JPS63260052A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS63260052A
JPS63260052A JP8334787A JP8334787A JPS63260052A JP S63260052 A JPS63260052 A JP S63260052A JP 8334787 A JP8334787 A JP 8334787A JP 8334787 A JP8334787 A JP 8334787A JP S63260052 A JPS63260052 A JP S63260052A
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
polycrystalline silicon
heat treatment
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8334787A
Other languages
Japanese (ja)
Inventor
Hironori Ushizaka
博則 牛坂
Yoshiyuki Sato
佐藤 芳之
Masao Nagase
雅夫 永瀬
Kazuyuki Saito
斎藤 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8334787A priority Critical patent/JPS63260052A/en
Publication of JPS63260052A publication Critical patent/JPS63260052A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a warp of a wafer and to decrease stress applied to a polycide electrode and to improve electrical characteristics and reliability, by piling amorphous silicon and polycrystalline silicon serially on an Si substrate and next performing heat treatment. CONSTITUTION:A SiO2 film 3 is formed on an Si substrate 4. Next, a polycrystalline silicon 2 is piled on the film 3 and impurities are injected into this polycrystalline silicon film 2 and amorphous silicon film 6 is piled on the film 2. Thereafter Mo 1 is evaporated on the film 6 and heat treatment is performed to form a MoSi2 film 5. Then, the MoSi2 film 5 whose thickness is about twice that of the Mo 1 film is formed in a film 7 which is made by polycrystallization of amorphous silicon 6 provided with heat treatment. According to this process, stress-free polycide structure without a warp of the wafer can be easily obtained by selecting a film thickness ratio of polycrystalline silicon to amorphous silicon in conformity with the film stress of the MoSi2 film 5.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体装置及びその製造方法に関するもので
あり、特に高品質、高信頼性のポリサイド電極形成法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a method for forming a high quality and highly reliable polycide electrode.

〔従来の技術〕[Conventional technology]

LSIの微細化に伴なってゲート電極配線抵抗が増大し
、信号伝搬時間の遅延をもたらす。このた造(上部シリ
サイド、下部ポリシンコン)が注目されてきている。ポ
リサイド構造形成に際しては、工程が簡単なことから合
金反応法を用いた方法が従来から広く用いられており、
この形成法を第1図に示す。ここで1はMo、2は多結
晶シリコン。
As LSIs become smaller, gate electrode wiring resistance increases, resulting in a delay in signal propagation time. This structure (upper silicide, lower polyshincon) is attracting attention. When forming polycide structures, methods using alloy reaction methods have been widely used since the process is simple.
This formation method is shown in FIG. Here, 1 is Mo and 2 is polycrystalline silicon.

3は5i01膜、4はSt基板、5は’?1oSi、で
ある。
3 is 5i01 film, 4 is St substrate, 5 is '? 1oSi.

この方法は、第1図に示すようにSi基板上に多結晶シ
リコン、及び金属膜を堆積しく・官1図〔α))、イオ
ン注入(第1図(b))後に熱処理を行なうものである
(第1図(C))。この方法では熱処理時において、S
i基板と多結晶シリコン層、及びシリサイド層との熱膨
張係数の違いによシ膜応力が発生するためウェハーは凹
、又は凸にそシ、また膜応力は熱処理条件、及びシリサ
イド膜厚に依存する。このためシリサイドと多結晶シリ
コンの膜厚構成、熱処理条件を最適な範囲に限定しない
かぎシ、ウェハーのそシのためにホト工程が難しくなる
とともに、膜応力の増加につれゲート酸化膜中に転位、
欠陥が発生し、ゲート酸化膜の電気的特性に変化を与え
ることが知られている。また膜応力によるウェハーのそ
りが同じ場合、膜厚が薄くなるほど膜応力は大きくなる
。微細化に伴なってゲート酸化膜は薄膜化されるため、
膜応力の増加によるゲート酸化膜の耐圧低下等のデバイ
ス特性の劣化が生じていた。
In this method, as shown in Figure 1, polycrystalline silicon and metal films are deposited on a Si substrate (Figure 1 [α)]), and heat treatment is performed after ion implantation (Figure 1 (b)). Yes (Figure 1 (C)). In this method, S
Film stress is generated due to the difference in thermal expansion coefficient between the i-substrate, polycrystalline silicon layer, and silicide layer, so the wafer tends to be concave or convex.Film stress also depends on heat treatment conditions and silicide film thickness. do. For this reason, the film thickness structure of silicide and polycrystalline silicon, the heat treatment conditions cannot be limited to the optimum range, the photo process becomes difficult due to the wafer thickness, and as the film stress increases, dislocations occur in the gate oxide film.
It is known that defects occur and change the electrical characteristics of the gate oxide film. Further, if the warpage of the wafer due to film stress is the same, the film stress becomes larger as the film thickness becomes thinner. As gate oxide films become thinner with miniaturization,
The increase in film stress caused deterioration of device characteristics, such as a drop in breakdown voltage of the gate oxide film.

