 1500 denier, the average apparent density is 0.12 g /
The properties of the elastic composite network of cm 3 are shown in Table 2. Comparative Example 5 is an example in which the fineness is remarkably thick, the density unevenness is present, and the heat-resistant durability is deteriorated due to the hard elastic composite reticulate body, and the sitting comfort is also deteriorated.

【0030】比較例6〜7 引取りコンベアネットの速度を10m/分及び0.21
0m/分にて引き取った以外、比較例3と同様にして得
た弾性複合網状体の特性を表2に示す。比較例6は複合
化層の繊度が8700デニ−ル、単成分層の繊度が35
00デニ−ル、弾性複合網状体の見掛け密度が0.00
5g/cm3 と低いため耐熱耐久性は良いが柔らか過ぎて
極めて座り心地の悪いクッション材に適さない例であ
る。比較例7は複合化層の繊度が9400デニ−ル、単
成分層の繊度が3800デニ−ル、弾性複合網状体の見
掛けの密度が0.25g/cm3 と見掛け密度が高いため
耐熱耐久性がやや劣り、硬いため座り心地もやや劣るク
ッション材に適さない例である。
Comparative Examples 6 to 7 The take-up conveyor net speed was 10 m / min and 0.21.
Table 2 shows the properties of the elastic composite reticulate body obtained in the same manner as in Comparative Example 3 except that it was collected at 0 m / min. In Comparative Example 6, the composite layer has a fineness of 8700 denier and the single-component layer has a fineness of 35.
00 denier, apparent density of elastic composite network is 0.00
Since it is as low as 5 g / cm 3 , the heat resistance and durability are good, but it is an example which is not suitable for a cushioning material that is too soft and extremely uncomfortable to sit on. In Comparative Example 7, the fineness of the composite layer was 9400 denier, the fineness of the single component layer was 3800 denier, and the apparent density of the elastic composite reticulate body was 0.25 g / cm 3 and thus the heat resistance was high. This is an example that is not suitable for a cushioning material that is slightly inferior and hard to sit because it is hard.

【0031】比較例8 熱可塑性弾性樹脂としてA−4を単独で使用し複合構造
化しないで、溶融温度220℃にてノズルの6列目から
11列目を単成分で単孔当たりの吐出量2g/分にて吐
出させ、疑似結晶化処理しない以外、実施例3と同様に
して得た複合化層に相当する部分の線条繊度が9200
デニ−ル、単成分層に相当する部分の線条繊度が380
0デニ−ルの見掛け密度0.051g/cm3 の弾性複合
網状体を得た。得られた弾性複合網状体の特性を表2に
示す。比較例8は線状が複合構造化されていなく、且つ
疑似結晶化処理しない場合で、実施例2と比較して座り
心地はやや劣り、耐熱耐久性も劣る例である。
Comparative Example 8 A-4 was used alone as a thermoplastic elastic resin, and without forming a composite structure, the sixth to eleventh rows of the nozzle were discharged as a single component with a single component at a melting temperature of 220 ° C. per single hole. The filament fineness of the portion corresponding to the composite layer obtained in the same manner as in Example 3 was 9200, except that discharge was performed at 2 g / min and no pseudo-crystallization treatment was performed.
Denier, the linear fineness of the portion corresponding to the single component layer is 380
An elastic composite reticulate having an apparent density of 0 denier of 0.051 g / cm 3 was obtained. Table 2 shows the properties of the obtained elastic composite network. Comparative Example 8 is an example in which the linear structure is not composite-structured and the pseudo-crystallization treatment is not performed, and the sitting comfort is slightly inferior and the heat resistance and durability are inferior to those in Example 2.

