JPH07198582A - Water permeation tester and method of inspecting water channel - Google Patents

Water permeation tester and method of inspecting water channel

Info

Publication number
JPH07198582A
JPH07198582A JP35206493A JP35206493A JPH07198582A JP H07198582 A JPH07198582 A JP H07198582A JP 35206493 A JP35206493 A JP 35206493A JP 35206493 A JP35206493 A JP 35206493A JP H07198582 A JPH07198582 A JP H07198582A
Authority
JP
Japan
Prior art keywords
water
pressure
sample
compartment
compartments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35206493A
Other languages
Japanese (ja)
Other versions
JP3350197B2 (en
Inventor
Michito Orimo
道人 下茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP35206493A priority Critical patent/JP3350197B2/en
Publication of JPH07198582A publication Critical patent/JPH07198582A/en
Application granted granted Critical
Publication of JP3350197B2 publication Critical patent/JP3350197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To determine the distribution of water permeation coefficients and anisotropy inside material attributed to heterogeneity and discontinuity by using one sample. CONSTITUTION:A water stop is engaged with the surface of a sample to divide the surface into a plurality of zones. A pressurizing plate presses the water stop. A plurality of pipe-lines 5 pierce the pressurizing plate. A test body S is housed into a pressure vessel 8 and is pressurized. The pipeline 5 corresponding to the zone serving as water injection plane is connected to a storage tank 14. The storage tank 14 is connected to a water tank 20 through a piping 15 and a booster pump 16 for injecting water. A manometer 19 and a flowmeter 21 are interposed in the course of the piping 15. The pipeline 5 corresponding to the zone serving as draining plane is connected to a water level meter 18. A manometer 27 is mounted on the remaining pipelines 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土,岩石,コンクリー
ト等の自然材料または人工材料の透水係数の異方性や材
料内部の透水係数の分布を決定するための透水試験装
置、及びその透水試験装置を使用した水みち探査方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water permeability test apparatus for determining the anisotropy of water permeability of natural materials or artificial materials such as soil, rock and concrete, and the distribution of water permeability inside the material, and the water permeability thereof. The present invention relates to a waterway exploration method using a test device.

【0002】[0002]

【従来の技術】廃棄物処分場や地中構造物の建設におい
ては、建設に起因する環境への影響予測、施工時の地盤
の安定確保、または湧水処理等を適切に行う必要があ
る。このためには、建設地点の地下水の水みちの現況を
的確に把握すると共に将来の変化を予測することが必要
となる。
2. Description of the Related Art In constructing a waste disposal site or an underground structure, it is necessary to appropriately predict the environmental impact caused by the construction, ensure the stability of the ground at the time of construction, or treat the spring water. For this purpose, it is necessary to accurately grasp the current state of groundwater at the construction site and to predict future changes.

【0003】このため、従来にあっては、採取した試料
を円柱状に成形し、その成形した試料の透水係数を定水
位透水試験や変水位透水試験によって測定している。こ
の試験方法は、試料を均一な物質で構成されていると仮
定して、例えば、図・に示すような装置によって実施さ
れる。上記定水位透水試験装置は、例えば図11に示す
ような構成でなりたっていて、上記成形した試料50を
同軸に取り付ける円筒状の容器51の上面に、水タンク
52が配管53を介して接続している。さらに、該容器
51の下面に配管54を介して水位計55が接続されて
構成されている。なお、図11中、55aはメスシリン
ダである。
For this reason, conventionally, the collected sample is formed into a cylindrical shape, and the hydraulic conductivity of the formed sample is measured by a constant water level water permeability test or a variable water level water permeability test. This test method is performed, for example, by an apparatus as shown in the figure, assuming that the sample is composed of a uniform substance. The above-mentioned constant water level water permeability test apparatus has a structure as shown in FIG. 11, for example, and a water tank 52 is connected via a pipe 53 to the upper surface of a cylindrical container 51 to which the above-mentioned molded sample 50 is coaxially mounted. ing. Further, a water level gauge 55 is connected to the lower surface of the container 51 via a pipe 54. In addition, in FIG. 11, 55a is a graduated cylinder.

【0004】また、変水位透水試験装置は、例えば図1
2に示すように、上記成形した試料60を同軸に取り付
ける円筒状の容器61の下面にスタンドパイプ62を配
管63を介して接続している。該容器61の上部61a
が水位計の役割を兼ねて構成されている。そして、円柱
状に成形された試料50,60の一端面側から所定の圧
力で水を注入した際のおける対向する他端からの排水量
(透水量)によって、上記試料50,60全体の透水係
数、更には試料50,60を採取した地盤やコンクリー
ト等の透水係数を推定するものである。
A water level permeability tester is shown in FIG.
As shown in FIG. 2, a stand pipe 62 is connected via a pipe 63 to the lower surface of a cylindrical container 61 to which the molded sample 60 is coaxially attached. Upper part 61a of the container 61
Is also configured as a water gauge. Then, the water permeability of the samples 50, 60 as a whole is determined by the amount of drainage (water permeability) from the other ends of the cylindrical samples 50, 60 when the water is injected at a predetermined pressure from the one end face side. Furthermore, the hydraulic conductivity of the ground or concrete from which the samples 50 and 60 are sampled is estimated.

【0005】[0005]

【発明が解決しようとする課題】地盤や構造物を構成す
る土、岩、コンクリート等の自然材料あるいは人工材料
は、一般に、粒径や材質の異なる物質より構成される。
そして、内部にしばしば亀裂を含む不均質な材料であ
る。このため、地下水の水みちの現況把握や将来予測に
おいては、不均質性や不連続性に起因する物質内部の透
水係数の分布や異方性を正しく評価することが重要とな
る。
Natural materials or artificial materials such as soil, rocks, concrete, etc., which compose the ground and structures, are generally composed of substances having different particle sizes and materials.
And it is a heterogeneous material that often contains cracks inside. For this reason, it is important to correctly evaluate the distribution and anisotropy of the hydraulic conductivity inside a substance due to inhomogeneity and discontinuity when grasping the current state and future prediction of groundwater channels.

【0006】しかしながら、上記従来のような透水試験
装置を使用した試験方法では、試料50,60における
対向する一組の注水面と排水面との間における透水量だ
けを測定するものであるので、試料50,60を均質材
料とみなした場合の透水係数の値が一つだけ得られるだ
けである。即ち、上記従来の透水試験では、不均質性や
不連続性に起因する物質内部の透水係数の分布を正しく
評価することが困難である。
However, in the above-mentioned conventional test method using the water permeation test device, only the amount of water permeation between a pair of water injection surface and drain surface facing each other in the samples 50 and 60 is measured. Only one value of hydraulic conductivity is obtained when the samples 50 and 60 are regarded as homogeneous materials. That is, in the above-mentioned conventional water permeability test, it is difficult to correctly evaluate the distribution of the water permeability coefficient inside the substance due to the heterogeneity or discontinuity.

【0007】また、上記透水試験では、一つの試料5
0,60に対して試験する透水方向が一方向のみに限定
されている。このため、不均質性や不連続性に起因する
物質内部の透水係数の異方性や水みちを定めるために
は、コアボーリング等によって異なる方向に複数回,削
孔して採取された、複数種類の試料50,60に対して
それぞれ同様な試験を繰り返す必要があり、一個の試料
50,60だけから透水係数の異方性や水みちを定める
ことができない。
In the water permeability test, one sample 5 was used.
The permeability direction tested for 0,60 is limited to one direction only. For this reason, in order to determine the anisotropy of water permeability and the water flow inside a substance due to inhomogeneity and discontinuity, multiple holes were taken in different directions due to core boring, etc. It is necessary to repeat the same test for each of the types of samples 50 and 60, and it is not possible to determine the anisotropy of permeability and the water flow from only one sample 50 and 60.

【0008】一方、最近においては、亀裂性岩盤につい
ては、開口した亀裂が主たる水みち経路となるという観
点に立って、岩盤を多数の透水面の集合体としてモデル
化し、有限要素法などの数値解析手法を用いて地下水の
水みちを解析する手法が提案されている。そして、同手
法による測定データに基づく検証が、岩盤力学の研究分
野における重要な研究トピックの一つとなっている。
On the other hand, recently, regarding cracked rock mass, from the viewpoint that an open crack becomes a main water channel, the rock mass is modeled as an aggregate of many permeable surfaces, and numerical values such as the finite element method are used. A method of analyzing groundwater flow using an analysis method has been proposed. And verification based on the measurement data by this method is one of the important research topics in the field of rock mechanics research.

【0009】このモデル化および解析手法の妥当性を検
証するためには、実際に亀裂を有する岩盤について複数
方向からの透水試験を行い、亀裂の分布と、流量や圧力
の分布との関連を定量的に明らかにする必要がある。し
かし、上記記載した従来のような、一組の対向する注水
面と排水面との間の透水量だけしか測定不能な透水試験
装置及びその装置を使用した試験では、一つの試料5
0,60から該試料50,60表面の圧力分布や流量分
布を求めることが不可能である。
In order to verify the validity of this modeling and analysis method, a water permeability test from a plurality of directions is carried out on a rock mass having an actual crack, and the relationship between the distribution of the crack and the distribution of flow rate and pressure is quantified. Need to clarify. However, in the above-described conventional water permeability test apparatus that can measure only the amount of water permeation between a pair of opposed water injection surface and drainage surface and the test using the apparatus, one sample 5
It is impossible to obtain the pressure distribution and the flow rate distribution on the surfaces of the samples 50 and 60 from 0 and 60.