C問題点を解決するための手段〕 発明の目的 本発明の目的は、ポリサイド電極形成における熱処理工
程、及びシリサイド膜厚増加による応力増加を減少させ
、ポリサイド電極の電気的特性、及び信頼性の向上をは
かることである。
Means for Solving Problem C] Purpose of the Invention The purpose of the present invention is to reduce stress increase due to heat treatment process in polycide electrode formation and increase in silicide film thickness, and to improve electrical characteristics and reliability of polycide electrode. It is to measure.

発明の構成及び作用 非晶質シリコン及び多結晶シリコンをそれぞれSi基板
上に堆積して、熱処理を行なった場合、非晶質シリコン
を堆積したウェハーは凹にそシ、多結晶シリコンを堆積
したウェハーは凸にそることを見出した。発明の特徴は
、この現象を利用して非晶質シリコン及び多結晶シリコ
ンを順次にSi基板上に堆積して熱処理を行ない、ウェ
ハーのそりを小さくし、ポリサイド電極に及ぼす応力を
減少させ、電気的特性、及び信頼性を向上させる点にあ
る。
Structure and operation of the invention When amorphous silicon and polycrystalline silicon are respectively deposited on a Si substrate and heat treated, the wafer on which amorphous silicon is deposited becomes concave, and the wafer on which polycrystalline silicon is deposited is It was found that the curve warped in a convex manner. The feature of the invention is to utilize this phenomenon to sequentially deposit amorphous silicon and polycrystalline silicon on a Si substrate and perform heat treatment to reduce wafer warpage, reduce stress on polycide electrodes, and reduce electrical The aim is to improve physical characteristics and reliability.

従来の合金反応法を用いたポリサイド電極形成技術では
、応力を減少させるため熱処理条件の設定範囲は狭く、
またシリサイド膜厚の増加は困難であった。本発明の方
法では、ある熱処理条件におけるシリサイド層膜の応力
に応じて、非晶質シリコン及び多結晶シリコンの膜厚比
の最適化を図ることによシ、ウェハーのそりを減少させ
ることが可能である。このため熱処理条件の設定範囲は
ひろく、またシリサイド膜厚の増加が可能であることよ
り、プロセスマージンの拡大、ゲート電極配線の低抵抗
化といった特徴がある。
In polycide electrode formation technology using the conventional alloy reaction method, the setting range of heat treatment conditions is narrow in order to reduce stress.
Furthermore, it was difficult to increase the silicide film thickness. In the method of the present invention, wafer warpage can be reduced by optimizing the film thickness ratio of amorphous silicon and polycrystalline silicon according to the stress of the silicide layer film under certain heat treatment conditions. It is. Therefore, the setting range of heat treatment conditions is wide, and since the silicide film thickness can be increased, the process margin can be expanded and the resistance of the gate electrode wiring can be lowered.

実施例 本発明の基礎となる実験結果を第2図に示す。Example FIG. 2 shows the experimental results that form the basis of the present invention.

第2図は多結晶シリコン及び非晶質シリコンを順次Si
基板上に堆積し、ゲート電極膜厚3000 X中学結晶
シリコン及び非晶質シリコンの膜厚比を変化させて90
0℃、30分の熱処理を行ない、ゲート酸化膜(74A
)に加わる膜応力の変化を示している。
Figure 2 shows polycrystalline silicon and amorphous silicon in sequence.
Deposited on the substrate, the gate electrode film thickness was 3000 x 90 by changing the film thickness ratio of crystalline silicon and amorphous silicon.
Heat treatment was performed at 0°C for 30 minutes to form a gate oxide film (74A
) shows the change in membrane stress applied to the film.

