JP2012018015A - Bedrock sample permeability testing method - Google Patents

Bedrock sample permeability testing method Download PDF

Info

Publication number
JP2012018015A
JP2012018015A JP2010154330A JP2010154330A JP2012018015A JP 2012018015 A JP2012018015 A JP 2012018015A JP 2010154330 A JP2010154330 A JP 2010154330A JP 2010154330 A JP2010154330 A JP 2010154330A JP 2012018015 A JP2012018015 A JP 2012018015A
Authority
JP
Japan
Prior art keywords
water
rock sample
sample
bedrock
permeability test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010154330A
Other languages
Japanese (ja)
Other versions
JP5442546B2 (en
Inventor
Soji Nishimoto
壮志 西本
Satomi Okada
哲実 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2010154330A priority Critical patent/JP5442546B2/en
Publication of JP2012018015A publication Critical patent/JP2012018015A/en
Application granted granted Critical
Publication of JP5442546B2 publication Critical patent/JP5442546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bedrock sample permeability testing method realizing an implementation of various measurements by performing a permeability test under a perfect three principal stresses condition with a true triaxial testing device using a cubic bedrock sample.SOLUTION: A permeability test is carried out in a following configuration. Plurality of surfaces of a bedrock sample 1 having a cubic shape are pasted with water guide plates 2, the guide plates 2 each being provided with groove 2a formed thereon on a side abutting on the surface of the bedrock sample 1. Then the entire bedrock sample 1 having the water guide plates 2 being pasted on the surfaces thereof is coated with a coating member 3 having waterproof property and elasticity. To the bedrock sample 1 covered with the coating member 3, three principal stresses are applied by pressing pressure plates 11A and 11B abutting on the coating member 3 on respective surfaces of the cubic shape, and at the same time, water is supplied to the groove 2a of the water guide plate 2 on a water injection side in a water permeation direction via a water injection pipe provided through the coating member 3. Also the water having reached the water guide plate 2 on a drainage side in the water permeation direction is collected in the groove 2a and drained via a drainage pipe provided through the coating member 3.

Description

本発明は、岩盤試料透水試験方法に関する。さらに詳述すると、本発明は、立方体岩盤試料を使った三主応力条件下での透水試験に適用して好適な岩盤試料透水試験方法に関する。   The present invention relates to a rock sample permeability test method. More specifically, the present invention relates to a rock sample permeability test method suitable for application to a permeability test under three principal stress conditions using a cubic rock sample.

なお、本発明においては、水平直交二方向(X軸方向,Y軸方向)及び垂直方向(Z軸方向)の三主応力を独立させて付加する条件下で行われる試験のことを真三軸試験といい、当該真三軸試験を行うことができる装置のことを真三軸試験装置という。また、これまでの三軸試験では一般的に立方体形状の岩盤試料が用いられているので本発明の説明においても岩盤試料の形状は立方体であることを前提とするが、本発明の適用範囲として直方体形状の岩盤試料を用いる場合を除外するものではない。   In the present invention, a test carried out under the condition in which three principal stresses in two horizontal orthogonal directions (X-axis direction and Y-axis direction) and vertical direction (Z-axis direction) are applied independently is true triaxial. An apparatus capable of performing the true triaxial test is called a true triaxial test apparatus. In addition, since a cubic rock sample is generally used in the conventional triaxial tests, the description of the present invention assumes that the shape of the rock sample is a cube, but the scope of the present invention is as follows. This does not exclude the case of using a rectangular parallelepiped rock sample.

例えば大深度地下トンネルや放射性廃棄物処分施設などの地下岩盤中の構造物の設計においては、熱や地下水の移動、応力が作用する環境下での熱特性や透水特性や力学特性などの岩盤の物性の把握は重要である。   For example, in the design of structures in underground rock masses such as deep underground tunnels and radioactive waste disposal facilities, it is important to understand the characteristics of rock masses such as thermal characteristics, hydraulic characteristics, mechanical characteristics, etc. Understanding physical properties is important.

岩盤試料の従来の透水試験法としては、例えば、図4に示すように、台座101上に設置された立方体形状の岩盤試料Sの上下及び側面二方向を加圧機構を介して加圧する大型岩盤試験装置において、台座101上に設置される岩盤試料Sの透水面を除いた面をゴムジャケット102で覆い、底面,側面及び上面に通水面108を形成した加圧プレート103,104,105で水密に囲うものがある(特許文献1)。なお、図4は岩盤試料Sの上下方向の透水性を試験する際の止水構造体の部品構成を示している。また、図中符号106は濾紙を,符号107はゴムジャケット102の上部周囲及び下部周囲を固定するフランジ押さえをそれぞれ表し、図中符号(1)〜(9)は各部品の組み立て手順を示している。   As a conventional permeability test method for a rock sample, for example, as shown in FIG. 4, a large bedrock that pressurizes the top and bottom and two sides of a cube-shaped rock sample S installed on a pedestal 101 via a pressurizing mechanism. In the test apparatus, the surface of the rock sample S installed on the pedestal 101 excluding the water-permeable surface is covered with a rubber jacket 102, and water-tightness is provided by pressure plates 103, 104, and 105 having a water flow surface 108 formed on the bottom surface, side surface, and top surface. (Patent Document 1). FIG. 4 shows the component structure of the water stop structure when the rock sample S is tested for water permeability in the vertical direction. In the figure, reference numeral 106 denotes a filter paper, reference numeral 107 denotes a flange presser for fixing the upper periphery and the lower periphery of the rubber jacket 102, and reference numerals (1) to (9) in the figure indicate assembling procedures of the respective parts. Yes.

特開2001−349813号JP 2001-349813 A

しかしながら、特許文献1の透水試験法では、透水方向の二面(図4に示す例では上面と下面)はゴムジャケット102で覆っていないため、透水方向に加圧して当該透水方向の寸法が縮むとゴムジャケット102が撓んで当該ゴムジャケット102の特に端部において止水効果がなくなってしまう。加えて、下面加圧プレート103と上面加圧プレート105とから圧がかかると、フランジ押さえ107と側面加圧プレート104のエッジとがぶつかるので実際には透水方向には圧をかけることが殆どできず、実質は押さえているだけであり、三主応力条件下での透水試験とは言い難い。少なくとも、透水方向の圧力を所望の程度に自由に設定することはできない。したがって、完全な三主応力条件下での透水試験を行うことができるとは言い難い。   However, in the water permeation test method of Patent Document 1, two surfaces in the water permeation direction (the upper surface and the lower surface in the example shown in FIG. 4) are not covered with the rubber jacket 102, and therefore the dimensions in the water permeation direction are reduced by pressing in the water permeation direction. When the rubber jacket 102 is bent, the water stop effect is lost particularly at the end of the rubber jacket 102. In addition, when pressure is applied from the lower surface pressure plate 103 and the upper surface pressure plate 105, the flange presser 107 and the edge of the side surface pressure plate 104 collide with each other, so in practice, almost no pressure can be applied in the direction of water permeability. However, the substance is only suppressed, and it is difficult to say that it is a water permeability test under the three principal stress conditions. At least, the pressure in the direction of water permeability cannot be freely set to a desired level. Therefore, it is difficult to say that a water permeability test can be performed under the complete three principal stress conditions.

また、特許文献1の透水試験法では、岩盤試料Sの温度を制御することができないので、岩盤の熱特性を把握することができない。したがって、岩盤の物性の把握において十分なデータを提供することができないという問題がある。   Moreover, in the water permeability test method of patent document 1, since the temperature of the rock sample S cannot be controlled, the thermal characteristics of the rock cannot be grasped. Therefore, there is a problem that sufficient data cannot be provided for grasping the physical properties of the rock.