【0010】本発明は、上記のような問題点に着目して
なされたもので、一つの試料体を用いて、不均質性や不
連続性に起因する物質内部の透水係数の分布や異方性を
求めることを目的としている。
The present invention has been made by paying attention to the problems as described above, and using one sample body, the distribution and anisotropy of the hydraulic conductivity inside the substance caused by the inhomogeneity and discontinuity. The purpose is to seek sex.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の透水試験装置は、試料の注水面から排水面
への通水によって透水係数等を求める透水試験装置にお
いて、試験する試料の全表面に密着して、その表面を複
数の区画に仕切ると共に該試料を密封する仕切り手段
と、上記複数の区画の一部に着脱可能に接続されてその
各区画に対して流体を所定の圧力で制御しながら注入可
能な注入手段と、上記複数の区画の一部に着脱可能に接
続されてその区画から所定の圧力で制御しながら流体を
排出可能な排出手段と、少なくとも上記注入手段または
排出手段の一方が接続された区画に着脱可能に接続され
て該区画の流量を測定する流量測定手段と、上記注入手
段や排出手段が接続された区画に着脱可能に接続されて
該区画の圧力を測定する圧力測定手段と、を備えたこと
を特徴としている。
In order to achieve the above object, the water permeability test apparatus of the present invention is a sample to be tested in a water permeability test apparatus for obtaining a water permeability coefficient and the like by water flow from a water injection surface of a sample to a drainage surface. A partition means that is in close contact with the entire surface of the container, partitions the surface into a plurality of compartments, and seals the sample; and a part of the plurality of compartments that is detachably connected to provide a predetermined fluid to each compartment. Injecting means capable of injecting while being controlled by pressure, discharging means detachably connected to a part of the plurality of compartments and capable of discharging a fluid from the compartments while being controlled at a predetermined pressure, and at least the injecting means or A flow rate measuring means that is detachably connected to the compartment to which one of the discharge means is connected to measure the flow rate of the compartment, and a pressure of the compartment that is detachably connected to the compartment to which the injection means and the discharge means are connected. Measure It is characterized with a pressure measuring means, further comprising a that.

【0012】または、試料の注水面から排水面への通水
によって透水係数等を求める透水試験装置において、試
験する試料の全表面に密着して、その表面を複数の区画
に仕切ると共に該試料を密封する仕切り手段と、上記複
数の区画の一部に着脱可能に接続されてその各区画に対
して流体を所定の流量で制御しながら注入可能な注入手
段と、上記複数の区画の一部に着脱可能に接続されてそ
の区画から所定の圧力で制御しながら流体を排出可能な
排出手段と、少なくとも上記注入手段または排出手段の
一方が接続された区画に着脱可能に接続されて該区画の
流量を測定する流量測定手段と、上記注入手段や排出手
段が接続された区画に着脱可能に接続されて該区画の圧
力を測定する圧力測定手段と、を備えたことを特徴とし
ている。
Alternatively, in a water permeation test apparatus for obtaining a water permeability coefficient or the like by passing water from a water injection surface to a drainage surface of a sample, the sample is intimately adhered to the entire surface of the sample to be tested and the surface is partitioned into a plurality of compartments. Partitioning means for sealing, injecting means detachably connected to a part of the plurality of compartments and capable of injecting a fluid to each of the compartments while controlling the fluid at a predetermined flow rate, and a part of the plurality of compartments. A discharge means that is detachably connected and is capable of discharging a fluid from the compartment while controlling it at a predetermined pressure, and a flow rate of the compartment that is detachably connected to the compartment to which at least one of the injection means and the discharge means is connected. And a pressure measuring means that is detachably connected to the compartment to which the injection means and the discharge means are connected to measure the pressure in the compartment.

【0013】このとき、上記注入手段及び排出手段が接
続されなかった区画の少なくとも一部へ着脱可能に接続
されて、その区画の圧力を測定する圧力測定手段を備え
るとよい。また、上記仕切り手段を、試料表面全面に係
合し該表面に沿って縦横に開口して該表面を複数の区画
に仕切る仕切り部材と、その仕切り部材の外面全面に当
接する加圧部材と、上記仕切り部材及び加圧部材を装着
した試料を所定以上の間隙をもって収納可能な加圧容器
と、その加圧容器内を加圧して上記仕切り板を加圧部材
を介して試料表面に圧着させる加圧手段と、から構成す
るとよい。
At this time, it is preferable to include a pressure measuring means which is detachably connected to at least a part of the compartment to which the injection means and the discharge means are not connected and which measures the pressure of the compartment. In addition, the partition means, a partition member that engages with the entire surface of the sample and opens vertically and horizontally along the surface to partition the surface into a plurality of partitions, and a pressing member that abuts the entire outer surface of the partition member, A pressure vessel capable of accommodating the sample with the partition member and the pressure member mounted therein with a predetermined gap or more, and pressurizing the pressure vessel to press the partition plate onto the sample surface through the pressure member. And a pressure means.

【0014】また、上記加圧部材を貫通する複数の管路
を設け、各管路の内端開口部を各区画に対向させると共
に、各管路を加圧容器の外まで延ばし、その管路に注入
手段,排出手段,圧力測定手段,流量測定手段,若しく
はその管路を閉塞する閉塞手段を着脱可能に接続すると
よい。また、注入する流体として食塩水等のトレーサを
含有している流体を使用すると共に、上記排出手段の接
続された区画に接続される電気伝導度計を備えるとよ
い。
Further, a plurality of conduits penetrating the pressing member are provided, the inner end opening of each conduit is opposed to each section, and each conduit is extended to the outside of the pressurizing container. It is advisable to removably connect the injection means, the discharge means, the pressure measurement means, the flow rate measurement means, or the closing means for closing the pipe line. Further, it is preferable to use a fluid containing a tracer such as saline as an injecting fluid, and to provide an electric conductivity meter connected to the compartment to which the discharging means is connected.

【0015】また、試料に観測穴を削孔し、該観測穴に
も圧力測定手段を接続するとよい。また、水みち探査方
法は、上記のような透水試験装置を用いて、注水・排水
箇所または通水方向を適宜,変更して実施した一連の透
水試験を行い、その結果得られた流量値または圧力測定
結果をもとに、理論解または数値解析結果を補正するこ
とにより、試料の異方透水係数または試料内部の透水係
数の分布を推定することを特徴としている。
Further, it is preferable that an observation hole is bored in the sample and a pressure measuring means is connected to the observation hole. In addition, the waterway exploration method uses a water permeability tester as described above, and conducts a series of water permeability tests performed by appropriately changing the water injection / drainage points or the water flow direction. It is characterized in that the distribution of the anisotropic hydraulic conductivity of the sample or the hydraulic conductivity inside the sample is estimated by correcting the theoretical solution or the numerical analysis result based on the pressure measurement result.

【0016】[0016]

【作用】本願発明の透水試験装置では、注入手段と接続
されている区画から流体が所定圧力または所定流量に制
御された状態で注入され、該流体は、排出手段が接続さ
れている区画から排出される。即ち、注水手段と接続さ
れる区画が試料の注水面となり、かつ、排出手段と接続
される区画が排出面となる。
In the water permeability test apparatus of the present invention, the fluid is injected from the compartment connected to the injection means under the condition that the pressure is controlled to the predetermined pressure or the predetermined flow rate, and the fluid is discharged from the compartment connected to the discharge means. To be done. That is, the section connected to the water injection means becomes the water injection surface of the sample, and the section connected to the discharge means becomes the discharge surface.

【0017】このとき、上記各区画に接続されている流
量測定手段や圧力測定手段によって注入される流量や圧
力及び排出される流量や圧力が測定されて、試料の透水
係数が求められる。上記試料の全面は、仕切り手段によ
って密封状態となっているので、上記注入手段及び排出
手段と接続していない区画部分は密封状態、即ち、不透
水面の状態となる。
At this time, the flow rate and pressure to be injected and the flow rate and pressure to be discharged are measured by the flow rate measuring means and the pressure measuring means connected to each of the above-mentioned sections, and the water permeability of the sample is obtained. Since the entire surface of the sample is sealed by the partition means, the partition portion not connected to the injection means and the discharge means is in a sealed state, that is, a water impermeable surface.

【0018】上記注入手段,排水手段,及び流量測定手
段は、各区画に着脱可能に接続されいる。このため、上
記注入手段,排水手段,及び流量測定手段と接続する区
画を適当に変更することで、同一試料に対して、複数の
透水方向についての透水試験が実施可能となったり、同
一透水方向であっても、別の区画間の透水試験が可能と
なる。
The injection means, drainage means, and flow rate measurement means are detachably connected to each section. Therefore, by appropriately changing the sections connected to the injection means, the drainage means, and the flow rate measurement means, it becomes possible to carry out a permeability test for a plurality of water permeation directions on the same sample, or the same water permeation direction. Even so, it is possible to conduct a water permeability test between different compartments.