第2図より多結晶シリコン及び非晶質シリコンの膜厚比
を最適化することによυゲート酸化膜中の膜応力を減少
させることが分る。ここで多結晶シリコンは、モノシラ
ンを温度625℃において熱分解するCVD法によυ形
成し、非晶質シリコンはジシランを温度525℃におい
て熱分解するCVD法により形成した。また多結晶シリ
コン、及び非晶質シリコンに電子線回折を行なうと、回
折パターンはそれぞれリング状、及びハロー状になる。
It can be seen from FIG. 2 that the film stress in the υ gate oxide film can be reduced by optimizing the film thickness ratio of polycrystalline silicon and amorphous silicon. Here, polycrystalline silicon was formed by a CVD method in which monosilane was thermally decomposed at a temperature of 625°C, and amorphous silicon was formed by a CVD method in which disilane was thermally decomposed at a temperature of 525°C. Furthermore, when polycrystalline silicon and amorphous silicon are subjected to electron beam diffraction, the diffraction patterns become ring-shaped and halo-shaped, respectively.

本発明をポリサイド電極に適用した場合を第3図に示す
。ここで6は非晶質シリコン、7は非晶質シリコンが熱
処理に依って多結晶化した膜である。まずS(基板4上
に5iO1膜3(70A’)を形成する(第5図a)。
FIG. 3 shows a case where the present invention is applied to a polycide electrode. Here, 6 is amorphous silicon, and 7 is a film in which the amorphous silicon is made polycrystalline by heat treatment. First, a 5iO1 film 3 (70A') is formed on the S (FIG. 5a).

次に多結晶シリコン2(20001)を堆積し、該多結
晶シリコン2膜中に不純物(ボロン、リン等)を入れた
後、非晶質シリコン6(1000A)を堆積する(第3
図b)。その後Mo l (400A)を蒸着し、熱処
理(900℃、30分)を行なってMo S t 2膜
5 (800A)を形成する(第3図G)。 このとき
非晶質シリコン6が熱処理に依って多結晶化した模7中
に、Mo、1膜厚の約2倍のMo Si 2膜5が形成
される。また非晶質シリコンが熱処理に依って多結晶化
した膜7の粒界は1000A程度大きさであり、多結晶
シリコン2膜の粒界600Aよυ大きいことを特徴とす
る。この工程によれば、MoSi2膜5の膜応力にあわ
せて、多結晶シリコンと非晶質シリコンの膜厚比を選ぶ
ことによってウエノ・−のそシの生じない応力フリーの
ポリサイド構造が容易に得られる。なお第5図では熱処
理条件900℃、30分、シリサイド膜Mo5L*膜の
場合の例を示したが、応力の値は熱処理条件及びシリサ
イド層の種類に依存するため、膜応力を減少させるだめ
の最適の膜厚比は、プロセスで用いる熱処理条件、シリ
サイド層の膜応力に応じて決定すればよい。なお、上記
実施例においては、多結晶シリコン上に非晶質シリコン
を形成した場合について説明したが、逆に、非晶質シリ
コン上に多結晶シリコンを形成した場合であっても良い
。また、2層でなくとも、応力フリーの条件を満たすよ
うになされた、より多層構造であっても良いことは言う
までもない。
Next, polycrystalline silicon 2 (20001) is deposited, and after doping impurities (boron, phosphorus, etc.) into the polycrystalline silicon 2 film, amorphous silicon 6 (1000A) is deposited (third
Figure b). Thereafter, Mo 1 (400 A) is deposited and heat treated (900° C., 30 minutes) to form a Mo S t 2 film 5 (800 A) (FIG. 3G). At this time, a MoSi2 film 5 having a thickness approximately twice as thick as one Mo film is formed in the pattern 7 in which the amorphous silicon 6 is polycrystalized by heat treatment. Further, the grain boundaries of the film 7 in which amorphous silicon is made polycrystalline by heat treatment are about 1000A, which is characterized by being larger than the grain boundaries 600A of the polycrystalline silicon 2 film. According to this process, by selecting the film thickness ratio of polycrystalline silicon and amorphous silicon in accordance with the film stress of the MoSi2 film 5, a stress-free polycide structure that does not cause wafer warping can be easily obtained. It will be done. Note that Fig. 5 shows an example of a silicide film Mo5L* film under heat treatment conditions of 900°C for 30 minutes, but since the stress value depends on the heat treatment conditions and the type of silicide layer, there are no measures to reduce the film stress. The optimum film thickness ratio may be determined depending on the heat treatment conditions used in the process and the film stress of the silicide layer. In the above embodiments, a case has been described in which amorphous silicon is formed on polycrystalline silicon, but conversely, a case in which polycrystalline silicon is formed on amorphous silicon may be used. Moreover, it goes without saying that the structure does not have to be two layers, but may be a multilayer structure that satisfies stress-free conditions.

