JPH07221112A - Manufacture of semiconductor wafer - Google Patents

Manufacture of semiconductor wafer

Info

Publication number
JPH07221112A
JPH07221112A JP1082194A JP1082194A JPH07221112A JP H07221112 A JPH07221112 A JP H07221112A JP 1082194 A JP1082194 A JP 1082194A JP 1082194 A JP1082194 A JP 1082194A JP H07221112 A JPH07221112 A JP H07221112A
Authority
JP
Japan
Prior art keywords
wafer
layer
interface
main surface
rear face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1082194A
Other languages
Japanese (ja)
Inventor
Tomomi Sato
友美 佐藤
Norio Suzuki
範夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP1082194A priority Critical patent/JPH07221112A/en
Publication of JPH07221112A publication Critical patent/JPH07221112A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Si wafer which is very reliable near the surface of the wafer since it has a non-defect layer near the surface of the wafer and to increase the characteristics of the device such as a gate withstand strength by depositing an a-Si (amorphous silicon) layer in a specified thickness at a specified temperature on the rear face of the Si wafer. CONSTITUTION:First, an Si wafer 1 is prepared. Nextly, due to thermal decomposition of silane (SiH4), an a-Si layer 2 is formed in the thickness of about 1mum at 570-580 deg.C on the rear face of the Si wafer 1 which is a second primary face. When the wafer 1 is heat-treated, crystal defects and an oxygen deposit 6, which exist in the wafer 1, absorb impurities (a gettering action) or extinguish crystal defects due to a grain boundary generated near an interface between the wafer 1 and the a-Si layer 2, a stress of the interface such as crystallization, and a distortion field of dislocation which accompanies the stress of the interface, since the a-Si layer 2 exists on the rear face of the wafer 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造に関
し、特に、結晶製造プロセスに関する発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor device manufacturing, and more particularly to a crystal manufacturing process.

【0002】[0002]

【従来の技術】半導体装置の製造プロセスにおいて、熱
酸化によりSi(シリコン)ウエーハの表面に酸化膜
(SiO2)を形成する際、前記Siウエーハ表面近傍
に不純物、酸素の析出物および結晶欠陥が発生する欠点
があった。そのため、これらの存在が酸化膜質に影響
し、半導体装置のゲート耐圧劣化などの原因となってい
た。
2. Description of the Related Art In a semiconductor device manufacturing process, when an oxide film (SiO 2 ) is formed on the surface of a Si (silicon) wafer by thermal oxidation, impurities, precipitates of oxygen and crystal defects are generated near the surface of the Si wafer. There was a drawback that occurred. Therefore, the presence of these affects the quality of the oxide film and causes deterioration of the gate breakdown voltage of the semiconductor device.

【0003】上記問題を解決する手法としては、特開昭
52−69571号公報に開示されている。すなわち、
Siウエーハ裏面にPoly−Si層を形成し、Si基
板とPoly−Si層界面との応力、膜の結晶粒界、転
位等の歪場を利用して、Siウエーハ表面近傍の不純物
を取り除く技術(ゲッタリング技術)が知られている。
A method for solving the above problem is disclosed in Japanese Patent Application Laid-Open No. 52-69571. That is,
Technology to remove impurities near the Si wafer surface by forming a Poly-Si layer on the back surface of the Si wafer and utilizing the stress between the Si substrate and the Poly-Si layer interface, grain boundaries of the film, strain fields such as dislocations ( Gettering technology) is known.