【0019】請求項1に記載されている透水試験装置で
は、注入側・排出側に付与される圧力、並びに注入側・
排出側の少なくとも一方で測定された流量測定から透水
係数を求める。また、請求項2に記載されている透水試
験装置では、注入側に付与される流量、排出側に付与さ
れる圧力、並びに注入側で測定された圧力測定から透水
係数を求める。
In the water permeability test apparatus according to claim 1, the pressure applied to the injection side and the discharge side, and the injection side and the discharge side.
Permeability is determined from flow measurements taken on at least one of the discharge sides. Further, in the water permeability test apparatus according to the second aspect, the water permeability coefficient is obtained from the flow rate applied to the injection side, the pressure applied to the discharge side, and the pressure measurement measured on the injection side.

【0020】また、請求項3に記載されている透水試験
装置では、上記不透水面とした区画にも圧力測定手段を
着脱可能に接続したもので、注水面から排出面への通水
の際の各不透水面となる区画に負荷される圧力を測定可
能にする。また、試料に取り付けられる仕切り手段は、
例えば、請求項4に記載されている構成にするとよい。
Further, in the water permeation test apparatus according to the third aspect, the pressure measuring means is detachably connected to the section having the water impermeable surface, so that water is passed from the water injection surface to the discharge surface. It is possible to measure the pressure applied to each impermeable section of the. Also, the partitioning means attached to the sample is
For example, the configuration described in claim 4 may be adopted.

【0021】これは、試料表面に仕切り部材を係合させ
ることで、該仕切り部材に開口している開口部分に対応
する部分に、試料表面が区画される。さらに、該仕切り
部材に加圧部材を取り付けて、加圧手段による圧力を該
加圧部材に付与することで、加圧部材が試料の中心に向
けて均等に押圧状態なる。これによって、仕切り部材が
試料表面に密着された状態となると共に、加圧部材によ
って試料が密封された状態となる。
By engaging the partition member with the sample surface, the sample surface is partitioned into a portion corresponding to the opening portion opened in the partition member. Furthermore, by attaching a pressure member to the partition member and applying pressure by the pressure means to the pressure member, the pressure member is uniformly pressed toward the center of the sample. As a result, the partition member is brought into close contact with the sample surface, and the sample is sealed by the pressing member.

【0022】従って、試料は仕切り手段を構成する加圧
容器内に収納されて密封状態となる。このとき、請求項
5に記載されているように複数の管路を設けることで、
密封状態となっている試料の表面の各区画は、対応する
管路を介して外部と連通可能状態となる。
Therefore, the sample is housed in the pressure vessel which constitutes the partition means and is in a hermetically sealed state. At this time, by providing a plurality of pipelines as described in claim 5,
Each section on the surface of the sample in the sealed state can be communicated with the outside through the corresponding conduit.

【0023】従って、各注入手段,排出手段,圧力測定
手段,流量測定手段を外部に延びた管路に接続すること
で、簡単に、所望の区画に対する流体の注入・排出、及
び、その注入する流体や排出する流体の圧力や流量を測
定可能となる。このとき、不透水面となる区画に対応す
る管路には開閉弁等のバルブを取り付けて閉止したり、
圧力測定手段を取り付けて、該区画に付与される圧力を
測定する。
Therefore, by connecting the injection means, the discharge means, the pressure measuring means, and the flow rate measuring means to the pipe line extending to the outside, the injection and discharge of the fluid to and from the desired compartment can be easily performed. It is possible to measure the pressure and flow rate of the fluid and the fluid to be discharged. At this time, a valve such as an on-off valve is attached to the pipe line corresponding to the section that becomes the impermeable surface to close it,
A pressure measuring means is attached to measure the pressure applied to the compartment.

【0024】また、請求項6に記載されているように、
流体として食塩水等のトレーサを含有いた流体を使用し
てもよい。この場合には、排水側の電気伝導度を測定す
ることで試料内の有効空隙率及び分散係数を求める。ま
た、請求項7に記載されているように、試料内に圧力測
定手段を設けて、水みちの途中の圧力も測定する。
Further, as described in claim 6,
A fluid containing a tracer such as saline may be used as the fluid. In this case, the effective porosity and dispersion coefficient in the sample are obtained by measuring the electric conductivity on the drainage side. Further, as described in claim 7, a pressure measuring means is provided in the sample to measure the pressure in the middle of the water.

【0025】そして、請求項8に記載されているよう
に、上記構成の透水試験を使用して、同一試料に対する
複数方向の通水方向や注水・排水箇所を変更して実施し
た際の流量値や圧力値をもとに、理論値や数値解析結果
を補正して、試料における実際の透水係数の異方性や、
試料内部の透水係数の分布を推定する。これによって、
試料の全方向での水みちや透水係数が求められる。
[0025] Then, as described in claim 8, the flow rate value when the water permeability test of the above-mentioned configuration is used and the water flow direction and the water injection / drainage points of the same sample are changed The anisotropy of the actual hydraulic conductivity of the sample,
Estimate the distribution of hydraulic conductivity inside the sample. by this,
Water flow and permeability in all directions of the sample can be obtained.

【0026】[0026]

【実施例】本発明の実施例を図面に基づいて説明する。
まず構成について説明すると、図2から図4に示すよう
に、試料1の表面に仕切り部材を構成する各止水板2が
それぞれ被着し、さらにその外周側に加圧部材を構成す
る各加圧板3が取り付けられて、試験体Sが形成されて
いる。
Embodiments of the present invention will be described with reference to the drawings.
First, the structure will be described. As shown in FIGS. 2 to 4, each water stop plate 2 constituting a partition member is attached to the surface of the sample 1, and further each press member constituting a pressure member is provided on the outer peripheral side thereof. The pressure plate 3 is attached and the test body S is formed.

【0027】上記試料1は、所定の調査したい岩盤をブ
ロックサンプリング等によって削孔して採取されたもの
で、その採取した試料1を正多面体の一つである立方体
に成形したものである。その試料1の六つの表面に対し
て、それぞれ止水板2の一方の面が当接して係合してい
る。その各止水板2は、該試料1との密着性を良くする
ためにシリコンゴム等の可撓性部材から構成され、外枠
が正方形の平板からなる。その各止水板2の表面は、格
子状に複数個の開口部2aが開設されている。そして、
その止水板2を試料1表面に被着することで、該試料1
表面が、その左右上下方向へ均等に開口された上記複数
の開口部2aによって、複数個の区画4に仕切られるこ
ととなる。
The sample 1 is obtained by drilling a predetermined rock mass to be investigated by block sampling or the like, and the sample 1 is formed into a cube which is one of regular polyhedrons. One surface of the water blocking plate 2 is in contact with and engaged with the six surfaces of the sample 1. Each of the water blocking plates 2 is made of a flexible member such as silicon rubber in order to improve the adhesion to the sample 1, and the outer frame is made of a square flat plate. The surface of each water stop plate 2 is provided with a plurality of openings 2a in a grid pattern. And
By attaching the water blocking plate 2 to the surface of the sample 1, the sample 1
The surface is partitioned into a plurality of compartments 4 by the plurality of openings 2a that are evenly opened in the left-right and up-down directions.

【0028】また、その各止水板2の外面に当接して係
合する各加圧板3は、鋼板やアクリル板等の所定の剛性
を備えた正方形の平板からそれぞれ構成される。その加
圧板3には、複数の管路5が上下左右方向へ均等に配列
されて該加圧板3をそれぞれ貫通している。その加圧板
3を貫通する各管路5の止水板2側の開口端部(先端)
は、該止水板2に形成された各開口部2a内、即ち区画
4された各試料1表面に面している。これによって、各
管路5は、それぞれ各区画4と一対一に対応づけられる
こととなる。
Each pressure plate 3 that abuts and engages with the outer surface of each water stop plate 2 is formed of a square flat plate having a predetermined rigidity such as a steel plate or an acrylic plate. In the pressure plate 3, a plurality of conduits 5 are evenly arranged in the vertical and horizontal directions and penetrate the pressure plate 3, respectively. Opening end (tip) of each pipeline 5 penetrating the pressure plate 3 on the side of the water stop plate 2
Faces the inside of each opening 2a formed in the water stop plate 2, that is, the surface of each sample 1 in the section 4. As a result, each pipeline 5 is associated with each partition 4 in a one-to-one correspondence.

【0029】その試験体Sの外面の6面を形成する各加
圧板3の相隣合う辺及び角部分の間隙には、それぞれシ
リコン系接着剤等のシール部材7が充填されて、その間
隙位置から試料1に向かう水の侵入を遮断して、加圧板
3による試料1の密封性を確実なものとしている。そし
て、上記のようにして構成された試験体Sが余裕をもっ
て加圧容器8内に収納されている。その加圧容器8内に
は、配管9の一端部が接続されている。その配管9の他
端は、加圧容器用ブースタポンプ10を介して水タンク
11に接続されている。
Sealing members 7 such as silicone adhesive are filled in the gaps between the adjacent sides and corners of the pressure plates 3 forming the six outer surfaces of the test body S, and the gap positions are set. The invasion of water from the sample to the sample 1 is blocked to ensure the sealing property of the sample 1 by the pressure plate 3. The test body S configured as described above is accommodated in the pressure vessel 8 with a margin. Inside the pressure vessel 8, one end of a pipe 9 is connected. The other end of the pipe 9 is connected to a water tank 11 via a booster pump 10 for a pressure vessel.