発明の効果 実施例で示したように多結晶シリコン及び非晶質シリコ
ンをS<基板上に堆積し、熱処理を行なった場合ウェハ
ーのそりが小さくなり、ゲート酸化膜の膜応力を減少さ
せることが出来る。このためポリサイドゲート電極プロ
セスにおけるシリサイド嘆厚増加が可能であυ、低抵抗
のポリシリコンゲート電極が得られると共に、膜応力の
小さな状態でゲート酸化膜が薄嘆化できるため、ゲート
酸化19の信頼性が向上するという利点がある。
Effects of the Invention As shown in the examples, when polycrystalline silicon and amorphous silicon are deposited on a S<substrate and heat treated, the warpage of the wafer becomes smaller and the film stress of the gate oxide film can be reduced. I can do it. For this reason, it is possible to increase the silicide thickness in the polycide gate electrode process υ, resulting in a low-resistance polysilicon gate electrode, and the gate oxide film can be thinned with low film stress. This has the advantage of improved reliability.

【図面の簡単な説明】[Brief explanation of drawings]

狛1図は従来の合金反応法によるポリサイド電極形成法
である。 第2図は非晶質シリコン/多結晶シリコンの膜厚比を変
化させたことに伴うゲート酸化膜に加わる膜応力の変化
を示す。 第3図は本発明の手法で形成したポリサイド電極を示す
。 図において、 1・・・V(12・・・多結晶シリコン 6・・・5i
02膜4・・・Si基板  5・・・AloSs2  
6・・・非晶質シリコン7・・・非晶質シリコンが熱処
理に依って多結晶化し代理人 弁理士 玉蟲久五部 (
外2名)+1111     イオン注入 合金反応法(:よるポリサイドプロセス第1図 非晶1シリコン/多結晶シリコン構造における膿応力第
2図
Figure 1 shows a polycide electrode formation method using a conventional alloy reaction method. FIG. 2 shows changes in film stress applied to the gate oxide film as a result of changing the film thickness ratio of amorphous silicon/polycrystalline silicon. FIG. 3 shows a polycide electrode formed by the method of the present invention. In the figure, 1...V (12...polycrystalline silicon 6...5i
02 film 4...Si substrate 5...AloSs2
6... Amorphous silicon 7... Amorphous silicon becomes polycrystalline due to heat treatment and agent Patent attorney Gobe Tamamushi (
+1111 Ion implantation alloy reaction method

Claims (2)