【0004】[0004]

【発明が解決しようとする課題】しかし、前述したよう
にSiウエーハ裏面にPoly−Siをデポジション
(Deposition)し、不純物のゲッタリングを行なってい
るが、ゲッタリング能力を高めるためPoly−Si膜
厚を厚くすることが考えられるが、逆にデポジション工
程の熱処理がSiウエーハ内部の酸素析出量が増加し、
Siウエーハ表面近傍にも析出物、欠陥が存在しやす
く、デバイス特性に影響を与える可能性がある。
However, as described above, Poly-Si is deposited on the back surface of the Si wafer to getter impurities, but in order to enhance the gettering ability, the Poly-Si film Although it is possible to increase the thickness, conversely, the heat treatment in the deposition step increases the amount of oxygen precipitation inside the Si wafer,
Precipitates and defects easily exist near the surface of the Si wafer, which may affect the device characteristics.

【0005】すなわち、本発明の目的は、前記問題点を
解決しつつウエーハ表面近傍においては、より信頼度の
高い無欠陥層のSiウエーハを提供し、ゲート耐圧等の
デバイス特性を向上させることである。
That is, an object of the present invention is to provide a defect-free Si wafer having a higher reliability in the vicinity of the wafer surface while solving the above-mentioned problems and to improve device characteristics such as gate breakdown voltage. is there.

【0006】本発明の前記並びにその他の目的と、新規
な特徴は、本明細書の記述及び添付図面から明らかにな
るであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0007】[0007]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば下記
の通りである。
The outline of the representative one of the inventions disclosed in the present application will be briefly described as follows.

【0008】すなわち、Siウエーハ裏面に、a−Si
(アモルファスシリコン)層を約1μm、570〜58
0℃でデポジションすることを特徴とする。
That is, a-Si is formed on the back surface of the Si wafer.
(Amorphous silicon) layer about 1 μm, 570-58
Characterized by deposition at 0 ° C.

【0009】[0009]

【作用】上記した手段によれば、半導体デバイス製造プ
ロセス中の熱処理によりウエーハ裏面のa−Siの形状
変化、粒界の発生、結晶化、これに伴う転位等の歪場に
よりSiウエーハバルク中の不純物や転位、酸素析出物
が裏面側に集まり、高いゲッタリング効果が得られる。
その結果、Siウエーハ表面近傍では無欠陥層となり、
ゲート耐圧が向上する。
According to the above-mentioned means, the heat treatment during the semiconductor device manufacturing process causes a change in the shape of a-Si on the back surface of the wafer, generation of grain boundaries, crystallization, and a strain field such as dislocation accompanying it. Impurities, dislocations, and oxygen precipitates collect on the back surface side, and a high gettering effect is obtained.
As a result, a defect-free layer near the surface of the Si wafer,
The gate breakdown voltage is improved.

【0010】[0010]

【実施例】以下、本発明について図面を参照しながら具
体的実施例に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on specific embodiments with reference to the drawings.

【0011】図1乃至図3は本発明の概要を示すウエー
ハの断面図、図4は本発明によるSiウエーハ表面にM
OS型トランジスタを形成した図である。
1 to 3 are sectional views of a wafer showing the outline of the present invention, and FIG.
It is the figure which formed the OS type transistor.

【0012】まず、図1に示すSiウエーハ1を用意す
る。次に、図2に示すようにシラン(SiH4)の熱分
解によるデポジションにより、570〜580℃の温度
で、Siウエーハ1の第二主面である裏面にa−Si層
2を約1μm形成する。前記温度範囲はa−Siの生成
温度であり、これ以上高温になるとPoly−Siが形
成される。
First, the Si wafer 1 shown in FIG. 1 is prepared. Then, as shown in FIG. 2, the a-Si layer 2 is deposited on the back surface, which is the second main surface of the Si wafer 1, by about 1 μm at a temperature of 570 to 580 ° C. by deposition by thermal decomposition of silane (SiH 4 ). Form. The temperature range is the temperature at which a-Si is produced, and when the temperature is higher than this, Poly-Si is formed.