すなわち、岩盤の物性を把握するためには岩盤の透水特性と力学特性とを把握することが必要であり、これら特性の把握のためには立方体岩盤試料を使い真三軸試験装置を用いた完全な三主応力条件下で透水試験を行って各種の計測を行う必要があるところ、これらの試験要件を満たす試験方法・装置はない。また、岩盤の物性を十分に把握するためには岩盤の熱特性と透水特性と力学特性とを把握することが必要であり、これら特性の把握のためには立方体岩盤試料を使い真三軸試験装置を用いた完全な三主応力条件下で岩盤試料の温度を制御しつつ透水試験を行って各種の計測を行う必要があるところ、これらの試験要件を全て満たす試験方法・装置はない。   In other words, in order to grasp the physical properties of the rock mass, it is necessary to grasp the permeability and mechanical properties of the rock mass. In order to understand these properties, a complete triaxial test system using a cubic rock mass sample is used. However, there is no test method / apparatus that satisfies these test requirements, although it is necessary to conduct various measurements by conducting a water permeability test under the three principal stress conditions. In addition, in order to fully understand the physical properties of the rock mass, it is necessary to grasp the thermal properties, hydraulic conductivity, and mechanical properties of the rock mass. Although it is necessary to conduct various measurements by conducting a permeability test while controlling the temperature of a rock sample under the complete three principal stress conditions using the equipment, there is no test method / apparatus that satisfies all these test requirements.

そこで、本発明は、立方体岩盤試料を使って完全な三主応力条件下で透水試験を行って各種の計測を行うことができる岩盤試料透水試験方法を提供することを目的とする。さらに、本発明は、立方体岩盤試料を使って完全な三主応力条件下で岩盤試料の温度を制御しつつ透水試験を行って各種の計測を行うことができる岩盤試料透水試験方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a rock sample permeability test method capable of performing various measurements by performing a permeability test under a complete three principal stress condition using a cubic rock sample. Furthermore, the present invention provides a rock sample permeability test method capable of performing various measurements by performing a permeability test while controlling the temperature of the rock sample under a complete three principal stress condition using a cubic rock sample. With the goal.

かかる目的を達成するため、請求項1記載の岩盤試料透水試験方法は、岩盤試料の表面に当接する側に溝が形成された導水板を複数の面に貼り付けた状態の立方体形状の岩盤試料の全体を防水性と弾性とを有する被覆部材によって被覆し、該被覆部材によって被覆された岩盤試料に、立方体形状の各面の被覆部材に当接する加圧板によって三主応力を付加しながら、被覆部材を貫通して備えられる注水用配管を介して透水方向の注水側の導水板の溝に水を供給すると共に透水方向の排水側の導水板に到達した水を溝によって収集して被覆部材を貫通して備えられる排水用配管を介して排水して透水試験を行うようにしている。   In order to achieve this object, the rock sample permeability test method according to claim 1 is a cubic rock sample in a state in which a water guide plate having grooves formed on the side contacting the surface of the rock sample is attached to a plurality of surfaces. Is covered with a covering member having waterproofness and elasticity, and is applied to the rock sample covered with the covering member while applying three principal stresses by a pressure plate abutting the covering member on each surface of the cubic shape. Water is supplied to the groove of the water guide plate on the water injection side in the water permeable direction through the water injection pipe provided through the member, and the water reaching the water guide plate on the drain side in the water permeable direction is collected by the groove to cover the covering member. The water permeation test is performed by draining through drainage pipes that are provided through.

したがって、この岩盤試料透水試験方法によると、複数の面に導水板を貼り付けた状態の岩盤試料の全体を防水性と弾性とを有する被覆部材によって被覆して三軸試験を行うようにしているので、いずれの方向についても止水効果が確保され、透水方向についても所望の圧力(荷重)を付加させることができる。   Therefore, according to the rock sample permeability test method, the entire rock sample with the water guide plates attached to a plurality of surfaces is covered with a covering member having waterproofness and elasticity to perform a triaxial test. Therefore, the water stop effect is ensured in any direction, and a desired pressure (load) can be applied in the water permeation direction.

また、請求項2記載の発明は、請求項1記載の岩盤試料透水試験方法において、被覆部材がシリコンラバーであるようにしている。この場合には、本発明における被覆部材として要求される防水性と弾性とが確実に確保される。   According to a second aspect of the present invention, in the rock sample water permeability test method according to the first aspect, the covering member is made of silicon rubber. In this case, waterproofness and elasticity required as a covering member in the present invention are surely ensured.

また、請求項3記載の発明は、請求項1記載の岩盤試料透水試験方法において、三主応力を付加する加圧板内に加熱部を設け、該加熱部によって岩盤試料の温度制御を行うようにしている。この場合には、岩盤試料の温度を制御しつつ透水試験を行うことができる。   According to a third aspect of the present invention, in the rock sample permeability test method according to the first aspect, a heating part is provided in the pressure plate to which the three principal stresses are applied, and the temperature of the rock sample is controlled by the heating part. ing. In this case, the water permeability test can be performed while controlling the temperature of the rock sample.

また、請求項4記載の発明は、請求項3記載の岩盤試料透水試験方法において、加熱部がラバーヒーターであるようにしている。この場合には、加圧板内に収容し易い加熱部とすることができる。   The invention according to claim 4 is the rock sample permeability test method according to claim 3, wherein the heating part is a rubber heater. In this case, the heating unit can be easily accommodated in the pressure plate.

請求項1記載の岩盤試料透水試験方法によれば、いずれの方向についても止水効果が確保され、透水方向についても所望の圧力(荷重)を付加させて完全な三主応力条件下での透水試験を行うことができるので、岩盤の真の物性の把握に有用なデータを提供することができ、岩盤試料透水試験の有用性・信頼性の向上を図ることが可能になる。   According to the rock sample permeability test method according to claim 1, the water-stopping effect is ensured in any direction, and a desired pressure (load) is applied in the direction of permeability, and the water permeability is completely under the three principal stress conditions. Since the test can be performed, data useful for grasping the true physical properties of the rock mass can be provided, and the usefulness and reliability of the rock sample permeability test can be improved.

請求項2記載の岩盤試料透水試験方法によれば、さらに、岩盤試料の温度を制御しつつ透水試験を行うことができるので、岩盤の真の物性の十分な把握に有用なデータを提供することができ、岩盤試料透水試験の有用性・信頼性の向上を図ることが可能になる。   According to the rock sample permeability test method according to claim 2, since the permeability test can be performed while controlling the temperature of the rock sample, data useful for sufficiently grasping the true physical properties of the rock is provided. It is possible to improve the usefulness and reliability of the rock sample permeability test.

本発明の岩盤試料透水試験方法を説明する図である。(A)は本発明を実施する実施形態の三軸試験装置の垂直断面図である。(B)は本発明で用いられる試験体の垂直断面図である。It is a figure explaining the bedrock sample permeability test method of the present invention. (A) is a vertical sectional view of a triaxial test apparatus according to an embodiment of the present invention. (B) is a vertical sectional view of a specimen used in the present invention. 本発明の岩盤試料透水試験方法を実施する実施形態の三軸試験装置の水平断面図である。It is a horizontal sectional view of the triaxial testing device of an embodiment which carries out the rock sample permeability test method of the present invention. 本発明の岩盤試料透水試験方法で用いられる導水板の構造を示す図である。It is a figure which shows the structure of the water guide plate used with the rock sample water permeability test method of this invention. 従来の透水試験装置の部品構成と組み立て手順とを示す分解斜視図である。It is a disassembled perspective view which shows the components structure and assembly procedure of the conventional water-permeable test apparatus.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.