【0032】比較例9 幅60cmのステンレス製エンドレスネットを平行に15
cm間隔で一対の引取りコンベアを水面上に一部出るよう
に配し、疑似結晶化処理しなかった以外実施例3と同様
にして得た平均の見掛け密度が0.04g/cm3 の弾性
複合網状体を評価した結果、単成分層の表面がフラット
化されていない為、座り心地は若干実施例2より悪くな
り、耐熱性と耐久性は実用使用限界まで低下している。
COMPARATIVE EXAMPLE 9 A stainless steel endless net having a width of 60 cm was placed in parallel with each other.
Elasticity with an average apparent density of 0.04 g / cm 3 obtained in the same manner as in Example 3 except that a pair of take-up conveyors were arranged at intervals of cm so that they partially appeared on the water surface and no pseudo-crystallization treatment was performed. As a result of evaluating the composite reticulate body, since the surface of the single-component layer is not flattened, the sitting comfort is slightly worse than in Example 2, and the heat resistance and durability are reduced to the practical use limit.

【0033】実施例5 実施例1で得た複合網状体を長さ120cmに切断して、
その両面に東洋紡績製熱接着繊維4−64−TE5と東
洋紡績製立体巻縮ステープル10−64−745を30
/70重量比で混合開繊して得たカ−ドウエッブを全体
の0.05g/cm3 となるように両面に積層圧縮して2
00℃の熱風にて10分間一体熱成形して厚み7cmのク
ッションを4枚作成した。得られたクッションを厚み1
0cm、幅120cm、長さ50cm毎にキルティングした幅
120cm、長さ200cmの側地に入れマットレスを作成
した。このマットレスをベッドに設置し、25℃RH6
5%室内にてパネラ−4人に7時間使用させて寝心地を
官能評価した。なお、ベットにはシ−ツを掛け、掛け布
団は1.8kgのダウン/フェザ−:90/10を中綿に
したもの、枕はパネラ−が毎日使用しているものを着用
させた。評価結果は、床つき感がなく、沈み込みが適度
で、蒸れを感じない快適な寝心地のベットであった。比
較のため、密度0.04g/cm3 で厚み10cmの発泡ウ
レタン板状体で同様のマットレスを作成し、ベットに設
置して寝心地を評価した結果、床つき感は少ないが沈み
込みが大きくやや蒸れを感じる寝心地の悪いベットであ
った。
Example 5 The composite reticulate body obtained in Example 1 was cut into a length of 120 cm,
On both sides, 30 pieces of Toyobo's thermal bonding fiber 4-64-TE5 and Toyobo's three-dimensional crimp staple 10-64-745 are used.
The card web obtained by mixing and opening at a weight ratio of / 70 is laminated and compressed on both sides so that the total weight is 0.05 g / cm 3 and then 2
Four cushions each having a thickness of 7 cm were formed by integrally thermoforming with hot air of 00 ° C. for 10 minutes. Thickness of the obtained cushion is 1
A mattress was prepared by quilting every 0 cm, width 120 cm, and length 50 cm, and putting the mattress on a side cloth having a width of 120 cm and a length of 200 cm. This mattress is placed on the bed and at 25 ℃ RH6
The panel comfort was sensory-evaluated by allowing the paneller to be used by 4 people for 7 hours in a 5% room. The bed was covered with sheets, the comforter was 1.8 kg of down / feather: 90/10, and the pillow was the one used by the paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a similar mattress was prepared from a urethane foam plate with a density of 0.04 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleeping comfort was evaluated. It was a bed that made me feel stuffy and didn't feel comfortable to sleep.