【0013】図3は、半導体デバイス製造プロセス工程
で、ウエーハ1が熱処理(例えば、ウエーハ1の第二主
面に対向する、第一主面である半導体素子が形成される
表面に酸化膜(SiO2)形成)されたことを示した図
である。
FIG. 3 is a semiconductor device manufacturing process step in which the wafer 1 is subjected to a heat treatment (for example, an oxide film (SiO 2 is formed on the surface of the first main surface facing the second main surface of the wafer 1 where a semiconductor element is formed). 2 ) It is the figure which showed that it was formed.

【0014】図3において、ウエーハ1の熱処理時には
ウエーハ1裏面にa−Si2が存在しているために、ウ
エーハ1中に存在していた結晶欠陥や酸素析出物6は、
ウエーハ1とa−Si2界面付近に生ずる粒界、結晶化
等の界面の応力やこれに伴う転位の歪場により前記不純
物を吸収(ゲッタリング作用)したり、結晶欠陥を消滅
したりする。
In FIG. 3, since a-Si2 is present on the back surface of the wafer 1 during the heat treatment of the wafer 1, the crystal defects and oxygen precipitates 6 present in the wafer 1 are
The impurities are absorbed (gettering action) or crystal defects are eliminated by the grain boundary generated near the interface between the wafer 1 and the a-Si2, the stress at the interface such as crystallization, and the strain field of dislocation accompanying this.

【0015】ここで、本発明の目的であるゲッタリング
効果を向上させるため、従来技術のSiウエハ1裏面に
Poly−Si層を形成する(Polysilicon Back Coati
ng結晶:以下PBC結晶と略す)ことから、a−Si層
2を形成した理由を述べる。
Here, in order to improve the gettering effect which is the object of the present invention, a Poly-Si layer is formed on the back surface of the Si wafer 1 of the prior art (Polysilicon Back Coati).
ng crystal: hereinafter abbreviated as PBC crystal), the reason for forming the a-Si layer 2 will be described.

【0016】PBC結晶のゲッタリング効果は前述した
ように、熱処理時のPoly−Siの粒界、形状、結晶
化等の界面の応力や、これに伴う転位による歪場が作用
していると考えられている。PBC結晶のゲッタリング
効果を高めるには、Poly−Siの膜厚を厚くするこ
となどが考えられるが、そのデポジション工程の熱処理
が結晶内部の酸素析出に影響し、バルク特性を変化させ
てしまう恐れがある。
As described above, the gettering effect of the PBC crystal is considered to be due to the interface stress such as grain boundary, shape, and crystallization of Poly-Si during the heat treatment, and the strain field due to the dislocation accompanying it. Has been. In order to enhance the gettering effect of the PBC crystal, it is conceivable to increase the film thickness of Poly-Si, but the heat treatment in the deposition process affects oxygen precipitation inside the crystal and changes the bulk characteristics. There is a fear.

【0017】すなわち、ゲッタリング効果をもたらすと
考えられる粒界、形状、結晶化、これに伴う転位に着目
すると、Poly−Siよりもa−Siの方が作用が大
きい。つまりウエーハ表面近傍の無欠陥化にはa−Si
の方がより効果的であり、ゲート耐圧はさらに向上す
る。a−Siの生成温度はPoly−Siよりも低く、
処理時間は長くなるが、バルク特性への影響は小さい。
That is, when attention is paid to grain boundaries, shapes, crystallization, and dislocations associated therewith which are thought to bring about the gettering effect, a-Si has a larger effect than Poly-Si. In other words, a-Si is required to eliminate defects near the wafer surface.
Is more effective and the gate breakdown voltage is further improved. The formation temperature of a-Si is lower than that of Poly-Si,
The processing time is long, but the effect on bulk properties is small.

【0018】以上の理由により、a−Si層2を形成す
ればより高いゲッタリング効果が望まれる。また、図4
に示すようにSiウエハ1表面近傍の無欠陥部分4にM
OS型トランジスタのゲート酸化膜10が形成されれ
ば、前記ゲート酸化膜10の膜質が良好であるためゲー
ト耐圧が向上する。
For the above reasons, a higher gettering effect is desired when the a-Si layer 2 is formed. Also, FIG.
As shown in FIG.
When the gate oxide film 10 of the OS type transistor is formed, the gate oxide film 10 has a good film quality, and thus the gate breakdown voltage is improved.