図1から図3に、本発明の岩盤試料透水試験方法の実施形態の一例を示す。本発明の岩盤試料透水試験方法は、岩盤試料1の表面に当接する側に溝2aが形成された導水板2を複数の面に貼り付けた状態の立方体形状の岩盤試料1の全体を少なくとも防水性と弾性とを有する被覆部材3によって被覆し、該被覆部材3によって被覆された岩盤試料1に、立方体形状の各面の被覆部材3に当接する加圧板11A,11Bによって三主応力を付加しながら、被覆部材3を貫通して備えられる注水用配管を介して透水方向の注水側の導水板2の溝2aに水を供給すると共に透水方向の排水側の導水板2に到達した水を溝2aによって収集して被覆部材3を貫通して備えられる排水用配管を介して排水して透水試験を行うものである。   1 to 3 show an example of an embodiment of the rock sample permeability test method of the present invention. In the rock sample permeability test method of the present invention, at least the entirety of the cubic rock sample 1 in a state where the water guide plate 2 having grooves 2a formed on the side contacting the surface of the rock sample 1 is attached to a plurality of surfaces is waterproofed. Three main stresses are applied to the rock sample 1 covered with the covering member 3 having the property and elasticity by the pressure plates 11A and 11B that are in contact with the covering member 3 on each surface of the cubic shape. However, water is supplied to the groove 2a of the water guide plate 2 on the water injection side in the water permeable direction through the water injection pipe provided through the covering member 3, and the water that has reached the water guide plate 2 on the drain side in the water permeable direction is grooved. The water permeation test is carried out by draining through a drainage pipe collected through 2a and provided through the covering member 3.

岩盤試料1は、通常の三軸試験の場合と同様に立方体に成形される。そして、立方体形状の岩盤試料1の各面(即ち、六面)には、図1(B)に示すように、導水板2が貼り付けられる。なお、図1及び図2においては、部品構成を分かり易くすることを考慮し、導水板2及び被覆部材3の断面厚さを他の部材・部品との現実の相対的な関係よりも厚めに表示している。   The rock sample 1 is formed into a cube in the same manner as in a normal triaxial test. And the water guide plate 2 is affixed on each surface (namely, six surfaces) of the cube-shaped rock sample 1 as shown in FIG.1 (B). In FIG. 1 and FIG. 2, the cross-sectional thicknesses of the water guide plate 2 and the covering member 3 are made thicker than the actual relative relationship with other members / parts in consideration of making the component configuration easy to understand. it's shown.

本実施形態では、岩盤試料1の各面と導水板2との間に、導水板2から供給される水を岩盤試料1の面全体に行き渡らせるためにステンレスメッシュ5が介在させられる。ただし、ステンレスメッシュ5は本発明の必須の構成要素ではなく、ステンレスメッシュ5を介在させないようにしても良い。   In the present embodiment, a stainless mesh 5 is interposed between each surface of the rock sample 1 and the water guide plate 2 in order to spread the water supplied from the water guide plate 2 over the entire surface of the rock sample 1. However, the stainless steel mesh 5 is not an essential component of the present invention, and the stainless steel mesh 5 may not be interposed.

導水板2の、本実施形態ではステンレスメッシュ5を介在させて岩盤試料1と当接する側の面には、図3に示すように、溝2aが形成される。溝2aは、本実施形態では網の目状に形成されているが、これに限られず、例えば複数本の平行線状でも良い。また、溝2aは導水板2の面全体に亘って形成されることが望ましい。   As shown in FIG. 3, a groove 2 a is formed on the surface of the water guide plate 2 on the side in contact with the rock sample 1 with the stainless steel mesh 5 interposed therebetween. The groove 2a is formed in a mesh shape in the present embodiment, but is not limited to this, and may be a plurality of parallel lines, for example. Moreover, it is desirable that the groove 2 a is formed over the entire surface of the water guide plate 2.

導水板2は、岩盤試料1に対するものとしての応力が加えられても溝2aが潰れない程度の剛性を有する素材によって形成される。具体的には例えば、アルミニウムやステンレス鋼などによって形成される。   The water guide plate 2 is formed of a material having such a rigidity that the groove 2a is not crushed even when stress as applied to the rock sample 1 is applied. Specifically, for example, it is formed of aluminum or stainless steel.

なお、導水板2は例えば1〔mm〕程度の厚さに形成される。また、溝2aは例えば幅1〔mm〕程度,深さ0.5〔mm〕程度に形成される。また、溝2a相互の間隔は、岩盤試料1の大きさや透水性なども勘案して適宜設定される。   The water guide plate 2 is formed to a thickness of about 1 [mm], for example. The groove 2a is formed, for example, with a width of about 1 [mm] and a depth of about 0.5 [mm]. Further, the interval between the grooves 2a is appropriately set in consideration of the size and water permeability of the rock sample 1.

導水板2には、さらに、岩盤試料1を透水させるための水を溝2aに供給するための、或いは、岩盤試料1を透水させた水を溝2aを経由させて回収して排水するためのものであり、端部に開口して注水・排水用配管(図示省略)が挿入されると共に溝2aのいずれかの部分と連通する配管差込部2bが設けられる。配管差込部2bには注水・排水用配管の先端部分が挿入され例えば接着剤などによって固定される。   Further, the water guide plate 2 is used for supplying water for allowing the rock sample 1 to permeate into the groove 2a, or for collecting and draining the water permeated through the rock sample 1 via the groove 2a. A pipe insertion part 2b is provided which is open at the end and into which a water injection / drainage pipe (not shown) is inserted and which communicates with any part of the groove 2a. The distal end portion of the water injection / drainage pipe is inserted into the pipe insertion portion 2b and fixed by, for example, an adhesive.

そして、各面に導水板2を貼り付けた状態の岩盤試料1の全体を、言い換えると、岩盤試料1全体を導水板2も含めて一緒に、少なくとも防水性と弾性とを有する被覆部材3によって隙間なく被覆する。また、岩盤試料1を加熱して岩盤試料1の温度を制御する場合には、被覆部材3は、防水性と弾性に加え、想定される温度に対する耐熱性を更に有することが必要である。   The entire rock sample 1 with the water guide plate 2 attached to each surface, in other words, the entire rock sample 1 including the water guide plate 2 together with the covering member 3 having at least waterproofness and elasticity. Cover without gaps. Further, when the rock sample 1 is heated to control the temperature of the rock sample 1, the covering member 3 needs to further have heat resistance against an assumed temperature in addition to waterproofness and elasticity.

なお、被覆部材3の弾性率(硬度)は、付加する主応力の大きさや想定される厚さなどを勘案して適当なものが適宜選択される。また、被覆部材3で全体を覆う際に、先端部分が導水板2の配管差込部2bに挿入されている注水・排水用配管や岩盤試料1の表面に貼り付けられたセンサ類のケーブルが被覆部材3内に余分に埋没しないようにしておく。   Note that the elastic modulus (hardness) of the covering member 3 is appropriately selected in consideration of the magnitude of the principal stress to be applied and the assumed thickness. In addition, when covering the whole with the covering member 3, a sensor injection cable affixed to the surface of the water injection / drainage pipe or the rock sample 1 whose tip is inserted into the pipe insertion part 2 b of the water guide plate 2 is provided. It is made not to be buried in the covering member 3 excessively.