【0034】[0034]

【発明の効果】振動や応力吸収性の良いソフトセグメン
トの多い熱可塑性弾性樹脂で単成分層と複合化層の一部
を構成し、抗圧縮性の熱可塑性弾性樹脂で複合化層の一
部を構成して融着一体化した本発明の弾性複合網状体
は、振動遮断性、耐熱耐久性、嵩高性、座り心地のより
改善された、適度の圧縮反発力を持ち、蒸れにくいクッ
ション材に適したリサイクルが容易な弾性複合網状体及
び、面が実質的にフラット化されているので単独での使
用や他の素材との併用による上記の好ましい特性を付与
した車両用座席、船舶用座席、車両用、船舶用、病院や
ホテル等の業務用ベット、家具用クッション、寝装用品
等の製品を提供できる。更には、車両用や建築資材とし
ての内装材や断熱材等にも有用なものである。
EFFECTS OF THE INVENTION A single component layer and a part of a composite layer are composed of a thermoplastic elastic resin having many soft segments having good vibration and stress absorption, and a part of the composite layer is composed of an anti-compressible thermoplastic elastic resin. The elastic composite reticulate body of the present invention, which is formed by fusing and is integrated by fusion, is a cushioning material having an appropriate compression repulsion force which is further improved in vibration isolation, heat resistance durability, bulkiness, and sitting comfort, and which does not easily get damp. A suitable elastic composite mesh body that is easy to recycle, and a vehicle seat, a marine seat, which has the above-mentioned preferable characteristics by being used alone or in combination with other materials because its surface is substantially flattened. Products such as vehicles, ships, commercial beds for hospitals and hotels, furniture cushions, bedding products, etc. can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D01F 6/62 303 D 6/86 301 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // D01F 6/62 303 D 6/86 301 B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 連続線状体自体が、2種類の熱可塑性弾
性樹脂が複合化された繊度が500〜100000デニ
−ルの連続複合線状体を曲がりくねらせ互いに接触させ
て該接触部の大部分を融着せしめた三次元立体網状構造
体層を中層とし、一方、熱可塑性弾性樹脂からなる繊度
が100〜30000デニ−ルの連続線状を曲がりくね
らせ互いに接触させて該接触部の大部分を融着せしめた
三次元立体網状構造体層で前記中層を両側から挟み込む
ように積層融着一体化した複合網状体であり表面が実質
的にフラット化されており、平均見掛け密度が0.01
〜0.20g/cm3 であることを特徴とする複合弾性網
状体。
1. The continuous linear body itself is a continuous composite linear body having a fineness of 500 to 100,000 denier in which two kinds of thermoplastic elastic resins are compounded, and the continuous linear linear bodies are made to meander and come into contact with each other to make contact with each other. Most of the three-dimensional three-dimensional network structure layer fused is used as the middle layer, while meanwhile, continuous linear lines made of a thermoplastic elastic resin having a fineness of 100 to 30000 denier are bent and brought into contact with each other to make contact with each other. It is a composite network body in which the middle layer is laminated and fusion-bonded so as to sandwich the middle layer from both sides by a three-dimensional three-dimensional network structure layer which is mostly fused, and the surface is substantially flattened, and the average apparent density is 0. .01
Composite elastic meshwork, which is a ~0.20g / cm 3.
【請求項2】 連続複合線状が中空断面あるいは異形断
面である請求項1記載の複合弾性網状体。
2. The composite elastic mesh body according to claim 1, wherein the continuous composite linear shape has a hollow cross section or an irregular cross section.
【請求項3】 熱可塑性弾性樹脂がポリエステルエラス
トマーであり、熱可塑性非弾性樹脂が燐含有難燃性ポリ
エステルである請求項1記載の複合弾性網状体。
3. The composite elastic network according to claim 1, wherein the thermoplastic elastic resin is a polyester elastomer and the thermoplastic non-elastic resin is a phosphorus-containing flame retardant polyester.
【請求項4】 連続線状体を構成する熱可塑性弾性樹脂
が示差走査型熱量計(DSC)で測定した融解曲線に室
温以上融点以下の温度に吸熱ピークを有する請求項1記
載の複合弾性網状体。
4. The composite elastic reticulate according to claim 1, wherein the thermoplastic elastic resin forming the continuous linear body has an endothermic peak at a temperature above room temperature and below the melting point in a melting curve measured by a differential scanning calorimeter (DSC). body.
【請求項5】 複数のオリフィスを持つ多列ノズルの内
層に、複数の熱可塑性弾性樹脂を複合化できるようにノ
ズルオリフィス前で分配合流させると共に、該ノズルの
1列目側及び最終列目側から複合分配されたオリフィス
列を挟み込むように単成分の熱可塑性弾性樹脂を該ノズ
ルに分配して、低融点樹脂の融点より20〜120℃高
い温度〜高融点樹脂の融点より10〜50℃高い温度
で、該ノズルより下方に向けて吐出させ、溶融状態で互
いに接触させて融着させ3次元構造を形成しつつ、引取
り装置で挟み込み冷却槽で冷却せしめることを特徴とす
る複合弾性網状体の製法。
5. The inner layer of a multi-row nozzle having a plurality of orifices is divided and mixed before the nozzle orifice so that a plurality of thermoplastic elastic resins can be compounded, and the first row side and the last row side of the nozzle. A single component thermoplastic elastic resin is distributed to the nozzle so as to sandwich the orifice row that has been compositely distributed from, and the temperature is 20 to 120 ° C. higher than the melting point of the low melting point resin to 10 to 50 ° C. higher than the melting point of the high melting point resin. A composite elastic reticulate body, which is discharged downward from the nozzle at a temperature, is brought into contact with each other in a molten state and fused to form a three-dimensional structure, and is sandwiched by a take-up device and cooled in a cooling tank. Manufacturing method.
【請求項6】 一旦冷却後、熱可塑性弾性樹脂の少なく
とも10℃以下の温度でアニ−リングを行なう請求項5
記載の複合弾性網状体の製法。
6. After annealing, the thermoplastic elastic resin is annealed at a temperature of at least 10 ° C. or lower.
A method for producing the described composite elastic network.
【請求項7】 請求項1記載の複合弾性網状体を用いた
車両用座席、船舶用座席、ベット、椅子、ソファー、マ
ットレス、寝装具および家具のいずれかに記載の製品。
7. A product according to any one of a vehicle seat, a boat seat, a bed, a chair, a sofa, a mattress, a bedding, and furniture, which uses the composite elastic mesh body according to claim 1.
JP2798394A 1994-02-25 1994-02-25 Composite elastic network, its production method and products using it Expired - Lifetime JP3430446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2798394A JP3430446B2 (en) 1994-02-25 1994-02-25 Composite elastic network, its production method and products using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2798394A JP3430446B2 (en) 1994-02-25 1994-02-25 Composite elastic network, its production method and products using it