【0030】その加圧容器用ブースタポンプ10には、
サーボ弁12を介して流体圧源である油圧源13に接続
されていて、該サーボ弁12の開度制御及び油圧源13
の駆動によって駆動可能となっている。また、上記加圧
板3に設けられた複数の管路5は、加圧容器8の壁部を
貫通して外部に延びている。その壁部の貫通穴には止水
パッキンが装着されて、その貫通穴からの水漏れを防止
している。
The booster pump 10 for the pressurized container includes
It is connected to a hydraulic pressure source 13, which is a fluid pressure source, via a servo valve 12, and controls the opening of the servo valve 12 and the hydraulic pressure source 13.
It can be driven by driving. Further, the plurality of conduits 5 provided on the pressure plate 3 extend through the wall portion of the pressure container 8 to the outside. A water blocking packing is attached to the through hole of the wall portion to prevent water leakage from the through hole.

【0031】また、上記管路5のうち、試料1表面の注
水面とする区画4に先端部が対向している管路5は、そ
れぞれストッパ機能付ワンタッチコネクタを介して貯留
タンク14に着脱可能に接続されている。その貯留タン
ク14には、配管15の一端部が接続されている。その
配管15は、注水用ブースタポンプ16を介して水タン
ク20に接続されている。その配管15の途中には圧力
測定手段を構成する圧力計19,及び流量測定手段を構
成する流量計21が介装されている。その圧力計19及
び流量計21は、それぞれ検出した圧力値及び流量値に
応じた信号を、アンプ22及びA/D変換器23を介し
てコンピュータ24に供給可能となっている。
Further, of the above-mentioned pipelines 5, the pipelines 5 whose tip portions are opposed to the compartment 4 serving as the water injection surface on the surface of the sample 1 can be attached to and detached from the storage tank 14 via the one-touch connector with a stopper function. It is connected to the. One end of a pipe 15 is connected to the storage tank 14. The pipe 15 is connected to a water tank 20 via a water injection booster pump 16. A pressure gauge 19 constituting a pressure measuring means and a flowmeter 21 constituting a flow measuring means are provided in the middle of the pipe 15. The pressure gauge 19 and the flow meter 21 can supply signals corresponding to the detected pressure value and flow rate value to the computer 24 via the amplifier 22 and the A / D converter 23, respectively.

【0032】上記注水用ブースタポンプ16には、サー
ボ弁17を介して上記油圧源13が接続されていて、該
サーボ弁17の開度制御及び油圧源13の駆動によって
駆動可能となっている。また、上記管路5のうち、試料
1表面の排水面とする区画4に先端部が対向している管
路5は、それぞれストッパ機能付ワンタッチコネクタを
介して流量測定手段を構成する各水位計18に接続され
ている。
The hydraulic power source 13 is connected to the water injection booster pump 16 via a servo valve 17, and can be driven by controlling the opening of the servo valve 17 and driving the hydraulic pressure source 13. Further, among the above-mentioned pipelines 5, the pipelines 5 whose tip end faces the section 4 serving as the drainage surface of the surface of the sample 1 are water level gauges constituting the flow rate measuring means via the one-touch connector with a stopper function. It is connected to 18.

【0033】各水位計18は、ともにレギュレータ25
を介してコンプレッサ26に接続されていて、該コンプ
レッサ26から各水位計18に同一の背圧が付与可能と
なっている。また、試料1の注水面又は排水面とする区
画4に先端部が対向していない、残りの管路5には、圧
力測定手段を構成する圧力計27が取り付けられてい
る。その圧力計27は、それぞれ検出した圧力値に応じ
た信号を、アンプ22及びA/D変換器23を介してコ
ンピュータ24に供給可能となっている。
Each water level gauge 18 has a regulator 25.
The compressor 26 is connected to the water level gauges 18 through the same so that the same back pressure can be applied to each water level gauge 18. Further, a pressure gauge 27 constituting a pressure measuring means is attached to the remaining pipe line 5 whose tip does not face the compartment 4 which is the water injection surface or the drainage surface of the sample 1. The pressure gauge 27 can supply a signal corresponding to each detected pressure value to the computer 24 via the amplifier 22 and the A / D converter 23.

【0034】また、コンピュータ24は、各圧力計19
や流量計21などから供給された、それぞれ注水面,排
水面,不透水面での圧力値や流量値をもとに、予め設定
した理論解や数値解析結果を補正して、試料1の透水性
の異方性や、試料1内部の透水係数の分布、即ち、全方
位での試料1内の水みちを推定する。以上のような構成
の透水試験装置を利用した透水試験について、次に説明
する。
Further, the computer 24 uses the pressure gauges 19
Based on the pressure value and flow rate value on the water injection surface, drainage surface, and water impermeable surface, which are supplied from the flowmeter 21 and the flowmeter 21, etc. The anisotropy of properties and the distribution of the hydraulic conductivity inside the sample 1, that is, the water flow inside the sample 1 in all directions is estimated. A water permeation test using the water permeation test apparatus having the above configuration will be described below.

【0035】まず、ブロックサンプリング等によって採
取した岩盤等の試料1を、公知の手段によって立方体形
状に成形する。次に、その成形した試料1の全面に対を
なす止水板2及び加圧板3を取り付ける。このとき、隣
合う加圧板3の辺部分及び角部分にシリコン系接着剤7
を充填して各加圧板3同士を連結すると共に該接続部
(間隙部)をシールする。
First, a sample 1 such as rock mass sampled by block sampling or the like is formed into a cubic shape by a known means. Next, the water blocking plate 2 and the pressure plate 3 forming a pair are attached to the entire surface of the molded sample 1. At this time, the silicone adhesive 7 is applied to the side and corner portions of the adjoining pressure plates 3.
To connect the pressure plates 3 to each other and seal the connection portion (gap portion).

【0036】次に、このようにして構成された試験体S
を、加圧容器8内に収納する。このとき、各加圧板3か
ら延びる各管路5を、加圧容器8に開設された所定の貫
通穴及び止水パッキングを介して、該加圧容器8の外に
取り出しておく。次に、これら管路5のうち、注水に供
する管路5を貯留タンク14に接続する。また、排水に
供する管路5を、それぞれ水位計18に接続する。さら
に、上記注水または排水に供しない管路5の外端部には
圧力計19を取り付け止水しておく。
Next, the test body S thus constructed
Are stored in the pressure vessel 8. At this time, the respective pipe lines 5 extending from the respective pressure plates 3 are taken out of the pressure container 8 through the predetermined through holes formed in the pressure container 8 and the waterproof packing. Next, of these pipelines 5, the pipeline 5 used for water injection is connected to the storage tank 14. In addition, the pipelines 5 used for drainage are connected to the water level gauge 18, respectively. Further, a pressure gauge 19 is attached to the outer end of the pipe 5 which is not used for water injection or drainage to stop water.

【0037】上記のように試験体Sの設置や配管15の
取付けなどが完了したら、油圧源13やサーボ弁12を
介して加圧容器用ブースタポンプ10を駆動して加圧容
器8内に水を送り込み、該加圧容器8内に水を充満す
る。さらに、該加圧容器用ブースタポンプ10を駆動し
続けて加圧容器8内に所定の水圧を付与する。上記付与
された水圧によって、各加圧板3はそれぞれ試料1の中
心方向に押圧される。同時に、加圧板3を介して各止水
板2は試料1の各表面に押し付けられ、該表面に圧着さ
れる。これによって、各試料1の表面は、止水板2に開
口された格子状の開口部2aによって複数の区画4に仕
切られ、各区画4が独立した注水面や排水面,及び不透
水面を構成する。即ち、試料1の各面もそれぞれ複数の
区画4に区切られて、通水方向ばかりでなく、一面中の
一部だけを注水面や排水面にすることも容易に設定可能
となる。
After the installation of the test body S and the installation of the pipe 15 are completed as described above, the booster pump 10 for the pressurized container is driven through the hydraulic pressure source 13 and the servo valve 12 to drive the water in the pressurized container 8 into water. And the pressure vessel 8 is filled with water. Further, the booster pump 10 for the pressurized container is continuously driven to apply a predetermined water pressure to the pressurized container 8. Each of the pressure plates 3 is pressed toward the center of the sample 1 by the applied water pressure. At the same time, each water blocking plate 2 is pressed against each surface of the sample 1 via the pressure plate 3 and pressure-bonded to the surface. As a result, the surface of each sample 1 is divided into a plurality of compartments 4 by the grid-shaped openings 2a opened in the water stop plate 2, and each compartment 4 has an independent water-filling surface, drainage surface, and impermeable surface. Constitute. That is, each surface of the sample 1 is also divided into a plurality of compartments 4, and it is possible to easily set not only the water flow direction but also a part of the one surface as a water injection surface or a drainage surface.

