JPH07221262A - Semiconductor module - Google Patents

Semiconductor module

Info

Publication number
JPH07221262A
JPH07221262A JP6013869A JP1386994A JPH07221262A JP H07221262 A JPH07221262 A JP H07221262A JP 6013869 A JP6013869 A JP 6013869A JP 1386994 A JP1386994 A JP 1386994A JP H07221262 A JPH07221262 A JP H07221262A
Authority
JP
Japan
Prior art keywords
semiconductor chip
semiconductor
main surface
wiring board
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6013869A
Other languages
Japanese (ja)
Inventor
Motohiro Suwa
元大 諏訪
Hiroyuki Takahashi
裕之 高橋
Chiyoshi Kamata
千代士 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6013869A priority Critical patent/JPH07221262A/en
Publication of JPH07221262A publication Critical patent/JPH07221262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1183Reworking, e.g. shaping
    • H01L2224/1184Reworking, e.g. shaping involving a mechanical process, e.g. planarising the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a semiconductor module in which every length of wirings for a plurality of semiconductor chips mounted on a wiring board is made shortest. CONSTITUTION:In a semiconductor module, a first semiconductor chip 1 is bonded facedown to the main face of a wiring board 3 via solder bumps 8, and a second semiconductor, chip 2 whose outside size is larger than that of the first semiconductor chip 1 is bonded facedown via a plurality of metal bumps 9 which have been overlapped in their height direction in such a way that it is piled up on the first semiconductor chip.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体モジュールに関
し、特に、光通信などの高速ディジタル伝送分野で使用
される光送受信用モジュールなどに適用して有効な技術
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor module, and more particularly to a technique effective when applied to an optical transceiver module used in the field of high speed digital transmission such as optical communication.

【0002】[0002]

【従来の技術】近年、光通信などの高速ディジタル伝送
分野においては、1〔Gbit/s〕を超える高速伝送が主流
となっている。
2. Description of the Related Art In recent years, in the field of high-speed digital transmission such as optical communication, high-speed transmission exceeding 1 [Gbit / s] has become mainstream.

【0003】この高速伝送に使用される光送受信モジュ
ールは、通常、発光または受光素子(以下、これらを光
素子という)を形成したInP(インジウムリン)など
の化合物半導体チップと、アンプなどの集積回路素子を
形成したSi(シリコン)、GaAs(ガリウムヒ素)
などの半導体チップとを配線基板上に実装し、これらの
半導体チップ間をワイヤで電気的に接続した構成になっ
ている。
An optical transceiver module used for this high-speed transmission is usually a compound semiconductor chip such as InP (indium phosphide) in which a light emitting or light receiving element (hereinafter referred to as an optical element) is formed, and an integrated circuit such as an amplifier. Si (silicon) and GaAs (gallium arsenide) on which elements are formed
A semiconductor chip such as the above is mounted on a wiring board, and these semiconductor chips are electrically connected by a wire.

【0004】なお、この種の光送受信モジュールについ
ては、「アイ・イー・イー・イー(IEEE Transaction on
Components, Hybrids, and Manufacturing Technolog
y, Vol.15, No.6, (1992)」P976〜P982に記載がある。
Regarding this type of optical transmitter / receiver module, "IEEE Transaction on
Components, Hybrids, and Manufacturing Technolog
y, Vol.15, No.6, (1992) ”P976 to P982.

【0005】[0005]

【発明が解決しようとする課題】前述した従来の光送受
信モジュールは、光素子を形成した半導体チップと集積
回路素子を形成した半導体チップとの間をワイヤで接続
しているが、より一層の高速伝送を行おうとする場合
は、これらの半導体チップをフェイスダウン方式で配線
基板に実装し、ワイヤのインダクタンスの影響を排除す
る必要がある。
In the conventional optical transceiver module described above, the semiconductor chip having the optical element and the semiconductor chip having the integrated circuit element are connected by a wire. For transmission, it is necessary to mount these semiconductor chips on a wiring board in a face-down manner to eliminate the influence of wire inductance.

【0006】上記フェイスダウン方式の代表的なものと
しては、「日本金属学会会報第23巻第12号(1984
年)」 P1004〜P1013 や、特開昭62−249429号
公報などに記載されたCCB(Controlled Collaps Bond
ing)方式がある。これは、半導体チップの主面に蒸着し
た半田薄膜をリフトオフ法でパターニングして電極パッ
ド上のみに半田薄膜を残し、これを加熱溶融して電極パ
ッド上にボール状の半田バンプを形成する技術である。
A typical example of the above face-down method is "The Japan Institute of Metals, Vol. 23, No. 12 (1984).
CCB (Controlled Collaps Bond) described in P1004 to P1013 and JP-A-62-2449429.
ing) method. This is a technique for patterning a solder thin film deposited on the main surface of a semiconductor chip by a lift-off method to leave a solder thin film only on an electrode pad, and heating and melting this to form a ball-shaped solder bump on the electrode pad. is there.

【0007】しかしながら、本発明者の検討によれば、
上記フェイスダウン方式を光送受信モジュールに適用し
た場合においても、2つの半導体チップ間を接続する配
線は、ある一定の長さ以下には短くすることができない
という問題がある。
However, according to the study by the present inventor,
Even when the face-down method is applied to the optical transceiver module, there is a problem that the wiring connecting the two semiconductor chips cannot be shortened to a certain length or less.