Publications (2)

Publication Number Publication Date
JPH07238455A true JPH07238455A (en) 1995-09-12
JP3430446B2 JP3430446B2 (en) 2003-07-28

Family

ID=12236092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2798394A Expired - Lifetime JP3430446B2 (en) 1994-02-25 1994-02-25 Composite elastic network, its production method and products using it

Country Status (1)

Country Link
JP (1) JP3430446B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183972A (en) * 2001-12-17 2003-07-03 Toyobo Co Ltd Three-dimensional net structure
CN109477268A (en) * 2016-07-13 2019-03-15 东洋纺株式会社 Reticular structure body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183972A (en) * 2001-12-17 2003-07-03 Toyobo Co Ltd Three-dimensional net structure
CN109477268A (en) * 2016-07-13 2019-03-15 东洋纺株式会社 Reticular structure body
CN109477268B (en) * 2016-07-13 2021-12-28 东洋纺株式会社 Net-shaped structure

Also Published As

Publication number Publication date
JP3430446B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JPH0768061A (en) Net-work structure for cushion and its manufacture
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3430443B2 (en) Netting structure for cushion, method for producing the same, and cushion product
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JPH07197366A (en) Thermally adhesive netty structure and its production
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH07300760A (en) Nonwoven fabric laminated network material, its production and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

EXPY Cancellation because of completion of term