本実施形態では、防水性と適度の弾性とに加えて一定の耐熱性を有する点で適当であるのでシリコンラバー3で隙間なく被覆する。シリコンラバー3による被覆は、例えば、岩盤試料1の各面に導水板2を貼り付けた状態で液状のシリコンラバー3を全体に塗布して固めることによって行う。なお、シリコンラバー3の厚さは例えば3〜4〔mm〕程度の厚さにされる。また、シリコンラバー3の厚さは、導水板2が存在する範囲では場所によって大きな差がないことが望ましい。   In this embodiment, since it is appropriate in that it has a certain heat resistance in addition to waterproofness and moderate elasticity, it is covered with silicon rubber 3 without any gap. The covering with the silicon rubber 3 is performed, for example, by applying and solidifying the liquid silicon rubber 3 on the entire surface with the water guide plate 2 attached to each surface of the rock sample 1. The thickness of the silicon rubber 3 is, for example, about 3 to 4 [mm]. Further, it is desirable that the thickness of the silicon rubber 3 does not vary greatly depending on the location within the range where the water guide plate 2 exists.

そして、立方体形状の各面に導水板2を貼り付けた状態で被覆部材3によって全体を隙間なく被覆した岩盤試料1に対して三主応力を付加する。このとき、全面(言い換えると三方向)の止水条件が確保されているので、三方向の載荷を所望の程度に自由に設定して透水試験を行うことができる。すなわち、完全な三主応力条件下での岩盤試料1の透水試験を行うことができる。なお、以下の説明では、岩盤試料1と当該岩盤試料1に貼り付けられた導水板2とを被覆部材3によって全体を隙間なく被覆して成形されるものを試験体4ともいう。   And three principal stress is added with respect to the rock mass sample 1 which covered the whole with the coating | coated member 3 without gap in the state which affixed the water guide plate 2 on each surface of the cube shape. At this time, since the water stopping conditions in the entire surface (in other words, three directions) are ensured, the water permeability test can be performed by freely setting the loading in the three directions to a desired level. That is, the permeability test of the rock sample 1 under the complete three principal stress conditions can be performed. In the following description, what is formed by covering the entire rock sample 1 and the water guide plate 2 attached to the rock sample 1 with the covering member 3 without a gap is also referred to as a test body 4.

本実施形態では、上述のように成形された試験体4の透水試験を行う装置として図1及び図2に示す三軸試験装置10を用いる。なお、図1及び図2においては、部品構成を分かり易くすることを考慮し、各部品を結合するボルト・螺子の図示を省略している。また、図1(A)では、図中の一点鎖線(符号I)の左側(符号IA)と右側(符号IB)とで、装置10の異なる位置の縦断面を示している(符号IA側:中央位置よりも側面寄りの位置の縦断面,符号IB側:中央位置の縦断面)。   In this embodiment, the triaxial test apparatus 10 shown in FIG.1 and FIG.2 is used as an apparatus which performs the water permeability test of the test body 4 shape | molded as mentioned above. In FIG. 1 and FIG. 2, the bolts and screws that connect the components are not shown in order to facilitate understanding of the component configuration. Further, in FIG. 1A, a vertical section at different positions of the apparatus 10 is shown on the left side (symbol IA) and the right side (symbol IB) of the alternate long and short dash line (symbol I) in the figure (symbol IA side: A longitudinal section at a position closer to the side surface than the center position, symbol IB side: a longitudinal section at the center position).

三軸試験装置10は、試験体4の側面のそれぞれに当接して独立に応力を付加する合計四つの水平方向加圧板11Aと、試験体4の下面に当接して応力を付加する垂直方向加圧板11Bと、水平方向加圧板11Aをピストンと見立てて当該加圧板11Aの水平方向往復運動のガイドとして働く合計四つの水平方向シリンダ12とを有する。すなわち、各水平方向加圧板11Aは各水平方向シリンダ12に摺動可能に収容されガイドされて水平方向に往復運動可能に構成される。   The triaxial testing apparatus 10 includes a total of four horizontal pressure plates 11A that abut against each of the side surfaces of the test body 4 and independently apply stress, and a vertical direction press that abuts against the lower surface of the test body 4 and applies stress. The pressure plate 11B and a total of four horizontal cylinders 12 that act as guides for the horizontal reciprocation of the pressure plate 11A, assuming that the pressure plate 11A is a piston. That is, each horizontal pressure plate 11A is slidably accommodated in each horizontal cylinder 12 and guided so as to be able to reciprocate in the horizontal direction.

また、試験体4の上面に対しては、当該上面に当接する上面固定板14が設けられる。   Further, an upper surface fixing plate 14 that comes into contact with the upper surface is provided on the upper surface of the test body 4.

本実施形態では、各水平方向加圧板11Aには試験体4と反対側の面(即ち、外側の面)から突出するようにガイドピン13Aが取り付けられる。本実施形態では、矩形の水平方向加圧板11Aの各角部寄りの位置に合計四本のガイドピン13Aが取り付けられる。また、各水平方向シリンダ12内側には水平方向加圧板11Aと対向する面にガイドピン13Aの突出部分を摺動可能に収容しガイドするガイドホール13Bが設けられる。これにより、水平方向加圧板11Aが往復運動する際に傾斜してしまうことが防止されて試験体4の側面全体に均等に応力が付加されるようになる。   In this embodiment, a guide pin 13A is attached to each horizontal pressure plate 11A so as to protrude from the surface opposite to the test body 4 (ie, the outer surface). In the present embodiment, a total of four guide pins 13A are attached at positions near each corner of the rectangular horizontal pressure plate 11A. Further, a guide hole 13B is provided inside each horizontal cylinder 12 so as to slidably accommodate and guide the protruding portion of the guide pin 13A on the surface facing the horizontal pressure plate 11A. As a result, the horizontal pressure plate 11A is prevented from tilting when reciprocating, and stress is evenly applied to the entire side surface of the test body 4.

そして、三軸試験装置10は、水平断面矩形であって当該装置10の四面の側壁を構成して四つの水平方向シリンダ12を固定保持する枠体15と、当該枠体15の上端に取り付けられて装置10の天板を構成して上面固定板14を固定保持する矩形の上板16と、枠体15の下端に取り付けられて装置10の底板を構成する矩形の下板17とを更に有する。なお、水平方向シリンダ12は螺子によって枠体15に取り付けられると共に上面固定板14は螺子によって上板16に取り付けられる。   The triaxial test apparatus 10 is attached to the frame 15 having a horizontal cross-section rectangle and constituting four side walls of the apparatus 10 to fix and hold the four horizontal cylinders 12, and the upper end of the frame 15. And a rectangular upper plate 16 that constitutes the top plate of the apparatus 10 and fixes and holds the upper surface fixing plate 14, and a rectangular lower plate 17 that is attached to the lower end of the frame 15 and constitutes the bottom plate of the apparatus 10. . The horizontal cylinder 12 is attached to the frame body 15 by screws and the upper surface fixing plate 14 is attached to the upper plate 16 by screws.

そして、これら枠体15と上板16と下板17とが組み合わせられて試験体4,水平方向加圧板11A及び水平方向シリンダ12,垂直方向加圧板11B,上面固定板14を囲って三軸試験装置10全体として直方体形状に形成される。なお本実施形態の三軸試験装置10は下板17の下面に取り付けられる設置用脚21を有する。   The frame 15, the upper plate 16 and the lower plate 17 are combined to surround the test body 4, the horizontal pressure plate 11 </ b> A and the horizontal cylinder 12, the vertical pressure plate 11 </ b> B, and the upper surface fixing plate 14. The entire device 10 is formed in a rectangular parallelepiped shape. Note that the triaxial test apparatus 10 of the present embodiment has an installation leg 21 attached to the lower surface of the lower plate 17.