【0008】これは、半導体ウエハをダイシングして半
導体チップに分割する際の加工誤差を考慮すると、半田
バンプが接続される電極パッドは、半導体チップの最外
周端から少なくとも100μm程度以上内側に配置する
必要があるため、2つの半導体チップ間を接続する配線
長は、少なくともこの距離の2倍以上になるからであ
る。
In consideration of a processing error when a semiconductor wafer is diced into semiconductor chips, the electrode pads to which the solder bumps are connected are arranged at least 100 μm or more inside from the outermost peripheral edge of the semiconductor chip. This is because the wiring length for connecting the two semiconductor chips is at least twice this distance or more because it is necessary.

【0009】一般に、高周波信号を伝送するためには、
信号伝送線路のインピーダンスを一定にしてそのインピ
ーダンスの抵抗で終端させる必要がある。ところが、光
素子の場合は抵抗値を任意に設定することができないの
で、終端抵抗を形成することができない。そのため、基
板上の配線とGND間の容量が負荷容量となり、長い信
号伝送線路では高周波信号を伝送することが不可能とな
る。
Generally, in order to transmit a high frequency signal,
It is necessary to keep the impedance of the signal transmission line constant and terminate the resistance of the impedance. However, in the case of an optical element, the resistance value cannot be set arbitrarily, so that the terminating resistor cannot be formed. Therefore, the capacitance between the wiring on the substrate and the GND becomes a load capacitance, making it impossible to transmit a high frequency signal through a long signal transmission line.

【0010】このように、光送受信モジュールを使って
より一層の高速伝送を行おうとする場合は、配線基板上
に実装される半導体チップ間を接続する配線の長さを極
限まで短くする必要があるが、前述したように、従来技
術においては、この配線長の短縮に限界がある。
As described above, in order to perform higher-speed transmission using the optical transceiver module, it is necessary to minimize the length of the wiring that connects the semiconductor chips mounted on the wiring board. However, as described above, the conventional technique has a limit in reducing the wiring length.

【0011】本発明の目的は、配線基板上に実装された
複数の半導体チップ間を接続する配線の長さを極限まで
短くすることのできる技術を提供することにある。
An object of the present invention is to provide a technique capable of shortening the length of wiring connecting a plurality of semiconductor chips mounted on a wiring board to the utmost limit.

【0012】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0013】[0013]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
以下のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0014】(1).本発明の半導体モジュールは、配線基
板の主面上に第1のバンプ電極を介して第1の半導体チ
ップをフェイスダウンボンディングし、前記第1のバン
プ電極よりも高さの大きい第2のバンプ電極を介して前
記第1の半導体チップよりも外形寸法の大きい第2の半
導体チップを前記第1の半導体チップと重なるようにフ
ェイスダウンボンディングしたものである。
(1). In the semiconductor module of the present invention, the first semiconductor chip is face-down bonded on the main surface of the wiring board via the first bump electrode, and the height is higher than that of the first bump electrode. The second semiconductor chip having a larger outer dimension than the first semiconductor chip is face-down bonded so as to overlap the first semiconductor chip via the second bump electrode having a large size.

【0015】(2).本発明の半導体モジュールは、配線基
板の主面上に第2のバンプ電極を介して第2の半導体チ
ップをフェイスダウンボンディングし、前記第2のバン
プ電極よりも高さの小さい第1のバンプ電極を介して前
記第2の半導体チップよりも外形寸法の小さい第1の半
導体チップを前記第2の半導体チップの主面上にフェイ
スダウンボンディングしたものである。
(2). In the semiconductor module of the present invention, the second semiconductor chip is face down bonded on the main surface of the wiring board via the second bump electrode, and the height is higher than that of the second bump electrode. The first semiconductor chip having a smaller outer dimension than the second semiconductor chip is face-down bonded onto the main surface of the second semiconductor chip via the first bump electrode having a smaller size.

【0016】[0016]

【作用】前述したように、電極パッドは、ダイシング時
の加工誤差を考慮して半導体チップの最外周端から一定
以上の距離を置いて配置される。そのため、配線基板上
に2つの半導体チップを並べて配置した場合は、これら
の半導体チップ間を接続する配線長は、少なくともこの
距離の2倍以上必要となる。
As described above, the electrode pads are arranged at a certain distance or more from the outermost peripheral edge of the semiconductor chip in consideration of the processing error during dicing. Therefore, when two semiconductor chips are arranged side by side on the wiring board, the wiring length for connecting these semiconductor chips needs to be at least twice this distance or more.

【0017】これに対し、上記した手段(1) によれば、
第1の半導体チップは、第2の半導体チップの直下に配
置されるので、これらの半導体チップ間を接続する配線
長は、2つの半導体チップを並べて配置する場合の半分
で済む。
On the other hand, according to the above-mentioned means (1),
Since the first semiconductor chip is arranged immediately below the second semiconductor chip, the wiring length for connecting these semiconductor chips can be half that in the case where two semiconductor chips are arranged side by side.