【0038】この状態で、コンプレッサ26を駆動する
ことで上記各区画4された複数の排水面に同一の所定背
圧を負荷すると共に、注水用ブースタポンプ16を駆動
することで所定の圧力となっている水が貯留タンク14
に供給され、該貯留タンク14から同一圧力の水が、上
記各区画4された複数の注水面にそれぞれ供給される。
In this state, the compressor 26 is driven to apply the same predetermined back pressure to the plurality of drainage surfaces in each of the compartments 4, and the water injection booster pump 16 is driven to reach a predetermined pressure. Water is stored in storage tank 14
Water having the same pressure is supplied from the storage tank 14 to the plurality of water injection surfaces in each of the sections 4.

【0039】すると、注水面側と排水面側との圧力差に
よって試料1内部を水が通水する。このような状況下に
おいて、注水側の配管15に設けられた流量計21や圧
力計19によって注水側の流量や水圧が測定されると同
時に、排出側に管路5に介装された水位計18によって
排出側の流量や水圧が測定される。さらに、通水中の不
透水面を構成する各区画4に作用したそれぞれの圧力が
測定される。
Then, water flows through the inside of the sample 1 due to the pressure difference between the water injection surface side and the drainage surface side. Under such circumstances, the flowmeter 21 and the pressure gauge 19 provided in the pipe 15 on the water injection side measure the flow rate and the water pressure on the water injection side, and at the same time, the water level gauge installed in the pipe 5 on the discharge side. The flow rate and water pressure on the discharge side are measured by 18. Furthermore, the respective pressures acting on the respective compartments 4 constituting the water impermeable surface are measured.

【0040】これによって、ある一方向に対する透水係
数や水みちの試験値が測定される。そのようにして検出
された各流量に応じた流量信号や圧力に応じた圧力信号
が、アンプ22及びA/D変換器を介してコンピュータ
24に供給される。なお、上記試料1は、加圧容器8へ
設置する前に予め飽和状態とする。さらに、加圧容器8
内に設置し配管15,管路5等の配設が終了した時点
で、管路5を介して真空ポンプで脱気したのち脱気水を
再注入することにより試料1内部の飽和状態の完璧性を
期する。
With this, the permeability and the test value of the water flow in one direction are measured. The flow rate signal corresponding to each flow rate thus detected and the pressure signal corresponding to the pressure are supplied to the computer 24 via the amplifier 22 and the A / D converter. The sample 1 is saturated before being placed in the pressure vessel 8. Furthermore, the pressure vessel 8
When the pipe 15 and the pipe line 5 are installed inside the pipe and the arrangement of the pipe line 5 and the like is completed, after degassing with a vacuum pump through the pipe line 5 and then reinjecting degassed water, the saturated state inside the sample 1 is perfect. Have sex.

【0041】上記操作によって一方向の情報の採取が終
了したら、注水面及び排水面となる試料1表面の区画4
を順次,変更しながら、同一試料1に対する各方向の上
記情報の採取を実施する。このとき、各区画4に対応し
て配置された各管路5は、加圧容器8の外に延び、ワン
タッチコネクタを介して着脱可能にそれぞれ貯留タンク
14や水位計18などに接続されている。従って、上記
注水面及び排水面となる区画4された試料1の表面部分
の変更は、加圧容器8の外に出ている管路5先端部を、
ワンタッチコネクタを介して簡単に貯留タンク14や水
位計18などと脱着することで実施される。
When the collection of the information in one direction is completed by the above operation, the section 4 on the surface of the sample 1 which serves as a water injection surface and a drainage surface.
While sequentially changing, the above information is collected in each direction for the same sample 1. At this time, the pipe lines 5 arranged corresponding to the compartments 4 extend to the outside of the pressure vessel 8 and are detachably connected to the storage tank 14 and the water level gauge 18 via a one-touch connector. . Therefore, the change of the surface portion of the sample 1 in the section 4 which is the water injection surface and the drainage surface is performed by changing the tip of the pipe line 5 protruding outside the pressurizing container 8,
It is implemented by simply attaching and detaching the storage tank 14 and the water level gauge 18 through the one-touch connector.

【0042】これらの試験によって得られた流量値及び
圧力値のデータによって、仮定した理論解または数値解
析結果を補正することで、試料1の透水係数の異方性及
び試料1内部の透水係数の分布が決定される。上記注水
面及び排水面の選択は、例えば,図5に示すような、対
向する3対の面を組とする。そして、一方の面を注水面
とし且つ対向する面を排水面として一回の透水試験を実
施する。これを、3方向に対して注水面と排水面とを入
れ換えて計6回,実施する。
By correcting the assumed theoretical solution or the numerical analysis result by the data of the flow rate value and the pressure value obtained by these tests, the anisotropy of the hydraulic conductivity of the sample 1 and the hydraulic conductivity of the inside of the sample 1 can be calculated. The distribution is determined. For the selection of the water injection surface and the drainage surface, for example, three pairs of opposing surfaces as shown in FIG. 5 are set. Then, one water permeation test is performed using one surface as a water injection surface and the opposite surface as a drainage surface. This is performed a total of 6 times by exchanging the water injection surface and the drainage surface in 3 directions.

【0043】または、図6に示すように、対角方向に注
水面及び排水面を設定して、4方向に対して注水面と排
水面とを入れ換え、計8回の透水試験を実施する。この
ようにして、複数の方向に対して実施した透水試験によ
る、透水量やその際の各区画4で検出された圧力値か
ら、各設定方向での透水係数の値が得られる。図7は、
このようにして得られた透水係数の異方性を示した一例
である。また、図8は、同様にして得られた試料1表面
での流量の分布状態の一例である。なお、図8中、直線
は試料1表面で観察された主要な亀裂を示している。
Alternatively, as shown in FIG. 6, a water injection surface and a water discharge surface are set in diagonal directions, and the water injection surface and the water discharge surface are exchanged in four directions, and a total of eight water permeability tests are carried out. In this way, the value of the water permeability coefficient in each set direction can be obtained from the amount of water permeation and the pressure value detected in each section 4 at that time by the water permeability test conducted in a plurality of directions. Figure 7
It is an example showing the anisotropy of the water permeability obtained in this way. In addition, FIG. 8 is an example of the distribution state of the flow rate on the surface of the sample 1 obtained in the same manner. In addition, in FIG. 8, a straight line indicates a main crack observed on the surface of the sample 1.

【0044】上記試料1内の透水係数の分布は、例え
ば、図9に示すような順解析と逆解析の反復計算手順に
より理論解や数値解析結果が補正されることにより決定
することができる。即ち、まず、試料1形状を立方体要
素(またはグリッド状の線要素)と各要素を結合する節
点に要素分割してモデル化し(ステップ1)、各要素に
想定される透水係数を割り当てる(ステップ2)。この
ようなモデルに試験条件を反映した流量の境界条件を設
定し(ステップ3)、モデルの各節点における圧力を計
算する(ステップ4)。ここまでが順解析である。
The distribution of the hydraulic conductivity in the sample 1 can be determined, for example, by correcting the theoretical solution or the numerical analysis result by the iterative calculation procedure of forward analysis and inverse analysis as shown in FIG. That is, first, the shape of the sample 1 is divided into a cubic element (or a grid-like line element) and a node that connects each element and modeled (step 1), and an assumed hydraulic conductivity is assigned to each element (step 2). ). Boundary conditions of the flow rate reflecting the test conditions are set in such a model (step 3), and the pressure at each node of the model is calculated (step 4). Up to this point is the forward analysis.

【0045】このようにして得られる計算圧力と計測圧
力を比較して、最小二乗法より両者の誤差を最小化する
ような透水係数を新たに求める(ステップ5)。次に、
許容残差以内でなければ(ステップ6)、再び、前回と
同様な境界条件で圧力の計算を行い、その結果と計測圧
力とを比較する(ステップ7)。これが逆解析である。
The calculated pressure thus obtained is compared with the measured pressure, and a permeability coefficient that minimizes the error between the two is newly obtained by the least square method (step 5). next,
If it is not within the allowable residual (step 6), the pressure is calculated again under the same boundary condition as the previous time, and the result is compared with the measured pressure (step 7). This is the reverse analysis.

【0046】以下、計算圧力と計測圧力との残差が許容
範囲内に収まるまで(ステップ6)、同様な計算を繰り
返す。最終的に、許容残差内に収まった結果から試料1
内の透水係数の分布を得る。図10は、このようにして
求めた透水係数の分布状態を示す一例である。ここで、
上記計算に用いる要素分割法や数値解析手法としては、
様々なモデルが考えられ得るが、どのような手法を採用
する場合であっても、境界条件が明らかであることと、
多数の箇所における圧力及び流量測定値が必要である。
本実施例は、これらに条件を満たしうる機能を有してし
ている。
Thereafter, similar calculation is repeated until the residual difference between the calculated pressure and the measured pressure falls within the allowable range (step 6). Finally, from the result of falling within the allowable residual, sample 1
Obtain the distribution of hydraulic conductivity in. FIG. 10 is an example showing the distribution of the hydraulic conductivity thus obtained. here,
As the element division method and numerical analysis method used in the above calculation,
Although various models can be considered, no matter what method is adopted, the boundary condition is clear, and
Pressure and flow measurements at multiple points are required.
The present embodiment has a function capable of satisfying these conditions.

【0047】なお、上記実施例では、試料1を立方体形
状に成形して透水試験を実施しているが、該試料1の成
形後の形状は立方体形状に限定されるものではなく、円
柱形状や21面体さらには球体など、他の対称構造を有
する公知の形状に成形して実施しても問題はない。この
とき、試料1表面に被着させる止水板2や加圧板3の形
状も、各成形した試料1表面に係合可能な形状や曲率に
設定しておく。
In the above embodiment, the water permeability test was carried out by molding the sample 1 into a cubic shape, but the shape of the sample 1 after molding is not limited to the cubic shape, and may be a cylindrical shape or a cylindrical shape. There is no problem even if it is formed into a known shape having another symmetrical structure such as a 21-faced body or a sphere, and then implemented. At this time, the shapes of the water blocking plate 2 and the pressure plate 3 adhered to the surface of the sample 1 are also set to shapes and curvatures that can be engaged with the surface of each molded sample 1.

【0048】また、上記実施例では、該止水板2と加圧
板3を別体として構成してそれぞれを順に取り付けてい
く構成であるが、該止水板2と加圧板3を一体的に成形
しておき、試料1への取り付け、即ち、試験体Sの設定
のための作業効率の向上を図ってもよい。また、上記実
施例では、注入側に水を注入しているが、水の代わりに
塩水等のトレーサを含有した流体を注入すると共に排水
面側の管路5に電気伝導度計を介装してもよい。この場
合には、排水側に排出された流体の電気伝導率を計測す
ることで排出側の濃度変化を検出して、試料1内の有効
空隙率及び分散係数を求める。
Further, in the above embodiment, the water stop plate 2 and the pressure plate 3 are formed as separate bodies and are attached in order, but the water stop plate 2 and the pressure plate 3 are integrally formed. It may be molded, and then attached to the sample 1, that is, the working efficiency for setting the test body S may be improved. Further, in the above embodiment, water is injected into the injection side, but instead of water, a fluid containing a tracer such as salt water is injected, and an electric conductivity meter is installed in the drainage side pipe 5. May be. In this case, the electric conductivity of the fluid discharged to the drainage side is measured to detect the concentration change on the discharge side, and the effective porosity and dispersion coefficient in the sample 1 are obtained.

【0049】また、上記実施例では、加圧容器8内を水
圧によって加圧しているが空圧によって加圧するように
してもよい。また、注水用ブースタポンプ16や加圧容
器用ブースタポンプ10を駆動する駆動源として、上記
実施例では油圧源13を使用しているが、空圧源やさら
には電動モータによって各ポンプを駆動してもよい。ま
た、油圧源13を両ポンプで共有しているが各ポンプに
対応させて別個に設けてもよい。
Further, in the above embodiment, the inside of the pressure vessel 8 is pressurized by water pressure, but it may be pressurized by air pressure. Further, although the hydraulic power source 13 is used as the drive source for driving the water injection booster pump 16 and the pressurized container booster pump 10, each pump is driven by an air pressure source or an electric motor. May be. Further, although the hydraulic pressure source 13 is shared by both pumps, it may be provided separately corresponding to each pump.

【0050】また、上記実施例では、不透水面となる区
画4に対応する管路5に圧力計27を取り付けたが、不
透水面における圧力を測定しないのであれば、上記管路
5には、圧力計27の代わりに閉塞手段を構成するバル
ブを取り付けて閉止状態としてもよい。また、上記実施
例では、加圧手段として水圧を利用しているが、シリン
ダ装置の伸縮等によって、機械的に、各加圧板3を試料
側1に押し付ける等によって加圧手段の加圧機構を構成
してもよい。
Further, in the above embodiment, the pressure gauge 27 is attached to the pipe 5 corresponding to the section 4 which is the impermeable surface. However, if the pressure on the impermeable surface is not measured, the pipe 5 is not connected. Instead of the pressure gauge 27, a valve forming a closing means may be attached to close the valve. Further, in the above embodiment, water pressure is used as the pressurizing means, but the pressurizing mechanism of the pressurizing means is mechanically pressed by pressing the pressurizing plates 3 against the sample side 1 by expanding and contracting the cylinder device or the like. You may comprise.

【0051】また、上記のような試料1表面における流
量や圧力の測定ばかりでなく、試料1内部に観測穴を削
孔し、その観測穴に圧力測定手段である圧力計を設定す
るこるとで、試料内部の圧力も検出して、さらに、透水
係数の異方性等の算出結果を向上させるようにしてもよ
い。
In addition to the measurement of the flow rate and pressure on the surface of the sample 1 as described above, an observation hole may be drilled inside the sample 1 and a pressure gauge as a pressure measuring means may be set in the observation hole. Alternatively, the pressure inside the sample may be detected to further improve the calculation result of the anisotropy of water permeability and the like.

【0052】[0052]

【発明の効果】以上説明してきたように、本発明によれ
ば、一つの試料を使用して、簡単に、該試料表面の複数
の方向や複数の箇所において、個々に圧力や流量を制御
して透水試験が可能となる。従って、一個の試料につい
て複数方向の透水試験を行うことにより、透水係数の異
方性を定めることが出来る。また、試料表面の多数の箇
所で圧力や流量の計測が可能であるので、その結果と数
値解析結果との比較を実施することによって、試料内の
透水係数の分布、即ち全方位での試料、さらには対応す
る岩盤などの水みちが求められる。
As described above, according to the present invention, one sample can be used to easily control the pressure and the flow rate individually in a plurality of directions and at a plurality of points on the surface of the sample. Permeability test is possible. Therefore, the anisotropy of the water permeability coefficient can be determined by conducting the water permeability test in a plurality of directions on one sample. In addition, since it is possible to measure pressure and flow rate at many points on the sample surface, by comparing the results with numerical analysis results, the distribution of hydraulic conductivity in the sample, that is, the sample in all directions, Furthermore, the corresponding water features such as bedrock are required.

【0053】これによって、岩盤であれば、その水みち
の現況把握や将来予測が向上して、止水対策を適切に行
うことができるようになる。
As a result, in the case of bedrock, it becomes possible to improve the grasp of the present condition and future prediction of the water channel, and to appropriately take the water stop measures.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の透水試験を示す概略構成
図である。
FIG. 1 is a schematic configuration diagram showing a water permeability test of an example according to the present invention.

【図2】本発明に係る実施例の試験体の構成を示す分解
斜視図(但し、管路は省略されている)である。
FIG. 2 is an exploded perspective view (however, a pipe line is omitted) showing a configuration of a test body of an example according to the present invention.

【図3】本発明に係る実施例の止水板と圧力板との関係
を示す斜視図である。
FIG. 3 is a perspective view showing a relationship between a water blocking plate and a pressure plate according to an embodiment of the present invention.

【図4】本発明に係る実施例の試験体を示す上面図(但
し、上面の加圧板、及び管路は省略されている。)であ
る。
FIG. 4 is a top view showing a test body of an example according to the present invention (however, a pressure plate on the top surface and a pipe line are omitted).

【図5】本発明に係る実施例の通水方向の一例を示す概
念図である。
FIG. 5 is a conceptual diagram showing an example of a water flow direction of an embodiment according to the present invention.

【図6】本発明に係る実施例の通水方向の一例を示す概
念図である。
FIG. 6 is a conceptual diagram showing an example of a water flow direction of an embodiment according to the present invention.

【図7】本発明に係る実施例の透水試験によって得られ
た透水係数の異方性の一例を示す概念図である。
FIG. 7 is a conceptual diagram showing an example of anisotropy of water permeability obtained by the water permeability test of the example according to the present invention.

【図8】本発明に係る実施例の透水試験によって得られ
た試料表面の流量分布の一例を示す概念図である。
FIG. 8 is a conceptual diagram showing an example of the flow rate distribution on the sample surface obtained by the water permeability test of the example according to the present invention.

【図9】本発明に係る実施例の透水係数の異方性や該透
水係数の分布を求める解析手順の一例を示す図である。
FIG. 9 is a diagram showing an example of an analysis procedure for obtaining anisotropy of water permeability and distribution of the water permeability of an example according to the present invention.

【図10】本発明に係る実施例の透水試験によって得ら
れた透水係数の分布の一例を示す概念図である。
FIG. 10 is a conceptual diagram showing an example of a distribution of water permeability obtained by a water permeability test of an example according to the present invention.

【図11】従来の透水試験を示す概念図である。FIG. 11 is a conceptual diagram showing a conventional water permeability test.

【図12】従来の透水試験を示す概念図である。FIG. 12 is a conceptual diagram showing a conventional water permeability test.

【符号の説明】[Explanation of symbols]

1 試料 2 止水板 2a 開口部 3 加圧板 4 区画 5 管路 8 加圧容器 10 加圧容器用ブースタポンプ 11 水タンク 12 サーボバルブ 13 油圧源 14 貯留タンク 16 注水用ブースタポンプ 17 サーボバルブ 18 水位計 19 圧力計 21 流量計 24 コンピュータ 26 コンプレッサ S 試験体 1 sample 2 water stop plate 2a opening 3 pressurizing plate 4 division 5 pipeline 8 pressurizing container 10 booster pump for pressurizing container 11 water tank 12 servo valve 13 hydraulic source 14 storage tank 16 water booster pump 17 servo valve 18 water level Total 19 Pressure gauge 21 Flowmeter 24 Computer 26 Compressor S Test piece

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 試料の注水面から排水面への通水によっ
て透水係数等を求める透水試験装置において、試験する
試料の全表面に密着して、その表面を複数の区画に仕切
ると共に該試料を密封する仕切り手段と、上記複数の区
画の一部に着脱可能に接続されてその各区画に対して流
体を所定の圧力で制御しながら注入可能な注入手段と、
上記複数の区画の一部に着脱可能に接続されてその区画
から所定の圧力で制御しながら流体を排出可能な排出手
段と、少なくとも上記注入手段または排出手段の一方が
接続された区画に着脱可能に接続されて該区画の流量を
測定する流量測定手段と、上記注入手段や排出手段が接
続された区画に着脱可能に接続されて該区画の圧力を測
定する圧力測定手段と、を備えたことを特徴とする透水
試験装置。
1. A water permeation test apparatus for determining a water permeability, etc. by passing water from a water injection surface to a drain surface of a sample, in close contact with the entire surface of the sample to be tested, and partitioning the surface into a plurality of compartments. Partition means for sealing, and injecting means removably connected to a part of the plurality of compartments and capable of injecting fluid into each compartment while controlling the fluid at a predetermined pressure,
A discharge means that is detachably connected to a part of the plurality of compartments and that is capable of discharging a fluid from the compartments while controlling it at a predetermined pressure, and a compartment that is connected to at least one of the injection means and the discharge means. Flow rate measuring means connected to the compartment for measuring the flow rate of the compartment, and pressure measuring means detachably connected to the compartment to which the injection means and the discharge means are connected to measure the pressure of the compartment. A water permeation test device.
【請求項2】 試料の注水面から排水面への通水によっ
て透水係数等を求める透水試験装置において、試験する
試料の全表面に密着して、その表面を複数の区画に仕切
ると共に該試料を密封する仕切り手段と、上記複数の区
画の一部に着脱可能に接続されてその各区画に対して流
体を所定の流量で制御しながら注入可能な注入手段と、
上記複数の区画の一部に着脱可能に接続されてその区画
から所定の圧力で制御しながら流体を排出可能な排出手
段と、少なくとも上記注入手段または排出手段の一方が
接続された区画に着脱可能に接続されて該区画の流量を
測定する流量測定手段と、上記注入手段や排出手段が接
続された区画に着脱可能に接続されて該区画の圧力を測
定する圧力測定手段と、を備えたことを特徴とする透水
試験装置。
2. A water permeability test apparatus for determining a water permeability, etc. by passing water from a water injection surface to a drainage surface of a sample, in close contact with the entire surface of the sample to be tested, and partitioning the surface into a plurality of compartments. Partitioning means for sealing, and an injecting means detachably connected to a part of the plurality of compartments and capable of injecting fluid into each compartment while controlling the fluid at a predetermined flow rate,
A discharge means that is detachably connected to a part of the plurality of compartments and that is capable of discharging a fluid from the compartments while controlling it at a predetermined pressure, and a compartment that is connected to at least one of the injection means and the discharge means. Flow rate measuring means connected to the compartment for measuring the flow rate of the compartment, and pressure measuring means detachably connected to the compartment to which the injection means and the discharge means are connected to measure the pressure of the compartment. A water permeation test device.
【請求項3】 上記注入手段及び排出手段が接続されな
かった区画の少なくとも一部へ着脱可能に接続されて、
その区画の圧力を測定する圧力測定手段を備えたことを
特徴とする請求項1または請求項2のいずれかに記載さ
れた透水試験装置。
3. Removably connected to at least a part of the compartment to which the injection means and the discharge means are not connected,
The water permeation test apparatus according to claim 1 or 2, further comprising a pressure measuring unit that measures the pressure of the compartment.
【請求項4】 上記仕切り手段が、試料表面全面に係合
し該表面に沿って縦横に開口して該表面を複数の区画に
仕切る仕切り部材と、その仕切り部材の外面全面に当接
する加圧部材と、上記仕切り部材及び加圧部材を装着し
た試料を所定以上の間隙をもって収納可能な加圧容器
と、その加圧容器内を加圧して上記仕切り板を加圧部材
を介して試料表面に圧着させる加圧手段と、からなるこ
とを特徴とする請求項1から請求項3のいずれかに記載
された透水試験装置。
4. A partition member, wherein the partition means engages with the entire surface of the sample and opens vertically and horizontally along the surface to partition the surface into a plurality of compartments, and a pressure applied to the entire outer surface of the partition member. Member, a pressure container capable of accommodating a sample mounted with the partition member and the pressure member with a predetermined gap or more, and a pressure inside the pressure container to press the partition plate to the sample surface via the pressure member. The water permeation test apparatus according to any one of claims 1 to 3, further comprising a pressurizing means for press-bonding.
【請求項5】 上記加圧部材を貫通する複数の管路を設
け、各管路の内端開口部を各区画に対向させると共に、
各管路を加圧容器の外まで延ばし、その管路に注入手
段,排出手段,圧力測定手段,流量測定手段,若しくは
その管路を閉塞する閉塞手段を着脱可能に接続したこと
を特徴とする請求項4に記載された透水試験装置。
5. A plurality of conduits penetrating the pressure member are provided, and inner end openings of the conduits are opposed to the sections, and
Each of the pipelines is extended to the outside of the pressurized container, and an injecting means, a discharging means, a pressure measuring means, a flow rate measuring means, or a closing means for closing the pipeline is detachably connected to the pipeline. The water permeation test device according to claim 4.
【請求項6】 注入する流体として食塩水等のトレーサ
を含有している流体を使用すると共に、上記排出手段の
接続された区画に接続される電気伝導度計を備えたこと
を特徴とする請求項1から請求項5のいずれかに記載さ
れた透水試験装置。
6. A fluid containing a tracer such as a saline solution is used as an injecting fluid, and an electric conductivity meter connected to a section to which the discharging means is connected is provided. The water permeability test apparatus according to any one of claims 1 to 5.
【請求項7】 試料に観測穴を削孔し、該観測穴にも圧
力測定手段を接続したことを特徴とする請求項1から請
求項6に記載の透水試験装置。
7. The water permeation test apparatus according to claim 1, wherein an observation hole is drilled in the sample, and a pressure measuring means is also connected to the observation hole.
【請求項8】 上記請求項1から請求項7のいずれかに
記載された透水試験装置を用いて、注水・排水箇所また
は通水方向を適宜,変更して実施した一連の透水試験を
行い、その結果得られた流量値または圧力測定結果をも
とに、理論解または数値解析結果を補正することによ
り、試料の異方透水係数または試料内部の透水係数の分
布を推定することを特徴とする水みち探査方法
8. A series of water permeability tests conducted by appropriately changing the water injection / drainage points or water flow directions using the water permeability test apparatus according to any one of claims 1 to 7. It is characterized in that the distribution of the anisotropic hydraulic conductivity of the sample or the hydraulic conductivity inside the sample is estimated by correcting the theoretical solution or the numerical analysis result based on the obtained flow rate value or pressure measurement result. Water way exploration method
JP35206493A 1993-12-29 1993-12-29 Permeability test equipment and water path exploration method Expired - Fee Related JP3350197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35206493A JP3350197B2 (en) 1993-12-29 1993-12-29 Permeability test equipment and water path exploration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35206493A JP3350197B2 (en) 1993-12-29 1993-12-29 Permeability test equipment and water path exploration method

Publications (2)

Publication Number Publication Date
JPH07198582A true JPH07198582A (en) 1995-08-01
JP3350197B2 JP3350197B2 (en) 2002-11-25

Family

ID=18421541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35206493A Expired - Fee Related JP3350197B2 (en) 1993-12-29 1993-12-29 Permeability test equipment and water path exploration method

Country Status (1)