ここで、本発明では、透水試験方法の目的などに合わせて、岩盤試料1の表面に例えばひずみゲージ等のセンサ類を適宜貼り付けるようにしても良い。そして、センサ類を貼り付ける場合には、当該センサ類のケーブルは被覆部材3を貫通させ、また、当該ケーブルを三軸試験装置10から取り出すための通路(貫通孔)を例えば枠体15に設けるようにしても良い。具体的には例えば、枠体15の上端面に溝を設けて上板16の下面との間にケーブル取出し用通路を形成するようにしても良い。   Here, in the present invention, sensors such as strain gauges may be appropriately attached to the surface of the rock sample 1 in accordance with the purpose of the water permeability test method. And when attaching sensors, the cable of the said sensors penetrates the coating | coated member 3, and the channel | path (through-hole) for taking out the said cable from the triaxial test apparatus 10 is provided in the frame 15, for example You may do it. More specifically, for example, a groove may be provided on the upper end surface of the frame body 15 to form a cable outlet passage between the lower surface of the upper plate 16.

下板17の上面(即ち、垂直方向加圧板11Bと対向する面)には垂直方向加圧板11Bをピストンと見立てて当該加圧板11Bの垂直方向往復運動のガイド(言い換えると、シリンダ)として働く凹部17aが形成される。すなわち、垂直方向加圧板11Bは下板の凹部17aに摺動可能に収容されガイドされて垂直方向に往復運動可能に構成される。   On the upper surface of the lower plate 17 (that is, the surface facing the vertical pressure plate 11B), a concave portion that acts as a guide (in other words, a cylinder) for vertical reciprocation of the pressure plate 11B, assuming that the vertical pressure plate 11B is a piston. 17a is formed. That is, the vertical pressure plate 11B is slidably accommodated and guided in the recess 17a of the lower plate, and is configured to be able to reciprocate in the vertical direction.

なお、枠体15と上板16と下板17とは試験体4に応力を付加する際の反力に抗する支持筐体としての機能を発揮するものであり、枠体15と下板17とがボルト・螺子によって強固に連結され固定されると共に、その状態で試験体4を収容した後に枠体15と上板16とがボルト・螺子によって強固に連結され固定される。   The frame 15, the upper plate 16, and the lower plate 17 exhibit a function as a support housing that resists a reaction force when stress is applied to the test body 4, and the frame 15 and the lower plate 17. Are firmly connected and fixed by bolts and screws, and after receiving the test body 4 in this state, the frame body 15 and the upper plate 16 are firmly connected and fixed by bolts and screws.

各水平方向加圧板11Aの水平方向の往復運動は、枠体15の各面(言い換えると、各側壁)を水平方向に貫通する貫通孔15a及び水平方向シリンダ12の試験体4の側面と対向する面を水平方向に貫通する貫通孔12aを介しての増圧機(図示省略)による水などの流体の注入と排出とによって制御される。そして、増圧機の前記流体の注入圧力を調整することによって水平方向加圧板11Aによって試験体4に付加される応力の大きさが制御される。なお、貫通孔15aは枠体15の四面の側壁の各々に設けられ(本実施形態では一面に二つずつ)、四つの水平方向加圧板11Aは各々が独立に制御され、試験体4の各側面に付加される応力の大きさは独立に制御される。   The horizontal reciprocating motion of each horizontal pressure plate 11A opposes the side surface of the test body 4 of the horizontal cylinder 12 and the through hole 15a penetrating each surface (in other words, each side wall) of the frame 15 in the horizontal direction. It is controlled by injecting and discharging a fluid such as water by a pressure intensifier (not shown) through a through hole 12a penetrating the surface in the horizontal direction. And the magnitude | size of the stress added to the test body 4 by the horizontal direction pressurization board 11A is controlled by adjusting the injection pressure of the said fluid of a pressure booster. The through holes 15a are provided in each of the four side walls of the frame 15 (two in this embodiment), and the four horizontal pressure plates 11A are controlled independently, The magnitude of the stress applied to the side is controlled independently.

また、垂直方向加圧板11Bの垂直方向の往復運動は、下板17を垂直方向に貫通する貫通孔17bを介しての増圧機(図示省略)による水などの流体の注入と排出とによって制御される。そして、増圧機の前記流体の注入圧力を調整することによって垂直方向加圧板11Bによって試験体4に付加される圧力の大きさが制御される。   In addition, the vertical reciprocating motion of the vertical pressure plate 11B is controlled by injecting and discharging a fluid such as water by a pressure intensifier (not shown) through a through hole 17b penetrating the lower plate 17 in the vertical direction. The And the magnitude | size of the pressure added to the test body 4 by the vertical direction pressurization board 11B is controlled by adjusting the injection pressure of the said fluid of a pressure booster.

本発明の三軸試験装置10は、枠体15及び水平方向シリンダ12を水平方向に貫通すると共に水平方向加圧板11Aに差し込まれて当該水平方向加圧板11Aに固定され且つ枠体15及び水平方向シリンダ12に対して摺動可能に備えられる管20aと、下板17を垂直方向に貫通すると共に垂直方向加圧板11Bに差し込まれて当該垂直方向加圧板11Bに固定され且つ下板17に対して摺動可能に備えられる管20bと、三軸試験装置10の外側に取り付けられて各管20a,20bの変位量を計測するギャップセンサ(図示省略)とを有する。そして、当該ギャップセンサによって各管20a,20bの変位量として各水平方向加圧板11A,垂直方向加圧板11Bの変位量が計測される。これにより、試験体4に付加される圧力は増圧機によって制御されると共に各加圧板11A,11Bの変位量が計測されるので、岩盤試料1にかかる正確な応力が把握可能になる。   The triaxial test apparatus 10 of the present invention penetrates the frame 15 and the horizontal cylinder 12 in the horizontal direction and is inserted into the horizontal pressure plate 11A and fixed to the horizontal pressure plate 11A, and the frame 15 and the horizontal direction. A pipe 20a slidably provided with respect to the cylinder 12 and the lower plate 17 are penetrated in the vertical direction and inserted into the vertical pressure plate 11B to be fixed to the vertical pressure plate 11B and to the lower plate 17. It has a tube 20b that is slidably provided, and a gap sensor (not shown) that is attached to the outside of the triaxial test apparatus 10 and measures the amount of displacement of each tube 20a, 20b. And the displacement amount of each horizontal direction pressurization board 11A and the vertical direction pressurization board 11B is measured by the said gap sensor as a displacement amount of each pipe | tube 20a, 20b. Thereby, since the pressure applied to the test body 4 is controlled by the pressure intensifier and the displacement amount of each pressurizing plate 11A, 11B is measured, the accurate stress applied to the rock sample 1 can be grasped.

また、三軸試験装置10は、上板16に対して固定されると共に先端面が試験体4の上面に当接する圧力センサ18とギャップセンサ19とを備える。そして、これら圧力センサ18とギャップセンサ19とによって試験体4の上面における(言い換えると、上面にかけられている)圧力と試験体4上面の変位とが直接計測される。   In addition, the triaxial test apparatus 10 includes a pressure sensor 18 and a gap sensor 19 that are fixed to the upper plate 16 and have a tip surface that abuts against the upper surface of the test body 4. The pressure sensor 18 and the gap sensor 19 directly measure the pressure on the upper surface of the test body 4 (in other words, the pressure applied to the upper surface) and the displacement of the upper surface of the test body 4.