【0019】なお、以上本発明者等によってなされた発
明は、上記実施例に限定されるものでなく、その要旨を
逸脱しない範囲において種々変更可能である。
The invention made by the inventors of the present invention is not limited to the above-described embodiments, but various modifications can be made without departing from the scope of the invention.

【0020】[0020]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば下記
の通りである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0021】すなわち、Siウエーハ裏面に形成したa
−Siが製造プロセス中で熱処理を受けることにより、
その形状、粒界の発生、結晶化等の界面の応力やこれに
伴う転位の歪場によりウエーハバルク中の不純物や微小
欠陥、酸素析出物が裏面側に集まリ、ウエーハ表面近傍
では無欠陥層となる。その結果、ゲート酸化膜質が良好
となり、ゲート耐圧等のデバイス特性の向上が期待でき
る。
That is, a formed on the back surface of the Si wafer
-Si undergoes heat treatment during the manufacturing process,
Impurities, minute defects, and oxygen precipitates in the wafer bulk collect on the back surface side due to the stress at the interface such as its shape, generation of grain boundaries, and crystallization, and the accompanying strain field of dislocations, and there are no defects near the wafer surface. Become a layer. As a result, the quality of the gate oxide film is improved, and improvement in device characteristics such as gate breakdown voltage can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】Siウエーハを示す断面図である。FIG. 1 is a cross-sectional view showing a Si wafer.

【図2】本発明の概要を示すSiウエーハの断面図であ
る。
FIG. 2 is a sectional view of a Si wafer showing an outline of the present invention.

【図3】図2に示したSiウエーハが熱処理を受けた後
のSiウエーハの断面図である。
FIG. 3 is a cross-sectional view of the Si wafer after the Si wafer shown in FIG. 2 has been subjected to heat treatment.

【図4】本発明によるSiウエーハ表面にMOS型トラ
ンジスタを形成した断面図である。
FIG. 4 is a sectional view showing a MOS transistor formed on the surface of a Si wafer according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・Siウエーハ 2・・・・a−Si 3・・・・結晶欠陥、酸素析出核 4・・・・無欠陥層 5・・・・酸化膜 6・・・・結晶欠陥、酸素析出物 7・・・・ゲート電極 8・・・・ソース 9・・・・ドレイン 10・・・・ゲート酸化膜 1 ... Si wafer 2 ... a-Si 3 ... Crystal defects, oxygen precipitation nuclei 4 ... Defect-free layer 5 ... Oxide film 6 ... Crystal defects, oxygen Precipitate 7 ・ ・ ・ ・ Gate electrode 8 ・ ・ ・ ・ ・ ・ Source 9 ・ ・ ・ ・ Drain 10 ・ ・ ・ ・ Gate oxide film

フロントページの続き (72)発明者 鈴木 範夫 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内Front Page Continuation (72) Inventor Norio Suzuki 5-20-1 Kamimizuhonmachi, Kodaira-shi, Tokyo Hitachi, Ltd. Semiconductor Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第一主面と前記第一主面に対向する第二主
面とを有する半導体ウエーハを用意する工程と、 前記半導体ウエーハの第二主面にアモルファスシリコン
層を形成する工程と、 前記半導体ウエーハの第一主面に半導体素子領域を形成
することを特徴とする半導体装置の製造方法。
1. A step of preparing a semiconductor wafer having a first main surface and a second main surface facing the first main surface, and a step of forming an amorphous silicon layer on the second main surface of the semiconductor wafer. A method of manufacturing a semiconductor device, comprising forming a semiconductor element region on the first main surface of the semiconductor wafer.
【請求項2】前記第一主面を熱酸化することによりゲー
ト酸化膜を形成し、前記ゲート酸化膜上にゲート電極を
形成することを特徴とする請求項1に記載の半導体装置
の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein a gate oxide film is formed by thermally oxidizing the first main surface, and a gate electrode is formed on the gate oxide film. .
【請求項3】前記アモルファスシリコン層形成は、57
0℃〜580℃の温度でシランの熱分解によるデポジシ
ョンにより形成することを特徴とする請求項1に記載の
半導体装置の製造方法。
3. The amorphous silicon layer formation is 57
The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is formed by deposition by thermal decomposition of silane at a temperature of 0 ° C to 580 ° C.
JP1082194A 1994-02-02 1994-02-02 Manufacture of semiconductor wafer Withdrawn JPH07221112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082194A JPH07221112A (en) 1994-02-02 1994-02-02 Manufacture of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082194A JPH07221112A (en) 1994-02-02 1994-02-02 Manufacture of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH07221112A true JPH07221112A (en) 1995-08-18

Family

ID=11761029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082194A Withdrawn JPH07221112A (en) 1994-02-02 1994-02-02 Manufacture of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH07221112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798771A2 (en) * 1996-03-28 1997-10-01 Shin-Etsu Handotai Company Limited Silicon wafer comprising an amorphous silicon layer and method of manufacturing the same by plasma enhanced chemical vapor deposition (PECVD)
JPH11168210A (en) * 1997-12-04 1999-06-22 Denso Corp Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798771A2 (en) * 1996-03-28 1997-10-01 Shin-Etsu Handotai Company Limited Silicon wafer comprising an amorphous silicon layer and method of manufacturing the same by plasma enhanced chemical vapor deposition (PECVD)
EP0798771A3 (en) * 1996-03-28 1997-10-08 Shin-Etsu Handotai Company Limited Silicon wafer comprising an amorphous silicon layer and method of manufacturing the same by plasma enhanced chemical vapor deposition (PECVD)
US5970365A (en) * 1996-03-28 1999-10-19 Shin-Etsu Handotai., Ltd. Silicon wafer including amorphous silicon layer formed by PCVD and method of manufacturing wafer
JPH11168210A (en) * 1997-12-04 1999-06-22 Denso Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPS6239070A (en) Manufacture of transistor
JPS6310573A (en) Manufacture of semiconductor device
JP2505736B2 (en) Method for manufacturing semiconductor device
JPH09148336A (en) Si semiconductor substrate and manufacturing method
JPH07221112A (en) Manufacture of semiconductor wafer
JP3281431B2 (en) Thin film transistor
JPH02228042A (en) Manufacture of thin film semiconductor device
JPH034564A (en) Manufacture of semiconductor device
JPH06291039A (en) Amorphous-semiconductor formation substrate and manufacture of polycrystalline-semiconductor formation substrate using it
JPH0951001A (en) Fabrication of semiconductor wafer
JP2508601B2 (en) Field effect thin film transistor
JP3707287B2 (en) Manufacturing method of semiconductor device
JP4214989B2 (en) Manufacturing method of semiconductor device
JP3426163B2 (en) Liquid crystal display
JP3426063B2 (en) Liquid crystal display device and manufacturing method thereof
JP3236861B2 (en) Semiconductor thin film manufacturing method
JPH1154434A (en) Silicon polycrystal film and semiconductor device
JPH04326576A (en) Manufacture of semiconductor device
JPH03241874A (en) Manufacture of thin film semiconductor device
JPH03120871A (en) Manufacture of thin film semiconductor device
KR100343452B1 (en) Manufacturing method for dielectric film in semiconductor device
JP3426164B2 (en) Manufacturing method of liquid crystal display device
JPH05275424A (en) Manufacture of semiconductor device
JPH04332120A (en) Manufacture of semiconductor crystal layer
JPS63260052A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403