【0018】さらに、上記した手段(2) によれば、第1
の半導体チップをこれよりも外形寸法の大きい第2の半
導体チップの主面上にフェイスダウンボンディングする
ことにより、2つの半導体チップ間を接続する配線長を
極限まで短縮することができる。
Further, according to the above-mentioned means (2), the first
By face-down bonding this semiconductor chip onto the main surface of the second semiconductor chip having a larger external dimension than this, the wiring length connecting the two semiconductor chips can be shortened to the utmost limit.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0020】(実施例1)図1は、本発明の一実施例で
ある半導体モジュールの断面図である。この半導体モジ
ュールは、GHz(ギガヘルツ)帯で動作する光送受信モ
ジュールであって、フォトダイオードを形成した第1の
半導体チップ1と、プリアンプを形成した第2の半導体
チップ2とを配線基板3の主面上に実装した構成となっ
ている。
(Embodiment 1) FIG. 1 is a sectional view of a semiconductor module according to an embodiment of the present invention. This semiconductor module is an optical transceiver module operating in the GHz (Gigahertz) band, and includes a first semiconductor chip 1 having a photodiode and a second semiconductor chip 2 having a preamplifier as a main component of a wiring board 3. It is configured to be mounted on the surface.

【0021】上記第1の半導体チップ1は、InP(イ
ンジウムリン)などの化合物半導体で構成されている。
また、この半導体チップ1よりも外形寸法の大きい第2
の半導体チップ2は、Si(シリコン)またはGaAs
(ガリウムヒ素)で構成されている。
The first semiconductor chip 1 is composed of a compound semiconductor such as InP (indium phosphide).
In addition, a second semiconductor chip 1 having a larger outer dimension than the semiconductor chip 1
The semiconductor chip 2 is made of Si (silicon) or GaAs.
(Gallium arsenide).

【0022】これらの半導体チップ1,2を実装する配
線基板3は、セラミックで構成されており、その主面お
よび裏面には配線4,5が形成されている。また、この
配線基板3の一部には、配線4,5間を接続するスルー
ホール6と、フォトダイオード(半導体チップ1)に供
給する信号光を通過させるための開孔7が設けられてい
る。
The wiring board 3 on which the semiconductor chips 1 and 2 are mounted is made of ceramics, and the wirings 4 and 5 are formed on the main surface and the back surface thereof. Further, a through hole 6 for connecting the wirings 4 and 5 and an opening 7 for passing signal light to be supplied to the photodiode (semiconductor chip 1) are provided in a part of the wiring board 3. .

【0023】本実施例の光送受信モジュールは、フォト
ダイオードを形成した第1の半導体チップ1を配線基板
3上にフェイスダウンボンディングすると共に、この半
導体チップ1よりも外形寸法の大きい第2の半導体チッ
プ2を第1の半導体チップ1と重なるように配置して配
線基板3上にフェイスダウンボンディングした点に特徴
がある。
In the optical transmitter-receiver module of this embodiment, the first semiconductor chip 1 having a photodiode formed thereon is face-down bonded onto the wiring board 3 and the second semiconductor chip having a larger outer dimension than the semiconductor chip 1. 2 is arranged so as to overlap the first semiconductor chip 1 and is face down bonded on the wiring board 3.

【0024】上記第1の半導体チップ1は、その主面上
に形成した半田バンプ8を介して配線基板3の配線4上
に接続されており、第2の半導体チップ2は、その主面
上に形成した金(Au)バンプ9を介して配線基板3の
配線4上に接続されている。この場合、第2の半導体チ
ップ2の金バンプ9は、少なくとも第1の半導体チップ
1の厚さと半田バンプ8の高さを合わせた以上の高さを
必要とするため、複数個(図1に示す例では3個)の金
バンプ9を高さ方向に重ね合わせた構成になっている。
The first semiconductor chip 1 is connected to the wiring 4 of the wiring substrate 3 via the solder bumps 8 formed on the main surface thereof, and the second semiconductor chip 2 is connected to the main surface thereof. It is connected to the wiring 4 of the wiring board 3 via the gold (Au) bump 9 formed on the wiring board 3. In this case, since the gold bumps 9 of the second semiconductor chip 2 need to have a height of at least the sum of the thickness of the first semiconductor chip 1 and the height of the solder bumps 8, a plurality of gold bumps 9 (see FIG. In the example shown, three gold bumps 9 are stacked in the height direction.

【0025】次に、上記光送受信モジュールの製造方法
の一例を説明する。
Next, an example of a method of manufacturing the above optical transceiver module will be described.

【0026】まず、図2に示すように、配線基板3の配
線4上に金バンプ9を接合する。この金バンプ9の接合
は、加熱、超音波またはこれらを併用した周知のボール
ボンディング法で行う。
First, as shown in FIG. 2, gold bumps 9 are bonded onto the wirings 4 of the wiring board 3. The bonding of the gold bumps 9 is performed by heating, ultrasonic waves, or a well-known ball bonding method using these in combination.

【0027】次に、図3に示すように、底面を平坦に加
工したツール10を金バンプ9に圧着し、すべての金バ
ンプ9を一括して平坦化する。この平坦化処理により、
配線基板3の反り、うねりなどが吸収されるので、すべ
ての金バンプ9の上端の高さを均一に揃えることができ
る(図4)。なお、配線基板3の反りやうねりが大き
く、金バンプ9一段ではこれらを吸収出来ない場合は、
金バンプ9を二段に重ねてもよい。
Next, as shown in FIG. 3, a tool 10 having a flat bottom surface is pressure-bonded to the gold bumps 9 to flatten all the gold bumps 9 collectively. By this flattening process,
Since the warp and undulation of the wiring board 3 are absorbed, the heights of the upper ends of all the gold bumps 9 can be made uniform (FIG. 4). If the wiring board 3 has a large amount of warpage or undulation and the gold bumps 9 cannot be absorbed by one step,
The gold bumps 9 may be stacked in two stages.