上述の構成により、本実施形態の三軸試験装置10によれば、各水平方向加圧板11A及び垂直方向加圧板11Bによって試験体4中の岩盤試料1に水平直交二方向(X軸方向,Y軸方向)及び垂直方向(Z軸方向)の三主応力を独立させて付加することができ、真三軸試験を行うことができる。   With the above-described configuration, according to the triaxial test apparatus 10 of the present embodiment, the horizontal specimen 2 in the horizontal direction (X axis direction, Y direction) is applied to the rock sample 1 in the test body 4 by the horizontal pressure plates 11A and the vertical pressure plates 11B. Three principal stresses in the axial direction) and the vertical direction (Z-axis direction) can be applied independently, and a true triaxial test can be performed.

本実施形態の三軸試験装置10は、さらに、試験中の岩盤試料1の温度を制御するための加熱部20を有する。本実施形態では、加熱部20として、具体的には、各水平方向加圧板11Aの内部及び垂直方向加圧板11Bの内部及び上面固定板14と上板16との間のそれぞれにラバーヒーターを有する。   The triaxial test apparatus 10 of the present embodiment further includes a heating unit 20 for controlling the temperature of the rock sample 1 under test. In the present embodiment, as the heating unit 20, specifically, rubber heaters are provided inside each horizontal pressure plate 11 </ b> A, inside the vertical pressure plate 11 </ b> B, and between the upper surface fixing plate 14 and the upper plate 16. .

本実施形態では、水平方向加圧板11A及び垂直方向加圧板11Bは板面の方向に二分割されていると共に一方に凹部が形成され、当該凹部にラバーヒーター20が格納される。また、上面固定板14の上板16との当接側に凹部が形成され、当該凹部にラバーヒーター20が格納される。   In the present embodiment, the horizontal pressure plate 11A and the vertical pressure plate 11B are divided into two in the direction of the plate surface, and a recess is formed on one side, and the rubber heater 20 is stored in the recess. Further, a recess is formed on the contact side of the upper surface fixing plate 14 with the upper plate 16, and the rubber heater 20 is stored in the recess.

なお、前述の管20aは水平方向加圧板11Aに差し込まれてラバーヒーター20の格納空間に達しており、また、前述の管20bは垂直方向加圧板11Bに差し込まれてラバーヒーター20の格納空間に達している。そして、各ラバーヒーター20の電源線は、これら管20a,20b、或いは、上板16を垂直方向に貫通する貫通孔16aのいずれかを経由して三軸試験装置10の外部に引き出されて外部の電源装置(図示省略)に接続される。そして、当該外部の電源装置の操作によってラバーヒーター20の温度が制御される。   The tube 20a is inserted into the horizontal pressure plate 11A to reach the storage space for the rubber heater 20, and the tube 20b is inserted into the vertical pressure plate 11B to enter the storage space for the rubber heater 20. Has reached. And the power line of each rubber heater 20 is pulled out to the outside of the triaxial testing apparatus 10 via either the pipes 20a, 20b or the through hole 16a penetrating the upper plate 16 in the vertical direction. Connected to a power supply device (not shown). And the temperature of the rubber heater 20 is controlled by operation of the said external power supply device.

加熱部20を備えることにより、本実施形態の三軸試験装置10によれば、岩盤試料1の温度を制御しながら透水試験を行うことができる。   By providing the heating unit 20, according to the triaxial test apparatus 10 of the present embodiment, a water permeability test can be performed while controlling the temperature of the rock sample 1.

また、岩盤試料1の温度分布を把握する場合には、岩盤試料1の表面の複数箇所に熱電対等の温度計測センサを貼り付ける。そして、当該温度計測センサのケーブルは、前述のひずみゲージ等のセンサ類のケーブルを三軸試験装置10から取り出すためのケーブル取出し用通路を介して装置10の外側に取り出すようにする。   When grasping the temperature distribution of the rock sample 1, temperature measurement sensors such as thermocouples are attached to a plurality of locations on the surface of the rock sample 1. And the cable of the said temperature measurement sensor is taken out outside the apparatus 10 through the cable extraction path | route for taking out the cables of sensors, such as the above-mentioned strain gauge, from the triaxial test apparatus 10. FIG.

以上のように構成された本発明の岩盤試料透水試験方法によれば、いずれの方向についても止水効果が確保され、透水方向についても所望の圧力(荷重)を付加させて完全な三主応力条件下での透水試験を行うことができるので、岩盤の真の物性の把握に有用なデータを提供することができ、岩盤試料透水試験の有用性・信頼性の向上を図ることが可能になる。また、岩盤試料の温度を制御しつつ透水試験を行うことができるので、岩盤の真の物性の十分な把握に有用なデータを提供することができ、岩盤試料透水試験の有用性・信頼性の向上を図ることが可能になる。   According to the rock sample permeability test method of the present invention configured as described above, a water stop effect is ensured in any direction, and the desired three-dimensional stress is applied by adding a desired pressure (load) in the direction of permeability. Since the permeability test can be performed under conditions, it is possible to provide useful data for grasping the true physical properties of the rock mass, and to improve the usefulness and reliability of the rock sample permeability test. . In addition, since the permeability test can be performed while controlling the temperature of the rock sample, it is possible to provide data useful for sufficiently grasping the true physical properties of the rock sample, and the usefulness and reliability of the rock sample permeability test can be provided. Improvements can be made.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、三軸試験装置10が加熱部20を備えるようにしているが、本発明においては加熱部20は必須の構成ではない。例えば、岩盤の透水特性と力学特性とを把握するために完全な三主応力条件下で透水試験を行う場合、言い換えると、岩盤の熱特性の把握は不要であって岩盤試料1の温度の制御は不要である場合には加熱部20を有しない三軸試験装置10を用いるようにしても良い。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, in the present embodiment, the triaxial test apparatus 10 includes the heating unit 20, but the heating unit 20 is not an essential configuration in the present invention. For example, when conducting a permeability test under the complete three principal stress conditions to understand the permeability and mechanical properties of the rock mass, in other words, it is not necessary to grasp the thermal properties of the rock mass and control the temperature of the rock sample 1 If it is not necessary, the triaxial testing apparatus 10 that does not have the heating unit 20 may be used.

また、本実施形態では、加熱部20としてラバーヒーターを用いるようにしているが、本発明の加熱部20としては各加圧板11A,11Bや上面固定板14に熱を供給可能なものであればどのようなものでも良い。すなわち、ヒーターであればラバーヒーターには限られないし、或いは、各加圧板11A,11Bや上面固定板14内に流路を形成して当該流路に温度調整された流体を流動させるようにしても良い。   In the present embodiment, a rubber heater is used as the heating unit 20. However, as the heating unit 20 of the present invention, as long as heat can be supplied to the pressure plates 11 </ b> A and 11 </ b> B and the upper surface fixing plate 14. Any thing is good. That is, the heater is not limited to a rubber heater, or a flow path is formed in each of the pressure plates 11A and 11B and the upper surface fixing plate 14 so that the temperature-controlled fluid flows in the flow path. Also good.

また、本実施形態では、岩盤試料1の各面(即ち、六面)に導水板2を貼り付けるようにしているが、導水板2は試験対象の透水方向に基づいて岩盤試料1の注水側の面と排水側の面との二面のみに貼り付けるようにしても良い。   Moreover, in this embodiment, although the water guide plate 2 is affixed on each surface (namely, six surfaces) of the rock sample 1, the water guide plate 2 is the water injection side of the rock sample 1 based on the permeation direction of a test object. You may make it stick on only two surfaces, the surface of this, and the surface of a waste_water | drain side.