Country Link
JP (1) JP3350197B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046086A (en) * 2006-08-21 2008-02-28 Kagawa Univ Water penetration test machine and water penetration test method
JP2012018015A (en) * 2010-07-06 2012-01-26 Central Res Inst Of Electric Power Ind Bedrock sample permeability testing method
CN103033458A (en) * 2012-12-24 2013-04-10 长江水利委员会长江科学院 Indoor test system and test method for seepage characteristics of jointed rock mass
JP2013148351A (en) * 2012-01-17 2013-08-01 Daiki Rika Kogyo Kk Water permeability testing apparatus and water permeability testing facility
KR101307297B1 (en) * 2012-05-31 2013-09-11 한국지질자원연구원 Apparatus for measuring hydraulic properties of rock sample
JP2014032126A (en) * 2012-08-03 2014-02-20 Central Research Institute Of Electric Power Industry Device for testing water absorption of concrete, and method, device and program for estimating permeability coefficient distribution of concrete
CN103940718A (en) * 2014-04-10 2014-07-23 昆明理工大学 On-site loose material penetration experiment device
CN104458532A (en) * 2014-12-04 2015-03-25 西南交通大学 Device and method for testing water permeability resistance of concrete joint under action of controllable lateral restriction
CN104458531A (en) * 2014-12-04 2015-03-25 西南交通大学 Device and method for testing water permeability resistance of lateral restriction-free concrete joint
CN104749079A (en) * 2014-12-09 2015-07-01 西南石油大学 Simulation test method for improving plane heterogeneity by copolymer
CN105092447A (en) * 2014-12-09 2015-11-25 西南石油大学 Simulation test method of interlayer heterogeneity improvement based on polymer
CN105651670A (en) * 2015-12-30 2016-06-08 北京工业大学 Two-dimensional pressurizing and water-conducting mechanism and two-dimensional rock sample seepage test apparatus applying same
CN105651672A (en) * 2015-12-30 2016-06-08 北京工业大学 Fracture network seepage test apparatus for two-dimensional rock sample
CN105651671A (en) * 2015-12-30 2016-06-08 北京工业大学 Shear-seepage coupling testing device for two-dimensional rock sample
CN106092849A (en) * 2016-05-27 2016-11-09 北京交通大学 A kind of sand-pebble layer earth pressure balanced shield, EPBS driving anti-gush experimental provision and method
CN106814016A (en) * 2016-12-29 2017-06-09 华北科技学院 The analogy method of slurry filling imitation device
WO2018205584A1 (en) * 2017-05-11 2018-11-15 中国矿业大学(北京) Apparatus for stress freezing experiment during fracturing process
CN108956954A (en) * 2018-09-04 2018-12-07 大连理工大学 A kind of tilt adjustable seabed side slope Study on Earthquake Dynamic bath scaled model experimental device based on Seep- Solidifying method
JP2019060100A (en) * 2017-09-26 2019-04-18 大成建設株式会社 Hydraulic property evaluation method
CN110702878A (en) * 2019-10-14 2020-01-17 中国地震局工程力学研究所 Test box for sandy soil geotechnical model
CN110987618A (en) * 2019-12-13 2020-04-10 中国电建集团中南勘测设计研究院有限公司 Rockfill material testing device and method
CN111351741A (en) * 2020-03-17 2020-06-30 中国海洋大学 Ocean sediment gas permeability anisotropy testing device and using method
CN111638169A (en) * 2020-06-10 2020-09-08 中国石油大学(华东) Rock three-dimensional fracture network seepage distribution testing system and method
CN113155697A (en) * 2021-03-30 2021-07-23 中国电建集团西北勘测设计研究院有限公司 High-pressure-resistant permeameter device suitable for filling materials and use method
CN114965206A (en) * 2022-04-14 2022-08-30 中国电建集团西北勘测设计研究院有限公司 Comprehensive testing system and method for anisotropic permeability coefficient of rock-soil body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915094B2 (en) * 2005-12-22 2012-04-11 株式会社Ihi Ground / groundwater model test method and equipment
CN103792172B (en) * 2014-01-15 2016-04-27 山东农业大学 Adding pressure type falling head permeameter

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046086A (en) * 2006-08-21 2008-02-28 Kagawa Univ Water penetration test machine and water penetration test method
JP2012018015A (en) * 2010-07-06 2012-01-26 Central Res Inst Of Electric Power Ind Bedrock sample permeability testing method
JP2013148351A (en) * 2012-01-17 2013-08-01 Daiki Rika Kogyo Kk Water permeability testing apparatus and water permeability testing facility
KR101307297B1 (en) * 2012-05-31 2013-09-11 한국지질자원연구원 Apparatus for measuring hydraulic properties of rock sample
JP2014032126A (en) * 2012-08-03 2014-02-20 Central Research Institute Of Electric Power Industry Device for testing water absorption of concrete, and method, device and program for estimating permeability coefficient distribution of concrete
CN103033458A (en) * 2012-12-24 2013-04-10 长江水利委员会长江科学院 Indoor test system and test method for seepage characteristics of jointed rock mass
CN103940718A (en) * 2014-04-10 2014-07-23 昆明理工大学 On-site loose material penetration experiment device
CN104458531A (en) * 2014-12-04 2015-03-25 西南交通大学 Device and method for testing water permeability resistance of lateral restriction-free concrete joint
CN104458532A (en) * 2014-12-04 2015-03-25 西南交通大学 Device and method for testing water permeability resistance of concrete joint under action of controllable lateral restriction
CN104749079B (en) * 2014-12-09 2017-09-19 西南石油大学 Copolymer improves the analog detection method of plane heterogeneity
CN104749079A (en) * 2014-12-09 2015-07-01 西南石油大学 Simulation test method for improving plane heterogeneity by copolymer
CN105092447A (en) * 2014-12-09 2015-11-25 西南石油大学 Simulation test method of interlayer heterogeneity improvement based on polymer
CN105092447B (en) * 2014-12-09 2017-09-19 西南石油大学 Copolymer improves the analog detection method of interlayer heterogeneity
CN105651670A (en) * 2015-12-30 2016-06-08 北京工业大学 Two-dimensional pressurizing and water-conducting mechanism and two-dimensional rock sample seepage test apparatus applying same
CN105651672A (en) * 2015-12-30 2016-06-08 北京工业大学 Fracture network seepage test apparatus for two-dimensional rock sample
CN105651671A (en) * 2015-12-30 2016-06-08 北京工业大学 Shear-seepage coupling testing device for two-dimensional rock sample
CN106092849A (en) * 2016-05-27 2016-11-09 北京交通大学 A kind of sand-pebble layer earth pressure balanced shield, EPBS driving anti-gush experimental provision and method
CN106814016A (en) * 2016-12-29 2017-06-09 华北科技学院 The analogy method of slurry filling imitation device
WO2018205584A1 (en) * 2017-05-11 2018-11-15 中国矿业大学(北京) Apparatus for stress freezing experiment during fracturing process
US10408721B2 (en) 2017-05-11 2019-09-10 China University Of Mining And Technology, Beijing Apparatus for stress freezing experiment during fracturing process
JP2019060100A (en) * 2017-09-26 2019-04-18 大成建設株式会社 Hydraulic property evaluation method
CN108956954A (en) * 2018-09-04 2018-12-07 大连理工大学 A kind of tilt adjustable seabed side slope Study on Earthquake Dynamic bath scaled model experimental device based on Seep- Solidifying method
CN108956954B (en) * 2018-09-04 2019-11-19 大连理工大学 A kind of tilt adjustable seabed side slope Study on Earthquake Dynamic bath scaled model experimental device based on Seep- Solidifying method
CN110702878A (en) * 2019-10-14 2020-01-17 中国地震局工程力学研究所 Test box for sandy soil geotechnical model
CN110987618A (en) * 2019-12-13 2020-04-10 中国电建集团中南勘测设计研究院有限公司 Rockfill material testing device and method
CN111351741A (en) * 2020-03-17 2020-06-30 中国海洋大学 Ocean sediment gas permeability anisotropy testing device and using method
CN111351741B (en) * 2020-03-17 2021-05-14 中国海洋大学 Ocean sediment gas permeability anisotropy testing device and using method
CN111638169A (en) * 2020-06-10 2020-09-08 中国石油大学(华东) Rock three-dimensional fracture network seepage distribution testing system and method
CN113155697A (en) * 2021-03-30 2021-07-23 中国电建集团西北勘测设计研究院有限公司 High-pressure-resistant permeameter device suitable for filling materials and use method
CN114965206A (en) * 2022-04-14 2022-08-30 中国电建集团西北勘测设计研究院有限公司 Comprehensive testing system and method for anisotropic permeability coefficient of rock-soil body

Also Published As

Publication number Publication date
JP3350197B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP3350197B2 (en) Permeability test equipment and water path exploration method
US6055874A (en) Apparatus and method for simulating well bore conditions
CN106353197B (en) High-pressure multiphase flow coupling rock true triaxial test system and method thereof
CN111337650B (en) Multifunctional test device for researching seepage damage mechanism of underground engineering soil body
CN107505448A (en) Seepage inflow erosion model equipment, system and test method caused by underground utilities breakage
CN105973710A (en) Complicated jointed rock mass hydraulic coupling field tri-axial testing system and method
KR101523067B1 (en) Apparatus for measuring coefficient of permeability and permeability test method using thereof
CA2003659A1 (en) Method and apparatus for testing relative permeability of materials
CN108663298A (en) True triaxial crack propagation simulation and permeability test integrated experimental device and method
CN105672379B (en) The excavation of foundation pit model test apparatus of dynamic artesian water effect
CN106706500A (en) Device for determining permeability of concrete
CN110470598B (en) Geomembrane leakage simulation tester considering dynamic water pressure and test method thereof
CN110716030A (en) Karst collapse multi-parameter monitoring and early warning test system
CN211374743U (en) Karst collapse multi-parameter monitoring and early warning test system
CN115929287A (en) Crack plugging layer pressure-bearing dispersing capacity measuring device
CN107702680B (en) Steel arch frame deformation measuring device in tunnel bias state and construction method thereof
CN108982325A (en) The antifouling barrier materials chemistry compatibility test device and method in underground
CN103926183A (en) Testing method and device for water passing amount under normal pressure
CN112540038A (en) Test device and method for testing coupling permeability characteristics of geotextile and sandy soil
CN106840990A (en) A kind of achievable permeability apparatus for becoming effect of water pressure
CN115808437B (en) Subway communication channel freezing method construction model test device and method
CN208721546U (en) A kind of antifouling barrier materials chemistry compatibility test device in underground
CN115015084A (en) Permeation test device and method
CN215678199U (en) Water lock injury testing device
Daniel¹ et al. Measurement of hydraulic properties of geosynthetic clay liners using a flow box

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130913

LAPS Cancellation because of no payment of annual fees