【特許請求の範囲】[Claims] (1)第1の多結晶シリコン膜と、非晶質シリコンを熱
処理して生成される上記多結晶シリコンよりも粒径(粒
界)の大きな第2の多結晶膜を順不同で、少なくとも2
層で構成される多結晶複合膜と、この上に形成された金
属シリサイドからなるポリサイド構造を有することを特
徴とする半導体装置。
(1) A first polycrystalline silicon film and a second polycrystalline film having a larger grain size (grain boundary) than the polycrystalline silicon produced by heat-treating amorphous silicon in random order, at least two
A semiconductor device characterized by having a polycide structure consisting of a polycrystalline composite film composed of layers and a metal silicide formed on the polycrystalline composite film.
(2)多結晶シリコン上に非晶質シリコンを形成する工
程、あるいは非晶質シリコン上に多結晶シリコンを形成
することにより得た2層構造の上に金属膜を形成し、熱
処理を加える工程を含むことを特徴とした半導体装置製
造方法。
(2) A process of forming amorphous silicon on polycrystalline silicon, or a process of forming a metal film on a two-layer structure obtained by forming polycrystalline silicon on amorphous silicon, and applying heat treatment. A semiconductor device manufacturing method characterized by comprising:
JP8334787A 1987-04-03 1987-04-03 Semiconductor device and its manufacture Pending JPS63260052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8334787A JPS63260052A (en) 1987-04-03 1987-04-03 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8334787A JPS63260052A (en) 1987-04-03 1987-04-03 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS63260052A true JPS63260052A (en) 1988-10-27

Family

ID=13799906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8334787A Pending JPS63260052A (en) 1987-04-03 1987-04-03 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS63260052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444302A (en) * 1992-12-25 1995-08-22 Hitachi, Ltd. Semiconductor device including multi-layer conductive thin film of polycrystalline material
US5554566A (en) * 1994-09-06 1996-09-10 United Microelectronics Corporation Method to eliminate polycide peeling
WO2024024166A1 (en) * 2022-07-26 2024-02-01 株式会社Kokusai Electric Substrate processing method, method for producing semiconductor device, substrate processing apparatus, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178642A (en) * 1984-02-24 1985-09-12 Fujitsu Ltd Manufacture of semiconductor device
JPS6265418A (en) * 1985-09-18 1987-03-24 Fujitsu Ltd Formation of high melting point metal silicide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178642A (en) * 1984-02-24 1985-09-12 Fujitsu Ltd Manufacture of semiconductor device
JPS6265418A (en) * 1985-09-18 1987-03-24 Fujitsu Ltd Formation of high melting point metal silicide film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444302A (en) * 1992-12-25 1995-08-22 Hitachi, Ltd. Semiconductor device including multi-layer conductive thin film of polycrystalline material
US6346731B1 (en) * 1992-12-25 2002-02-12 Hitachi, Ltd. Semiconductor apparatus having conductive thin films
US5554566A (en) * 1994-09-06 1996-09-10 United Microelectronics Corporation Method to eliminate polycide peeling
WO2024024166A1 (en) * 2022-07-26 2024-02-01 株式会社Kokusai Electric Substrate processing method, method for producing semiconductor device, substrate processing apparatus, and program

Similar Documents

Publication Publication Date Title
JPS6089953A (en) Manufacture of layered semiconductor device
JPS63260052A (en) Semiconductor device and its manufacture
JPS59155121A (en) Manufacture of semiconductor thin film
JP2830705B2 (en) Method for manufacturing semiconductor device
JPH05136048A (en) Manufacture of semiconductor device
JPH04320029A (en) Manufacture of semiconductor device
KR100264029B1 (en) Method of fabricating semiconductor device having titanium silicide film
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPH0621390A (en) Manufacture of semiconductor device
JP2538664B2 (en) Method for manufacturing semiconductor device
JP3357456B2 (en) Method of manufacturing semiconductor integrated circuit device and semiconductor integrated circuit device
JPS63114144A (en) Manufacture of semiconductor device
JPH08274099A (en) Wiring forming method
KR100353528B1 (en) method of forming gate electrode of semiconductor device
JPH04332120A (en) Manufacture of semiconductor crystal layer
JPH07221112A (en) Manufacture of semiconductor wafer
JPH04326576A (en) Manufacture of semiconductor device
JPS5893344A (en) Semiconductor device and its manufacture
JPS59114841A (en) Manufacture of semiconductor device
RU2170474C2 (en) Method for producing resistors in integrated circuits
JPH0797556B2 (en) Method for manufacturing SOI substrate
JPH0666312B2 (en) Method for manufacturing semiconductor device
JPS6038876A (en) Manufacture of semiconductor device
KR980012099A (en) Manufacturing Method of Semiconductor Device
JPS6177343A (en) Manufacture of semiconductor device