1 岩盤試料
2 導水板
2a 溝
3 被覆部材
11A 水平方向加圧板
11B 垂直方向加圧板
DESCRIPTION OF SYMBOLS 1 Rock sample 2 Water guide plate 2a Groove 3 Coating | coated member 11A Horizontal direction pressure plate 11B Vertical direction pressure plate

Claims (4)

岩盤試料の表面に当接する側に溝が形成された導水板を複数の面に貼り付けた状態の立方体形状の前記岩盤試料の全体を防水性と弾性とを有する被覆部材によって被覆し、該被覆部材によって被覆された前記岩盤試料に、立方体形状の各面の前記被覆部材に当接する加圧板によって三主応力を付加しながら、前記被覆部材を貫通して備えられる注水用配管を介して透水方向の注水側の前記導水板の溝に水を供給すると共に前記透水方向の排水側の前記導水板に到達した水を前記溝によって収集して前記被覆部材を貫通して備えられる排水用配管を介して排水して透水試験を行うことを特徴とする岩盤試料透水試験方法。   The cubic rock sample in a state in which a water guide plate having grooves formed on the side in contact with the surface of the rock sample is attached to a plurality of surfaces is covered with a covering member having waterproofness and elasticity, and the covering Permeability direction through the water injection pipe provided through the covering member while applying three principal stresses to the rock sample covered by the member by a pressure plate abutting the covering member on each surface of the cubic shape Water is supplied to the groove of the water guide plate on the water injection side, and the water that has reached the water guide plate on the drain side in the direction of water permeability is collected by the groove and passed through the drainage pipe provided through the covering member. The rock sample permeability test method is characterized by draining and conducting a permeability test. 前記被覆部材がシリコンラバーであることを特徴とする請求項1記載の岩盤試料透水試験方法。   The rock sample permeability test method according to claim 1, wherein the covering member is silicon rubber. 前記三主応力を付加する前記加圧板内に加熱部を設け、該加熱部によって前記岩盤試料の温度制御を行うことを特徴とする請求項1記載の岩盤試料透水試験方法。   The rock sample permeability test method according to claim 1, wherein a heating part is provided in the pressure plate to which the three principal stresses are applied, and the temperature of the rock sample is controlled by the heating part. 前記加熱部がラバーヒーターであることを特徴とする請求項3記載の岩盤試料透水試験方法。
The rock sample permeability test method according to claim 3, wherein the heating section is a rubber heater.
JP2010154330A 2010-07-06 2010-07-06 Rock sample permeability test method Expired - Fee Related JP5442546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154330A JP5442546B2 (en) 2010-07-06 2010-07-06 Rock sample permeability test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154330A JP5442546B2 (en) 2010-07-06 2010-07-06 Rock sample permeability test method

Publications (2)

Publication Number Publication Date
JP2012018015A true JP2012018015A (en) 2012-01-26
JP5442546B2 JP5442546B2 (en) 2014-03-12

Family

ID=45603382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154330A Expired - Fee Related JP5442546B2 (en) 2010-07-06 2010-07-06 Rock sample permeability test method

Country Status (1)

Country Link
JP (1) JP5442546B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655441A (en) * 2015-01-30 2015-05-27 北京交通大学 Tunnel model test rack
CN104677807A (en) * 2015-04-01 2015-06-03 河南理工大学 True-triaxial seepage characteristic and strength testing device for large-size soil sample
JP2015141192A (en) * 2014-01-30 2015-08-03 一般財団法人電力中央研究所 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member
CN104865177A (en) * 2015-06-18 2015-08-26 重庆大学 Large-scale bi-dimensional fractured rock mass shearing seepage meter
CN104964880A (en) * 2015-05-20 2015-10-07 中国矿业大学(北京) Industrial computer tomograghy (CT)-based heating seepage true-triaxial test box
CN105486623A (en) * 2016-01-18 2016-04-13 北京工业大学 Two-dimensional rock sample seepage testing device
CN105547863A (en) * 2016-01-18 2016-05-04 北京工业大学 Bidirectional sample conveying component and two-dimensional rock sample seepage test device applying same
CN105606461A (en) * 2015-12-30 2016-05-25 北京工业大学 Liftable loading mechanism and shear-seepage coupling testing device applying same
JP2016117997A (en) * 2014-12-18 2016-06-30 清水建設株式会社 Method and system for evaluating water permeation characteristic in front of tunnel pit face
CN107255598A (en) * 2017-07-05 2017-10-17 安徽理工大学 Make the confining pressure device that soil sample is easily taken out in a kind of hopkinson test
CN107436279A (en) * 2016-05-27 2017-12-05 中国石油化工股份有限公司 The axle rock permeability evaluating apparatus of high temperature three
CN107515183A (en) * 2017-08-22 2017-12-26 东北石油大学 Test coarse fracture condudtiviy experimental provision and test evaluation method
CN107941614A (en) * 2017-12-01 2018-04-20 绍兴文理学院 A kind of rock fracture creep test system
CN108444885A (en) * 2018-04-03 2018-08-24 山东大学 Tunnel fills structure seepage flow, erosion and stress coupling instability Mechanism experimental rig and method
CN108489879A (en) * 2018-02-06 2018-09-04 中国石油大学(北京) Core holding unit for permeability detection
CN108844871A (en) * 2018-03-12 2018-11-20 中国矿业大学 More infra-red radiation observation devices and method
CN109307628A (en) * 2018-09-29 2019-02-05 中铁隧道局集团有限公司 A kind of mud film shear strength test instrument and its method for measuring mud film shearing strength
CN109342291A (en) * 2018-11-12 2019-02-15 东北大学 Rock permeability measuring device and method under a kind of true triaxial stress unity couping
CN109540761A (en) * 2018-11-08 2019-03-29 河海大学 A kind of polyurea coating infiltration performance test device
CN109540760A (en) * 2018-11-08 2019-03-29 河海大学 A kind of polyurea coating infiltration performance test method
JP2020125970A (en) * 2019-02-04 2020-08-20 新東工業株式会社 Parameter acquisition method and sand mold triaxial compression tester
JP2020125969A (en) * 2019-02-04 2020-08-20 新東工業株式会社 Parameter acquisition method and sand mold single shear tester
WO2020211505A1 (en) * 2019-04-15 2020-10-22 山东大学 Integrated test device and method for filling karst cave deposition and tunnel intermittent-type water outburst and mud outburst catastrophes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092275B (en) * 2015-07-31 2017-07-28 河南理工大学 It is a kind of can biaxial loadings tunnel model test device
CN111982772B (en) * 2020-08-05 2021-09-24 东北大学 Resistivity imaging-based coal rock humidity diffusion identification test device and method
CN111929221B (en) * 2020-09-11 2021-12-28 中南大学 Deep surrounding rock seepage stability analysis device and method under strong power disturbance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599834A (en) * 1991-06-04 1993-04-23 Mitsubishi Materials Corp Water penetration test device of rock sample
JPH07198582A (en) * 1993-12-29 1995-08-01 Taisei Corp Water permeation tester and method of inspecting water channel
JP2000081378A (en) * 1998-09-07 2000-03-21 Central Res Inst Of Electric Power Ind Three-axis cell, three-axis testing device, and three-axis testing method
JP2000314691A (en) * 1999-05-06 2000-11-14 Saginomiya Seisakusho Inc Control method in material testing device and material testing device
JP2001349813A (en) * 2000-06-07 2001-12-21 Ohbayashi Corp Water cutoff structure for testing water permeation, effective stress, hydraulic fracturing or the like in lock bed tester
JP2008046086A (en) * 2006-08-21 2008-02-28 Kagawa Univ Water penetration test machine and water penetration test method
JP2010071445A (en) * 2008-09-22 2010-04-02 Seiko Epson Corp Workpiece treating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599834A (en) * 1991-06-04 1993-04-23 Mitsubishi Materials Corp Water penetration test device of rock sample
JPH07198582A (en) * 1993-12-29 1995-08-01 Taisei Corp Water permeation tester and method of inspecting water channel
JP2000081378A (en) * 1998-09-07 2000-03-21 Central Res Inst Of Electric Power Ind Three-axis cell, three-axis testing device, and three-axis testing method
JP2000314691A (en) * 1999-05-06 2000-11-14 Saginomiya Seisakusho Inc Control method in material testing device and material testing device
JP2001349813A (en) * 2000-06-07 2001-12-21 Ohbayashi Corp Water cutoff structure for testing water permeation, effective stress, hydraulic fracturing or the like in lock bed tester
JP2008046086A (en) * 2006-08-21 2008-02-28 Kagawa Univ Water penetration test machine and water penetration test method
JP2010071445A (en) * 2008-09-22 2010-04-02 Seiko Epson Corp Workpiece treating apparatus