【0028】一方、上記の工程と並行して、図5に示す
ように、第1の半導体チップ1の主面の電極パッド(図
示せず)上に周知の方法で半田バンプ8を形成する。こ
の半田バンプ8は、その高さが小さい方が好ましいの
で、リフロー方式によるボンディングが可能な鉛(P
b)/錫(Sn)合金などの低融点半田材料を用いて構
成する。これに対し、図6に示すように、第2の半導体
チップ2の主面の電極パッド(図示せず)上には、周知
のボールボンディング法で金バンプ9を二段重ねて形成
する。
On the other hand, in parallel with the above steps, as shown in FIG. 5, solder bumps 8 are formed on the electrode pads (not shown) on the main surface of the first semiconductor chip 1 by a known method. Since it is preferable that the solder bump 8 has a small height, lead (P) that can be bonded by the reflow method is used.
b) / Used with a low melting point solder material such as tin (Sn) alloy. On the other hand, as shown in FIG. 6, gold bumps 9 are formed on the electrode pads (not shown) on the main surface of the second semiconductor chip 2 in a two-step manner by a well-known ball bonding method.

【0029】次に、図7に示すように、配線基板3の主
面上に第1の半導体チップ1を重ね合わせ、配線4上の
所定の位置に半田バンプ8を位置決めした後、半田バン
プ8の溶融温度以上に加熱した雰囲気中で半田バンプ8
をリフローさせることにより、半導体チップ1を配線基
板3の主面上にフェイスダウンボンディングする。
Next, as shown in FIG. 7, the first semiconductor chip 1 is overlaid on the main surface of the wiring board 3, the solder bumps 8 are positioned at predetermined positions on the wiring 4, and then the solder bumps 8 are formed. Solder bumps 8 in an atmosphere heated above the melting temperature of
By reflowing, the semiconductor chip 1 is face-down bonded onto the main surface of the wiring board 3.

【0030】次に、図8に示すように、第2の半導体チ
ップ2を第1の半導体チップ1と重なり合うように配置
し、配線基板3側の金バンプ9と半導体チップ2側の金
バンプ9とを熱圧着法で接合することにより、前記図1
に示す光送受信モジュールが完成する。図9は、上述し
た製造方法のフロー図である。
Next, as shown in FIG. 8, the second semiconductor chip 2 is arranged so as to overlap the first semiconductor chip 1, and the gold bumps 9 on the wiring substrate 3 side and the gold bumps 9 on the semiconductor chip 2 side are arranged. By joining and by thermocompression bonding,
The optical transceiver module shown in is completed. FIG. 9 is a flowchart of the manufacturing method described above.

【0031】本実施例によれば、第1の半導体チップ1
と第2の半導体チップ2を上下方向に重ね合わせて配置
することにより、これらを平面上に並べて配置する場合
に比べて、半導体チップ1の半田バンプ8と半導体チッ
プ2の金バンプ9とを接続する配線4の長さを短くする
ことができる。これにより、配線4に加わる負荷容量を
小さくすることができるので、より一層の高速伝送を行
うことが可能な光送受信モジュールを提供することがで
きる。
According to this embodiment, the first semiconductor chip 1
By arranging the second semiconductor chip 2 and the second semiconductor chip 2 in a vertically stacked manner, the solder bumps 8 of the semiconductor chip 1 and the gold bumps 9 of the semiconductor chip 2 are connected as compared with the case where they are arranged side by side on a plane. The length of the wiring 4 to be used can be shortened. As a result, the load capacity applied to the wiring 4 can be reduced, so that it is possible to provide an optical transmission / reception module capable of further high-speed transmission.

【0032】また、本実施例によれば、第1の半導体チ
ップ1と第2の半導体チップ2を上下方向に重ね合わせ
て配置することにより、これらを平面上に並べて配置す
る場合よりも実装密度が向上した光送受信モジュールを
提供することができる。
Further, according to the present embodiment, by arranging the first semiconductor chip 1 and the second semiconductor chip 2 so as to be vertically overlapped with each other, the mounting density is higher than that in the case where they are arranged side by side on a plane. It is possible to provide an optical transmission / reception module having improved characteristics.

【0033】(実施例2)図10は、本実施例の光送受
信モジュールの断面図である。前記実施例1の光送受信
モジュールは、フォトダイオードを形成した第1の半導
体チップ1と、プリアンプを形成した第2の半導体チッ
プ2とを配線基板3の主面上にフェイスダウンボンディ
ングした構成になっていたが、本実施例の光送受信モジ
ュールは、プリアンプを形成した第2の半導体チップ2
を配線基板3の主面上にフェイスダウンボンディング
し、フォトダイオードを形成した第1の半導体チップ1
をこの半導体チップ2の主面上にフェイスダウンボンデ
ィングした構成になっている。
(Embodiment 2) FIG. 10 is a sectional view of an optical transceiver module of this embodiment. The optical transceiver module of the first embodiment has a configuration in which the first semiconductor chip 1 having a photodiode and the second semiconductor chip 2 having a preamplifier are face-down bonded onto the main surface of the wiring board 3. However, the optical transmission / reception module of the present embodiment has the second semiconductor chip 2 in which the preamplifier is formed.
Is bonded to the main surface of the wiring substrate 3 by face-down bonding to form a photodiode.
Is face-down bonded on the main surface of the semiconductor chip 2.

【0034】本実施例の光送受信モジュールは、一例と
して次のような方法で製造することができる。
The optical transceiver module of this embodiment can be manufactured by the following method as an example.

【0035】まず、図11に示すように、配線基板3の
配線4上に金バンプ9を接合する。この金バンプ9の接
合は、前記実施例1と同様、加熱、超音波またはこれら
を併用した周知のボールボンディング法で行う。
First, as shown in FIG. 11, gold bumps 9 are bonded onto the wirings 4 of the wiring board 3. The bonding of the gold bumps 9 is performed by heating, ultrasonic waves, or a well-known ball bonding method using these in the same manner as in the first embodiment.

【0036】次に、図12に示すように、底面を平坦に
加工したツール10を金バンプ9に圧着し、すべての金
バンプ9を一括して平坦化することにより、すべての金
バンプ9の上端の高さを均一に揃える(図13)。な
お、配線基板3の反りやうねりが大きく、金バンプ9一
段ではこれらを吸収出来ない場合は、前記実施例1と同
様、金バンプ9を二段またはそれ以上に重ねてもよい。
Next, as shown in FIG. 12, a tool 10 having a flat bottom surface is pressure-bonded to the gold bumps 9 and all the gold bumps 9 are collectively flattened to thereby remove all the gold bumps 9 from each other. Uniformly arrange the heights of the upper ends (Fig. 13). When the wiring board 3 has a large warp or waviness and cannot be absorbed by one step of the gold bumps 9, the gold bumps 9 may be stacked in two or more steps as in the first embodiment.

【0037】一方、上記の工程と並行して、図14に示
すように、第1の半導体チップ1の主面の電極パッド
(図示せず)上に周知の方法で半田バンプ8を形成す
る。この半田バンプ8は、その高さが小さい方が好まし
いので、リフロー方式によるボンディングが可能な金
(Au)/錫(Sn)共晶合金などの低融点半田材料を
用いて構成する。
On the other hand, in parallel with the above steps, as shown in FIG. 14, solder bumps 8 are formed on the electrode pads (not shown) on the main surface of the first semiconductor chip 1 by a known method. Since it is preferable that the height of the solder bump 8 is small, the solder bump 8 is made of a low melting point solder material such as gold (Au) / tin (Sn) eutectic alloy which can be bonded by the reflow method.

【0038】次に、図15に示すように、第1の半導体
チップ1の半田バンプ8を第2の半導体チップ2の主面
の電極パッド(図示せず)上に位置決めし、この半田バ
ンプ8の溶融温度以上に加熱した雰囲気中で半田バンプ
8をリフローさせることにより、半導体チップ1を半導
体チップ2の主面上にフェイスダウンボンディングす
る。
Next, as shown in FIG. 15, the solder bumps 8 of the first semiconductor chip 1 are positioned on the electrode pads (not shown) on the main surface of the second semiconductor chip 2, and the solder bumps 8 are positioned. The semiconductor chip 1 is face-down bonded onto the main surface of the semiconductor chip 2 by reflowing the solder bumps 8 in an atmosphere heated above the melting temperature of.

【0039】次に、図16に示すように、第2の半導体
チップ2の主面の電極パッド上に周知のボールボンディ
ング法で金バンプ9を二段重ねて形成する。なお、第2
の半導体チップ2の電極パッド上に金バンプ9を形成し
た後、第1の半導体チップ1を第2の半導体チップ2の
主面上にフェイスダウンボンディングしてもよい。
Next, as shown in FIG. 16, gold bumps 9 are formed in two layers on the electrode pads on the main surface of the second semiconductor chip 2 by the well-known ball bonding method. The second
After forming the gold bumps 9 on the electrode pads of the semiconductor chip 2, the first semiconductor chip 1 may be face-down bonded onto the main surface of the second semiconductor chip 2.

【0040】次に、図17に示すように、配線基板3の
主面上に第2の半導体チップ2を重ね合わせ、配線基板
3側の金バンプ9と半導体チップ2側の金バンプ9とを
熱圧着法で接合することにより、前記図10に示す光送
受信モジュールが完成する。図18は、上述した製造方
法のフロー図である。
Next, as shown in FIG. 17, the second semiconductor chip 2 is overlaid on the main surface of the wiring board 3, and the gold bumps 9 on the wiring board 3 side and the gold bumps 9 on the semiconductor chip 2 side are separated. The optical transmission / reception module shown in FIG. 10 is completed by joining them by thermocompression bonding. FIG. 18 is a flowchart of the manufacturing method described above.

【0041】本実施例によれば、第1の半導体チップ1
を第2の半導体チップ2の主面上にフェイスダウンボン
ディングして両者をダイレクトに接続することにより、
半導体チップ1,2間を接続する配線長を電極パッドの
大きさ(約100μm)程度まで短縮することができる
ので、この配線に加わる負荷容量を極限まで小さくする
ことができ、より一層の高速伝送を行うことが可能な光
送受信モジュールを提供することができる。
According to this embodiment, the first semiconductor chip 1
By face-down bonding on the main surface of the second semiconductor chip 2 and connecting them directly,
Since the length of the wiring that connects the semiconductor chips 1 and 2 can be reduced to the size of the electrode pad (about 100 μm), the load capacitance applied to this wiring can be minimized, and even higher speed transmission is possible. It is possible to provide an optical transceiver module capable of performing the above.

【0042】また、本実施例によれば、前記実施例1と
同様、第1の半導体チップ1と第2の半導体チップ2を
平面上に並べて配置する場合よりも実装密度が向上した
光送受信モジュールを提供することができる。
Further, according to the present embodiment, as in the case of the first embodiment, the optical transceiver module having a higher packaging density than the case where the first semiconductor chip 1 and the second semiconductor chip 2 are arranged side by side on a plane. Can be provided.

【0043】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Needless to say.

【0044】前記実施例では、本発明を光送受信モジュ
ールに適用した場合について説明したが、これに限定さ
れるものではなく、外形寸法の異なる2個またはそれ以
上の半導体チップを配線基板上に実装する各種半導体モ
ジュールに適用することができる。
In the above embodiment, the case where the present invention is applied to the optical transceiver module has been described, but the present invention is not limited to this, and two or more semiconductor chips having different outer dimensions are mounted on a wiring board. Can be applied to various semiconductor modules.

【0045】[0045]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下の通りである。
The effects obtained by the typical ones of the inventions disclosed by the present application will be briefly described as follows.
It is as follows.

【0046】本発明によれば、半導体チップ間を接続す
る配線長を極限まで短縮することができるので、この配
線に加わる負荷容量を小さくすることができ、高速伝送
特性の向上した半導体モジュールを提供することができ
る。
According to the present invention, since the wiring length for connecting the semiconductor chips can be shortened to the utmost limit, it is possible to reduce the load capacitance applied to this wiring, and to provide a semiconductor module with improved high-speed transmission characteristics. can do.

【0047】また、本発明によれば、実装密度の向上し
た半導体モジュールを提供することができる。
Further, according to the present invention, it is possible to provide a semiconductor module having an improved packaging density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である半導体モジュールの断
面図である。
FIG. 1 is a cross-sectional view of a semiconductor module that is an embodiment of the present invention.

【図2】本発明の一実施例である半導体モジュールの製
造方法を示す断面図である。
FIG. 2 is a cross-sectional view showing a method of manufacturing a semiconductor module which is an embodiment of the present invention.

【図3】本発明の一実施例である半導体モジュールの製
造方法を示す断面図である。
FIG. 3 is a cross-sectional view showing a method of manufacturing a semiconductor module that is an embodiment of the present invention.

【図4】本発明の一実施例である半導体モジュールの製
造方法を示す断面図である。
FIG. 4 is a cross-sectional view showing the method of manufacturing a semiconductor module which is an embodiment of the present invention.

【図5】本発明の一実施例である半導体モジュールの製
造方法を示す断面図である。
FIG. 5 is a cross-sectional view showing the method of manufacturing a semiconductor module which is an embodiment of the present invention.

【図6】本発明の一実施例である半導体モジュールの製
造方法を示す断面図である。
FIG. 6 is a cross-sectional view showing the method of manufacturing a semiconductor module which is an embodiment of the present invention.

【図7】本発明の一実施例である半導体モジュールの製
造方法を示す断面図である。
FIG. 7 is a cross-sectional view showing the method of manufacturing a semiconductor module which is an embodiment of the present invention.

【図8】本発明の一実施例である半導体モジュールの製
造方法を示す断面図である。
FIG. 8 is a cross-sectional view showing the method of manufacturing a semiconductor module which is an embodiment of the present invention.

【図9】本発明の一実施例である半導体モジュールの製
造方法を示すフロー図である。
FIG. 9 is a flowchart showing a method for manufacturing a semiconductor module which is an embodiment of the present invention.

【図10】本発明の他の実施例である半導体モジュール
の断面図である。
FIG. 10 is a cross-sectional view of a semiconductor module that is another embodiment of the present invention.

【図11】本発明の他の実施例である半導体モジュール
の製造方法を示す断面図である。
FIG. 11 is a cross-sectional view showing the method of manufacturing a semiconductor module which is another embodiment of the present invention.

【図12】本発明の他の実施例である半導体モジュール
の製造方法を示す断面図である。
FIG. 12 is a cross-sectional view showing the method of manufacturing a semiconductor module which is another embodiment of the present invention.

【図13】本発明の他の実施例である半導体モジュール
の製造方法を示す断面図である。
FIG. 13 is a cross-sectional view showing the method of manufacturing a semiconductor module which is another embodiment of the present invention.

【図14】本発明の他の実施例である半導体モジュール
の製造方法を示す断面図である。
FIG. 14 is a cross-sectional view showing the method of manufacturing a semiconductor module which is another embodiment of the present invention.

【図15】本発明の他の実施例である半導体モジュール
の製造方法を示す断面図である。
FIG. 15 is a cross-sectional view showing the method of manufacturing a semiconductor module which is another embodiment of the present invention.

【図16】本発明の他の実施例である半導体モジュール
の製造方法を示す断面図である。
FIG. 16 is a cross-sectional view showing the method of manufacturing a semiconductor module which is another embodiment of the present invention.

【図17】本発明の他の実施例である半導体モジュール
の製造方法を示す断面図である。
FIG. 17 is a cross-sectional view showing the method of manufacturing a semiconductor module which is another embodiment of the present invention.

【図18】本発明の他の実施例である半導体モジュール
の製造方法を示すフロー図である。
FIG. 18 is a flowchart showing a method for manufacturing a semiconductor module which is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2 半導体チップ 3 配線基板 4 配線 5 配線 6 スルーホール 7 開孔 8 半田バンプ 9 金バンプ 10 ツール 1 Semiconductor Chip 2 Semiconductor Chip 3 Wiring Board 4 Wiring 5 Wiring 6 Through Hole 7 Open Hole 8 Solder Bump 9 Gold Bump 10 Tool

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/52 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 23/52

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配線基板の主面上に第1のバンプ電極を
介して第1の半導体チップをフェイスダウンボンディン
グし、前記第1のバンプ電極よりも高さの大きい第2の
バンプ電極を介して前記第1の半導体チップよりも外形
寸法の大きい第2の半導体チップを前記第1の半導体チ
ップと重なるようにフェイスダウンボンディングしたこ
とを特徴とする半導体モジュール。
1. A first semiconductor chip is face-down bonded on a main surface of a wiring board via a first bump electrode, and a second bump electrode having a height higher than that of the first bump electrode is used. A second semiconductor chip having a larger outer dimension than the first semiconductor chip is face-down bonded so as to overlap with the first semiconductor chip.
【請求項2】 前記第2のバンプ電極は、高さ方向に重
ね合わせた複数個のバンプ電極により構成されているこ
とを特徴とする請求項1記載の半導体モジュール。
2. The semiconductor module according to claim 1, wherein the second bump electrode is composed of a plurality of bump electrodes stacked in the height direction.
【請求項3】 前記第1の半導体チップは、前記配線基
板の主面上に形成された配線上にリフロー方式でフェイ
スダウンボンディングされ、前記第2の半導体チップ
は、前記配線基板の主面上に形成された配線上に熱圧着
方式でフェイスダウンボンディングされていることを特
徴とする請求項1または2記載の半導体モジュール。
3. The first semiconductor chip is face-down bonded by a reflow method on a wiring formed on the main surface of the wiring board, and the second semiconductor chip is on the main surface of the wiring board. The semiconductor module according to claim 1 or 2, wherein face-down bonding is performed on the wiring formed in (1) by a thermocompression bonding method.
【請求項4】 前記第1の半導体チップの主面には発光
または受光素子が形成され、前記第2の半導体チップの
主面には集積回路素子が形成されていることを特徴とす
る請求項1、2または3記載の半導体モジュール。
4. A light emitting or light receiving element is formed on the main surface of the first semiconductor chip, and an integrated circuit element is formed on the main surface of the second semiconductor chip. The semiconductor module described in 1, 2, or 3.
【請求項5】 配線基板の主面上に第2のバンプ電極を
介して第2の半導体チップをフェイスダウンボンディン
グし、前記第2のバンプ電極よりも高さの小さい第1の
バンプ電極を介して前記第2の半導体チップよりも外形
寸法の小さい第1の半導体チップを前記第2の半導体チ
ップの主面上にフェイスダウンボンディングしたことを
特徴とする半導体モジュール。
5. A second semiconductor chip is face-down bonded on a main surface of a wiring substrate via a second bump electrode, and a first bump electrode having a height smaller than that of the second bump electrode is interposed. A semiconductor module in which a first semiconductor chip having an outer dimension smaller than that of the second semiconductor chip is face-down bonded onto the main surface of the second semiconductor chip.
【請求項6】 前記第2の半導体チップは、前記配線基
板の主面上に形成された配線上に熱圧着方式でフェイス
ダウンボンディングされ、前記第1の半導体チップは、
前記第2の半導体チップの主面上にリフロー方式でフェ
イスダウンボンディングされていることを特徴とする請
求項5記載の半導体モジュール。
6. The second semiconductor chip is face-down bonded on a wiring formed on a main surface of the wiring board by a thermocompression bonding method, and the first semiconductor chip is
6. The semiconductor module according to claim 5, wherein facedown bonding is performed on the main surface of the second semiconductor chip by a reflow method.
JP6013869A 1994-02-07 1994-02-07 Semiconductor module Pending JPH07221262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6013869A JPH07221262A (en) 1994-02-07 1994-02-07 Semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6013869A JPH07221262A (en) 1994-02-07 1994-02-07 Semiconductor module

Publications (1)

Publication Number Publication Date
JPH07221262A true JPH07221262A (en) 1995-08-18

Family

ID=11845253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6013869A Pending JPH07221262A (en) 1994-02-07 1994-02-07 Semiconductor module

Country Status (1)

Country Link
JP (1) JPH07221262A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274317A (en) * 2000-03-27 2001-10-05 Toshiba Corp Semiconductor device and method for manufacturing the same
KR100351925B1 (en) * 2000-10-25 2002-09-12 앰코 테크놀로지 코리아 주식회사 stack-type semiconductor package
JP2002373966A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Mounting structure for semiconductor chip and method for manufacturing the same
KR20030085867A (en) * 2002-05-02 2003-11-07 삼성전기주식회사 Method for mounting component by multi-layer and device thereby
KR100424741B1 (en) * 1998-06-26 2004-03-30 인터내셔널 비지네스 머신즈 코포레이션 Chip-on-chip interconnections of varied characteristics
KR100433863B1 (en) * 1998-06-09 2004-11-09 오끼 덴끼 고오교 가부시끼가이샤 Semiconductor device and method of fabrication the same
KR100583491B1 (en) * 2000-04-07 2006-05-24 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
KR100592784B1 (en) * 2000-01-14 2006-06-26 삼성전자주식회사 Multi chip package
KR100674411B1 (en) * 2005-09-29 2007-01-29 삼성전기주식회사 Semiconductor package using core ball and manufacturing method thereof
KR100680954B1 (en) * 2004-12-29 2007-02-08 주식회사 하이닉스반도체 Stacked chip package
KR100722634B1 (en) * 2005-10-06 2007-05-28 삼성전기주식회사 High density semiconductor package and the manufacturing method thereof
US7368811B2 (en) 2004-10-04 2008-05-06 Samsung Electronics Co., Ltd Multi-chip package and method for manufacturing the same
US7427810B2 (en) 1999-07-01 2008-09-23 Oki Electric Industry Co., Ltd. Semiconductor device including semiconductor element mounted on another semiconductor element
US8748229B2 (en) 2008-06-11 2014-06-10 Fujitsu Semiconductor Limited Manufacturing method including deformation of supporting board to accommodate semiconductor device
JP2015195319A (en) * 2014-03-31 2015-11-05 日本電気株式会社 Module component and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433863B1 (en) * 1998-06-09 2004-11-09 오끼 덴끼 고오교 가부시끼가이샤 Semiconductor device and method of fabrication the same
KR100424741B1 (en) * 1998-06-26 2004-03-30 인터내셔널 비지네스 머신즈 코포레이션 Chip-on-chip interconnections of varied characteristics
US7427810B2 (en) 1999-07-01 2008-09-23 Oki Electric Industry Co., Ltd. Semiconductor device including semiconductor element mounted on another semiconductor element
US8486728B2 (en) 1999-07-01 2013-07-16 Oki Semiconductor Co., Ltd. Semiconductor device including semiconductor elements mounted on base plate
US8008129B2 (en) 1999-07-01 2011-08-30 Oki Semiconductor Co., Ltd. Method of making semiconductor device packaged by sealing resin member
US7723832B2 (en) 1999-07-01 2010-05-25 Oki Semiconductor Co., Ltd. Semiconductor device including semiconductor elements mounted on base plate
US7592690B2 (en) 1999-07-01 2009-09-22 Oki Semiconductor Co., Ltd. Semiconductor device including semiconductor elements mounted on base plate
KR100592784B1 (en) * 2000-01-14 2006-06-26 삼성전자주식회사 Multi chip package
JP2001274317A (en) * 2000-03-27 2001-10-05 Toshiba Corp Semiconductor device and method for manufacturing the same
KR100583491B1 (en) * 2000-04-07 2006-05-24 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
KR100351925B1 (en) * 2000-10-25 2002-09-12 앰코 테크놀로지 코리아 주식회사 stack-type semiconductor package
JP4536291B2 (en) * 2001-06-13 2010-09-01 パナソニック株式会社 Semiconductor chip mounting structure and manufacturing method thereof
JP2002373966A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Mounting structure for semiconductor chip and method for manufacturing the same
KR20030085867A (en) * 2002-05-02 2003-11-07 삼성전기주식회사 Method for mounting component by multi-layer and device thereby
US7368811B2 (en) 2004-10-04 2008-05-06 Samsung Electronics Co., Ltd Multi-chip package and method for manufacturing the same
KR100680954B1 (en) * 2004-12-29 2007-02-08 주식회사 하이닉스반도체 Stacked chip package
KR100674411B1 (en) * 2005-09-29 2007-01-29 삼성전기주식회사 Semiconductor package using core ball and manufacturing method thereof
KR100722634B1 (en) * 2005-10-06 2007-05-28 삼성전기주식회사 High density semiconductor package and the manufacturing method thereof
US8748229B2 (en) 2008-06-11 2014-06-10 Fujitsu Semiconductor Limited Manufacturing method including deformation of supporting board to accommodate semiconductor device
JP2015195319A (en) * 2014-03-31 2015-11-05 日本電気株式会社 Module component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6768207B2 (en) Multichip wafer-level package and method for manufacturing the same
US6608376B1 (en) Integrated circuit package substrate with high density routing mechanism
TWI483369B (en) Through silicon via bridge interconnect
US6552426B2 (en) Semiconductor device and method of manufacturing same
JPH07221262A (en) Semiconductor module
US6635962B2 (en) Chip on chip semiconductor device
US20070176269A1 (en) Multi-chips module package and manufacturing method thereof
US20040041250A1 (en) Semiconductor device and a method of manufacturing the same
TWI785515B (en) Semiconductor packages and apparatus having the same
US20020095784A1 (en) Bumping process for chip scale packaging
US6933616B2 (en) Multi-chip module packaging device using flip-chip bonding technology
JPS6290957A (en) Manufacture of semiconductor device
JPH0371649A (en) Semiconductor integrated circuit and manufacture thereof
JP3724945B2 (en) Semiconductor device
US7019405B2 (en) Terminal, semiconductor device, terminal forming method and flip chip semiconductor device manufacturing method
KR100406448B1 (en) Semiconductor package and its manufacturing method
JP2713879B2 (en) Multi-chip package with direct electrical connection between internal leads and board bonding pads
JP2970626B2 (en) Lead frame for semiconductor integrated circuit device and semiconductor integrated circuit device
JPH09252027A (en) Semiconductor integrated circuit device and its manufacturing method
JPS6290959A (en) Manufacture of semiconductor device
JPS62202532A (en) Semiconductor device
JPH07321150A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0878475A (en) Mounting method of semiconductor chip
KR19980025888A (en) Connection structure between semiconductor chip and substrate using bumpy bumpy structure
JPH05183102A (en) Semiconductor device and manufacture thereof