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141192A (en) * 2014-01-30 2015-08-03 一般財団法人電力中央研究所 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member
JP2016117997A (en) * 2014-12-18 2016-06-30 清水建設株式会社 Method and system for evaluating water permeation characteristic in front of tunnel pit face
CN104655441A (en) * 2015-01-30 2015-05-27 北京交通大学 Tunnel model test rack
CN104677807A (en) * 2015-04-01 2015-06-03 河南理工大学 True-triaxial seepage characteristic and strength testing device for large-size soil sample
CN104964880A (en) * 2015-05-20 2015-10-07 中国矿业大学(北京) Industrial computer tomograghy (CT)-based heating seepage true-triaxial test box
CN104865177A (en) * 2015-06-18 2015-08-26 重庆大学 Large-scale bi-dimensional fractured rock mass shearing seepage meter
CN105606461A (en) * 2015-12-30 2016-05-25 北京工业大学 Liftable loading mechanism and shear-seepage coupling testing device applying same
CN105486623A (en) * 2016-01-18 2016-04-13 北京工业大学 Two-dimensional rock sample seepage testing device
CN105547863A (en) * 2016-01-18 2016-05-04 北京工业大学 Bidirectional sample conveying component and two-dimensional rock sample seepage test device applying same
CN107436279A (en) * 2016-05-27 2017-12-05 中国石油化工股份有限公司 The axle rock permeability evaluating apparatus of high temperature three
CN107255598B (en) * 2017-07-05 2020-01-07 安徽理工大学 Confining pressure device for enabling soil sample to be taken out easily in Hopkinson test
CN107255598A (en) * 2017-07-05 2017-10-17 安徽理工大学 Make the confining pressure device that soil sample is easily taken out in a kind of hopkinson test
CN107515183A (en) * 2017-08-22 2017-12-26 东北石油大学 Test coarse fracture condudtiviy experimental provision and test evaluation method
CN107515183B (en) * 2017-08-22 2019-11-01 东北石油大学 Test coarse fracture condudtiviy experimental provision and test evaluation method
CN107941614A (en) * 2017-12-01 2018-04-20 绍兴文理学院 A kind of rock fracture creep test system
CN108489879A (en) * 2018-02-06 2018-09-04 中国石油大学(北京) Core holding unit for permeability detection
CN108844871A (en) * 2018-03-12 2018-11-20 中国矿业大学 More infra-red radiation observation devices and method
CN108444885A (en) * 2018-04-03 2018-08-24 山东大学 Tunnel fills structure seepage flow, erosion and stress coupling instability Mechanism experimental rig and method
CN108444885B (en) * 2018-04-03 2021-02-23 山东大学 Tunnel filling structure seepage, erosion and stress coupling instability test device and method
CN109307628A (en) * 2018-09-29 2019-02-05 中铁隧道局集团有限公司 A kind of mud film shear strength test instrument and its method for measuring mud film shearing strength
CN109307628B (en) * 2018-09-29 2024-04-26 中铁隧道局集团有限公司 Mud film shear strength test instrument and mud film shear strength measurement method thereof
CN109540760A (en) * 2018-11-08 2019-03-29 河海大学 A kind of polyurea coating infiltration performance test method
CN109540761A (en) * 2018-11-08 2019-03-29 河海大学 A kind of polyurea coating infiltration performance test device
CN109540760B (en) * 2018-11-08 2021-06-08 河海大学 Method for testing permeability of polyurea coating material
CN109342291A (en) * 2018-11-12 2019-02-15 东北大学 Rock permeability measuring device and method under a kind of true triaxial stress unity couping
JP2020125970A (en) * 2019-02-04 2020-08-20 新東工業株式会社 Parameter acquisition method and sand mold triaxial compression tester
JP2020125969A (en) * 2019-02-04 2020-08-20 新東工業株式会社 Parameter acquisition method and sand mold single shear tester
JP7246631B2 (en) 2019-02-04 2023-03-28 新東工業株式会社 How to get parameters
JP7246632B2 (en) 2019-02-04 2023-03-28 新東工業株式会社 How to get parameters
WO2020211505A1 (en) * 2019-04-15 2020-10-22 山东大学 Integrated test device and method for filling karst cave deposition and tunnel intermittent-type water outburst and mud outburst catastrophes

Also Published As

Publication number Publication date
JP5442546B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5442546B2 (en) Rock sample permeability test method
CN105181253B (en) The duct piece specimen and its manufacture method tested for Longitudinal Joint between Segments anti-permeability performance
KR101715110B1 (en) Apparatus for measuring strength and deformation of rock
CN103674679B (en) Fracture-cavity type carbonate reservoir environment mechanical property test device and test method
CN103698218A (en) Simulated testing device for hydraulic fracture of concrete member under different stress conditions
CN106289962B (en) In-situ test system capable of observing deformation and damage of sample gauge length section in high-low power on-line manner
US20120132008A1 (en) Fiber optic load measurement device
CN109187270A (en) Rheology characteristics of soil monitoring device under a kind of high temperature and pressure
KR101307297B1 (en) Apparatus for measuring hydraulic properties of rock sample
CN211453275U (en) Soft rock damage failure instability and dynamic permeability characteristic basic data acquisition device
KR20150104494A (en) Device for Calculation of Physical Property of Model Ice in Ice Basin
RU153908U1 (en) MEASURING COMPLEX FOR TESTS OF CONSTRUCTION STRUCTURES, BUILDINGS AND CONSTRUCTIONS
Li et al. Mechanical characterization of functionally graded soft materials with ultrasound elastography
KR101279210B1 (en) Electrochemical fatigue sensor system and methods
CN114166716A (en) Rock three-dimensional seepage characteristic measurement test device and method
CN208396706U (en) The long monitoring system of rock core seam
CN106018266A (en) Rock expansion test device
CN112326076A (en) Pressure sensor and installation mechanism thereof
CN206573239U (en) Pressure sensor and soil pressure monitoring device
CN105445176A (en) Apparatus for evaluating concrete endurance under pressure
CN111610315B (en) Bentonite building block single joint healing effect testing device and method
KR101756980B1 (en) Direct shear testing apparatus for being capable of temperature measurement
CN205091238U (en) Concrete material test room is with on --spot with physics accelerated corrosion test device
CN217277709U (en) Non-aqueous reaction high polymer grouting material anti-permeability performance testing device
CN216747296U (en) Rock mass three-dimensional seepage characteristic measurement test device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5442546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees