JP2015141192A - Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member - Google Patents

Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member Download PDF

Info

Publication number
JP2015141192A
JP2015141192A JP2014016212A JP2014016212A JP2015141192A JP 2015141192 A JP2015141192 A JP 2015141192A JP 2014016212 A JP2014016212 A JP 2014016212A JP 2014016212 A JP2014016212 A JP 2014016212A JP 2015141192 A JP2015141192 A JP 2015141192A
Authority
JP
Japan
Prior art keywords
environment
container
buried
model
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014016212A
Other languages
Japanese (ja)
Inventor
壮志 西本
Soji Nishimoto
壮志 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2014016212A priority Critical patent/JP2015141192A/en
Publication of JP2015141192A publication Critical patent/JP2015141192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a container for storing a buried environmental member model for evaluating behavior of a buried environmental field of an underground isolation member including affection of surrounding rocks.SOLUTION: A container 12 has a container body 32 for storing a sample, and is configured so that: a non-contact displacement gauge 24 detects displacement of an underground isolation member 21; an earth pressure gauge 25 detects a swelling state of a buffer material 22; a strain sensor detects displacement of a rock member 23; and the container body 32 is disposed at a predetermined place, so that the behaviors of the underground isolation member 21, buffer material 22, and rock member 23 are evaluated.

Description

本発明は、廃棄物等の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器に関する。   The present invention relates to a container that accommodates a buried environment member model for evaluating the behavior of a buried environment field of a ground isolation member such as waste.

放射性廃棄物を地下深部の岩盤中に埋設処分する処分施設が知られている。放射性廃棄物を埋設処分する施設では、放射性廃棄物が容器に密閉されて地中隔離部材とされ、地中隔離部材が地下数百メートルの岩盤に埋設されている。   Disposal facilities that bury radioactive waste in bedrock deep underground are known. In a facility where radioactive waste is buried and buried, the radioactive waste is sealed in a container as a ground isolation member, and the ground isolation member is buried in a bedrock several hundred meters underground.

地中隔離部材は、放射性廃棄物が格納容器に密閉され、格納容器の周囲に難透水層を構築するために、透水性が極めて低いベントナイト系の材料、例えば、ベントナイトの緩衝材、もしくは、ベントナイトと砂を混合した緩衝材で格納容器が包まれて構成されている(例えば、特許文献1)。   The underground isolation member is a bentonite-based material, for example, a bentonite buffer material or a bentonite, in which radioactive waste is sealed in the containment vessel and a poorly permeable layer is constructed around the containment vessel. The storage container is wrapped with a cushioning material in which sand and sand are mixed (for example, Patent Document 1).

地中隔離部材は、廃棄物の発熱による緩衝材や岩盤の変形、地下水の影響、土圧による岩盤の変形等、熱、水、応力の複合的な現象の影響を受けることになる。このため、地中隔離部材は、長年の隔離により埋設環境が変化する。   The ground isolation member is affected by combined phenomena of heat, water, and stress, such as deformation of buffer material and rock mass due to heat generation of waste, influence of groundwater, deformation of rock mass due to earth pressure, etc. For this reason, the underground environment of the underground isolation member changes due to isolation for many years.

長期に亘り地中隔離部材を安定して埋設するためには、熱、水、応力の相互作用の影響を考慮して相当の長期に亘り埋設環境の評価を行い地中隔離部材の挙動を評価する必要がある。この場合、周辺の岩盤の影響を含めて埋設環境の評価を行うことになるが、周辺の岩盤の影響を含めて埋設環境の評価を行い、地中隔離部材の埋設環境場の挙動評価を行う技術は確立されていないのが現状である。   In order to stably embed underground isolation members over a long period of time, the effects of the interaction of heat, water, and stress are taken into account, and the behavior of the underground isolation member is evaluated by evaluating the embedded environment for a considerable period of time. There is a need to. In this case, the embedded environment will be evaluated including the influence of the surrounding rock mass, but the embedded environment will be evaluated including the influence of the surrounding rock mass and the behavior of the buried environment field of the underground isolation member will be evaluated. The technology is not established yet.

特開2003―211113号公報JP 2003-211113 A

本発明は上記状況に鑑みてなされたもので、周辺の岩盤の影響を含めた地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a container that accommodates a buried environment member model for evaluating the behavior of a buried environment field of a ground isolation member including the influence of surrounding rocks. And

上記目的を達成するための請求項1に係る本発明の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器は、地中隔離部材の周囲に緩衝材が配され、更に、岩盤部材が周囲に配された埋設環境部材模型を収容する容器であって、周辺が覆われた状態で前記埋設環境部材模型が収容される容器本体と、前記容器本体に設けられ前記地中隔離部材の変位を検出する第1変位検出手段と、前記容器本体に設けられ前記緩衝材の膨潤状況を検出する膨潤検出手段と、前記岩盤部材の変位を検出する第2変位検出手段と、前記埋設環境部材模型を一方向に加圧する一方向加圧手段と、一方向に交差する方向に前記埋設環境部材模型を加圧する他方向加圧手段と、前記埋設環境部材模型に通水を行う通水手段とを備えたことを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the container for storing the buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member according to the present invention has a buffer material around the underground isolation member. A container body for accommodating a buried environmental member model in which a rock member is disposed around, and a container body in which the buried environment member model is housed in a state where the periphery is covered, and provided in the container body First displacement detection means for detecting the displacement of the ground isolation member, swelling detection means for detecting the swelling state of the buffer material provided in the container body, and second displacement detection for detecting the displacement of the rock member. Means, a one-way pressurizing unit that pressurizes the embedded environmental member model in one direction, an other-direction pressurizing unit that pressurizes the embedded environmental member model in a direction crossing the one direction, and the embedded environmental member model. Provided with water flow means for carrying out water And features.

請求項1に係る本発明では、地中隔離部材の周囲に緩衝材が配され、更に、岩盤部材が周囲に配され埋設環境部材模型が容器本体に収容され、容器本体が所定の場所に配されて地中隔離部材、緩衝材、岩盤部材の挙動が評価される。第1変位検出手段により地中隔離部材の変位が検出され、膨潤検出手段により緩衝材の膨潤状況が検出され、第2変位検出手段によって岩盤部材の変位が検出される。   According to the first aspect of the present invention, a cushioning material is disposed around the ground isolation member, a rock member is disposed around, the embedded environmental member model is accommodated in the container body, and the container body is disposed at a predetermined place. Then, the behavior of the underground isolation member, the buffer material, and the rock mass member is evaluated. The displacement of the ground isolation member is detected by the first displacement detection means, the swelling state of the buffer material is detected by the swelling detection means, and the displacement of the rock member is detected by the second displacement detection means.

これにより、周辺の岩盤の影響を含めた地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器とすることができる。   Thereby, it can be set as the container which accommodates the buried environment member model for performing the behavior evaluation of the buried environment field of the underground isolation member including the influence of the surrounding rock.

そして、請求項2に係る本発明の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器は、請求項1に記載の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器において、前記第1変位検出手段は、前記地中隔離部材の変位を前記緩衝材の空洞部を通して非接触で検出する非接触変位手段であり、前記膨潤検出手段は、前記緩衝材の圧力を検出することで前記緩衝材の膨潤状況を検出する圧力検出手段であり、前記第2変位検出手段は、前記岩盤部材に取り付けられてひずみを検出するひずみ検出手段であり、前記一方向加圧手段は、流体圧により駆動して埋設環境部材模型を一方側に押圧するピストンであり、前記他方向加圧手段は、前記埋設環境部材模型の前記一方向に対して交差する方向の周囲に弾性膜材を介して形成される流体室であることを特徴とする。   And the container which accommodates the buried environment member model for performing the behavioral evaluation of the buried environment field of the underground isolation member of the present invention according to claim 2 is the buried environment field of the underground isolation member according to claim 1. In the container for storing the buried environment member model for performing behavior evaluation, the first displacement detecting means is a non-contact displacement means for detecting the displacement of the underground isolation member in a non-contact manner through the cavity of the buffer material. The swelling detection means is a pressure detection means for detecting the swelling state of the buffer material by detecting the pressure of the buffer material, and the second displacement detection means is attached to the rock member and detects strain. Strain detecting means, and the one-way pressurizing means is a piston that is driven by fluid pressure to press the embedded environment member model to one side, and the other-direction pressurizing means is the piston of the embedded environment member model Pair in one direction Characterized in that it is a fluid chamber formed through the elastic film material around a direction crossing Te.

請求項2に係る本発明では、非接触変位計で地中隔離部材の変位が検出され、圧力検出手段により緩衝材の膨潤状況が検出され、ピストン、及び、流体室への流体の供給により埋設環境部材模型を3軸方向に加圧することができる。   In the present invention according to claim 2, the displacement of the ground isolation member is detected by the non-contact displacement meter, the swelling state of the buffer material is detected by the pressure detection means, and embedded by supplying the fluid to the piston and the fluid chamber The environmental member model can be pressurized in three axial directions.

また、請求項3に係る本発明の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器は、請求項2に記載の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器において、前記埋設環境部材模型における、前記地中隔離部材は円柱形であり、緩衝部材は、前記地中隔離部材の周囲の軸方向に複数積層されて配されるリング状のベントナイト系部材であり、前記岩盤部材は、複数積層されたベントナイト系部材の周囲に配される筒状の岩盤部材であり、筒状の前記埋設環境部材模型の軸方向が一方向とされて前記埋設環境部材模型が前記容器本体に収容され、前記容器本体は、筒状の前記埋設環境部材模型の端面部の一方面が支持される架台部材と、架台部材の上面に配され、筒状の前記埋設環境部材模型の筒面が、前記他方向加圧手段の前記流体室となる隙間を介して保持される外筒枠体と、前記外筒枠体の上部側に配され、前記埋設環境部材模型の端面部の他方面が支持される上蓋部材とで構成され、前記一方向加圧手段の前記ピストンは、前記架台部材の上面と前記埋設環境部材模型の端面部の一方面との間に設けられ、前記架台部材には、前記ピストンを駆動して前記埋設環境部材模型に軸圧を発生させるための圧水を供給する圧水供給手段、及び、前記他方向加圧手段の前記流体室に圧水を供給する拘束圧水供給手段が設けられ、前記非接触変位手段、及び、前記圧力検出手段は、前記上蓋部材に保持されていることを特徴とする。   In addition, a container for storing a buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member according to claim 3 of the buried environment field of the underground isolation member according to claim 2 is provided. In the container for storing the embedded environment member model for performing behavior evaluation, the underground isolation member in the embedded environment member model is cylindrical, and a plurality of buffer members are provided in the axial direction around the underground isolation member. It is a ring-shaped bentonite-based member arranged in a stacked manner, and the rock member is a cylindrical rock member arranged around a plurality of laminated bentonite-based members, The embedded environment member model is accommodated in the container main body with the axial direction being one direction, and the container main body includes a gantry member on which one surface of the end surface portion of the cylindrical embedded environment member model is supported, and a gantry member It is arranged on the upper surface of the cylinder A cylindrical surface of the embedded environment member model is disposed on an outer cylinder frame body held via a gap serving as the fluid chamber of the other-direction pressurizing unit, and an upper side of the outer cylinder frame body, and the embedded environment An upper lid member that supports the other surface of the end surface portion of the member model, and the piston of the one-way pressurizing means is between the upper surface of the gantry member and one surface of the end surface portion of the embedded environment member model. A pressure water supply means for supplying pressure water for driving the piston to generate an axial pressure on the buried environment member model, and the fluid of the other direction pressurization means. Restricted pressure water supply means for supplying pressurized water to the chamber is provided, and the non-contact displacement means and the pressure detection means are held by the upper lid member.

請求項3に係る本発明では、筒状の埋設環境部材模型を収容し、圧水供給手段により圧水を供給してピストンを駆動させることで埋設環境部材模型に軸力を発生させると共に、拘束圧水供給手により圧水を流体室に供給して埋設環境部材模型を周囲から拘束し、埋設環境部材模型を3軸方向で加圧する。   According to the third aspect of the present invention, the cylindrical embedded environment member model is accommodated, the pressurized water is supplied by the pressurized water supply means and the piston is driven to generate the axial force on the embedded environment member model and Pressure water is supplied to the fluid chamber by a pressurized water supplier to restrain the embedded environment member model from the surroundings, and pressurize the embedded environment member model in three axial directions.

本発明の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器は、周辺の岩盤の影響を含めた地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器とすることが可能になる。   The container containing the buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member of the present invention is for evaluating the behavior of the buried environment field of the buried isolation member including the influence of the surrounding rock mass. It becomes possible to set it as the container which accommodates the buried environment member model.

本発明の一実施例に係る容器を使用した地中隔離部材の埋設環境場の挙動評価装置の全体構成を表す概略側面図である。It is a schematic side view showing the whole structure of the behavior evaluation apparatus of the underground environment field of the underground isolation member using the container which concerns on one Example of this invention. 埋設環境部材模型である試料の外観図である。It is an external view of the sample which is a buried environment member model. 埋設環境部材模型である試料の一部破断外観図である。It is a partially broken external view of the sample which is an embedded environment member model. 本発明の一実施例に係る容器の側断面図である。It is a sectional side view of the container which concerns on one Example of this invention. 本発明の一実施例に係る容器の平面断面図である。It is a plane sectional view of the container concerning one example of the present invention. 変位の経時変化を表すグラフである。It is a graph showing the time-dependent change of a displacement.

本発明の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器を用いた地中隔離部材の埋設環境場の挙動評価装置は、地中隔離部材が埋設環境の状態にされた試料、例えば、放射性廃棄物を緩衝材で隔離し、その周囲に岩盤部材が配された試料の挙動を把握・評価する装置である。つまり、放射性廃棄物を隔離する処分施設における岩盤を含めた周辺の環境の挙動を把握・評価する装置である。   The behavior evaluation device for the buried environment field of the underground isolation member using the container for storing the buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member of the present invention is the It is an apparatus that grasps and evaluates the behavior of a sample placed in the above state, for example, a radioactive waste isolated by a buffer material and a rock member around it. In other words, it is a device that grasps and evaluates the behavior of the surrounding environment including the bedrock in a disposal facility that isolates radioactive waste.

試料は容器に収容されて圧密、透水等の外力が印加され、地下数百メートルの環境に相当する応力が試料に加えられる。この状態で、挙動評価装置1は遠心力場の相似則により容器に自重応力を発生させ、地下数百メートルの環境に相当する状況(圧密、透水現象)を加速させ、埋設環境場での地中隔離部材の長期にわたる挙動を評価する。   The sample is accommodated in a container, and external force such as compaction and water permeability is applied, and stress corresponding to an environment of several hundred meters underground is applied to the sample. In this state, the behavior evaluation apparatus 1 generates a self-weight stress in the container according to the similarity law of the centrifugal force field, accelerates the situation corresponding to the environment of several hundred meters underground (consolidation, water permeability phenomenon), and the ground in the buried environment field. Evaluate the long-term behavior of the separator.

図1に基づいて挙動評価装置を具体的に説明する。   The behavior evaluation apparatus will be specifically described with reference to FIG.

図1には本発明の一実施例に係る容器を使用した地中隔離部材の埋設環境場の挙動評価装置の全体構成を説明するための概略側面を示してある。   FIG. 1 shows a schematic side view for explaining the overall configuration of a behavior evaluation device for a buried environment field of a ground isolation member using a container according to an embodiment of the present invention.

挙動評価装置1は、鉛直方向に延びる中心軸S(軸心)を中心に中心回転軸2が回転自在に設けられている。中心回転軸2は図示しない駆動手段により所定の回転速度で駆動回転される。中心回転軸2の下部には、水平方向(軸方向に直交する方向)に延びる回転アーム3の基端が設けられている。   The behavior evaluation apparatus 1 is provided with a central rotation shaft 2 that is rotatable about a central axis S (axial center) extending in the vertical direction. The central rotating shaft 2 is driven and rotated at a predetermined rotational speed by a driving means (not shown). A base end of the rotating arm 3 extending in the horizontal direction (a direction orthogonal to the axial direction) is provided at the lower portion of the central rotating shaft 2.

中心回転軸2を挟んで回転アーム3の反対側にはカウンターアーム4の基端が設けられ、カウンターアーム4の先端にはカウンターウエイト5が回動自在に吊り下げ支持されている。回転アーム3の先端には保持部6が回動自在に吊り下げ支持され、保持部6には埋設環境部材模型としての試料11(詳細は後述する)が収容された容器12(詳細は後述する)が保持される。   A base end of a counter arm 4 is provided on the opposite side of the rotary arm 3 with the central rotary shaft 2 interposed therebetween, and a counter weight 5 is supported by being suspended from the tip of the counter arm 4 so as to be rotatable. A holding unit 6 is rotatably supported at the tip of the rotary arm 3, and a container 12 (details will be described later) in which the sample 11 (details will be described later) is stored in the holding unit 6. ) Is held.

中心回転軸2が中心軸Sを中心に駆動回転されることにより、回転アーム3及びカウンターアーム4が所定の速度で旋回する。回転アーム3及びカウンターアーム4の旋回により、遠心力が働いてカウンターウエイト5及び保持部6の底部が外側に回動し、回転アーム3及びカウンターアーム4と、カウンターウエイト5及び保持部6とが一直線上に配された状態で旋回する。これにより、容器12(試料11)の自重方向に遠心加速度が加えられる。   When the central rotating shaft 2 is driven and rotated about the central axis S, the rotating arm 3 and the counter arm 4 are turned at a predetermined speed. As the rotating arm 3 and the counter arm 4 are turned, a centrifugal force is applied to rotate the bottom portions of the counter weight 5 and the holding portion 6 outward, so that the rotating arm 3 and the counter arm 4, the counter weight 5 and the holding portion 6 are moved. Turn in a straight line. As a result, centrifugal acceleration is applied in the direction of the weight of the container 12 (sample 11).

具体的には後述するが、容器12には試料11に外力(互いに直交する3軸方向の圧力、透水圧力)が作用する構成部材が備えられ、外力を印加するための水圧供給装置15が備えられている。中心回転軸2には水圧供給装置15(送水ポンプ)からの圧水を容器12に供給するための接続部材16が備えられ、圧力発生装置17を介して所定の圧力の圧水が容器12に供給される(外力印加手段)。   As will be described in detail later, the container 12 is provided with structural members that act on the sample 11 with external forces (pressures in three axial directions orthogonal to each other, water permeability pressure), and a water pressure supply device 15 for applying external forces. It has been. The central rotating shaft 2 is provided with a connecting member 16 for supplying pressurized water from a water pressure supply device 15 (water feed pump) to the container 12, and pressurized water having a predetermined pressure is supplied to the container 12 via the pressure generator 17. Supplied (external force applying means).

尚、試料11を所望の温度に保持する加熱手段等、埋設環境場を再現するための機器を適宜備えることが可能である。   In addition, it is possible to appropriately include equipment for reproducing the embedded environment field, such as a heating means for holding the sample 11 at a desired temperature.

容器12に収容された試料11の状況(変位等)が送られる記憶手段18が備えられ、記憶手段18に記憶された情報は制御装置19に送られる。制御装置19では、自重方向に遠心加速度が加えられた状況の下での試料11の状況(変位等)に基づいて、試料11の挙動が評価される。具体的には、試料11の状況(変位等)が遠心力場の相似則により加速されて評価され、例えば、地中隔離部材の埋設環境場の挙動が評価される。   A storage unit 18 for sending the status (displacement, etc.) of the sample 11 accommodated in the container 12 is provided, and the information stored in the storage unit 18 is sent to the control device 19. In the control device 19, the behavior of the sample 11 is evaluated based on the state (displacement or the like) of the sample 11 under a state where centrifugal acceleration is applied in the direction of its own weight. Specifically, the situation (displacement, etc.) of the sample 11 is evaluated by being accelerated by the similarity law of the centrifugal force field, and for example, the behavior of the buried environment field of the underground isolation member is evaluated.

これにより、複数の要因の相互作用の影響を考慮して長期間の埋設環境を物理的に評価して地中隔離部材の埋設環境場での挙動評価を行うことが可能になる。   This makes it possible to evaluate the behavior of the underground isolation member in the embedded environment field by physically evaluating the embedded environment for a long period in consideration of the influence of the interaction of a plurality of factors.

図2、図3に基づいて試料11の一例を具体的に説明する。図2には試料11の外観状況、図3には試料11の一部破断概観状況を示してある。   An example of the sample 11 will be specifically described with reference to FIGS. FIG. 2 shows the appearance of the sample 11 and FIG. 3 shows the partially broken overview of the sample 11.

埋設環境部材の縮尺模型としての試料11は、円柱形の地中隔離部材21を備え、地中隔離部材21の周囲の軸方向にベントナイト系部材のリング状の緩衝材22が複数積層されて配されている。緩衝材22の周囲には筒状の岩盤部材23が配され、例えば、廃棄物を隔離する処分施設における岩盤を含めた周辺の環境の部材とされている。   A sample 11 as a scale model of an embedded environment member includes a cylindrical underground isolation member 21, and a plurality of bent cushion members 22 of bentonite members are stacked in the axial direction around the underground isolation member 21. Has been. A cylindrical rock member 23 is arranged around the cushioning material 22 and is, for example, a member of the surrounding environment including the rock in a disposal facility for isolating waste.

地中隔離部材21の上面部には、第1変位検出手段として渦電流式の非接触変位計24(図4参照)が配され、非接触変位計24(図4参照)により地中隔離部材21の変位量が検出される。また、地中隔離部材21の緩衝材22の上面部には、膨潤検出手段としてひずみゲージ式の土圧計25(図4参照)が設けられ、土圧計25(図4参照)により緩衝材22の膨潤状況(膨潤特性)が検出される。   An eddy current type non-contact displacement meter 24 (see FIG. 4) is disposed on the upper surface of the ground isolation member 21 as a first displacement detecting means. The non-contact displacement meter 24 (see FIG. 4) provides a ground isolation member. 21 displacement amounts are detected. Further, a strain gauge type earth pressure gauge 25 (see FIG. 4) is provided as a swelling detection means on the upper surface of the buffer material 22 of the underground isolation member 21, and the earth pressure gauge 25 (see FIG. 4) The swelling state (swelling characteristic) is detected.

岩盤部材23の周囲の筒部には、第2変位検出手段としてのひずみセンサー26が軸方向に複数個(図示例では4個)設けられている(ひずみセンサー26a、26b、26c、26d)。ひずみセンサー26により、岩盤部材23の軸方向の所望位置(試料11のの軸方向の所望位置)におけるひずみが検出される。   A plurality of strain sensors 26 (four in the illustrated example) as the second displacement detecting means are provided in the cylindrical portion around the rock member 23 in the axial direction (strain sensors 26a, 26b, 26c, 26d). The strain at the desired position in the axial direction of the rock member 23 (the desired position in the axial direction of the sample 11) is detected by the strain sensor 26.

上述した試料11は後述する容器に収容され、容器に保持された状態の非接触変位計24、土圧計25、ひずみセンサー26により、地中隔離部材21(廃棄物)の変位量、緩衝材22の膨潤挙動、岩盤部材23のひずみ量が検出される。   The sample 11 described above is accommodated in a container described later, and the displacement of the ground isolation member 21 (waste) and the buffer material 22 are measured by the non-contact displacement gauge 24, the earth pressure gauge 25, and the strain sensor 26 held in the container. The swelling behavior and the amount of strain of the rock member 23 are detected.

尚、地中隔離部材21に温度調整手段としてヒーターを取り付け、実物の地下環境での所望の温度に、地中隔離部材21の温度を制御することも可能である。   It is also possible to attach a heater as a temperature adjusting means to the underground isolation member 21 and control the temperature of the underground isolation member 21 to a desired temperature in the actual underground environment.

図4、図5に基づいて本発明の一実施例に係る容器を具体的に説明する。   A container according to an embodiment of the present invention will be specifically described with reference to FIGS.

図4には容器の側断面、図5には容器の平面断面を示してある。   FIG. 4 shows a side cross section of the container, and FIG. 5 shows a plane cross section of the container.

容器12は、試料11を収容する容器本体32を備え、容器本体32に収容された試料11に対し、軸方向及び周方向から地下数百メートルの環境に相当する応力が加えられる。即ち、試料11は、容器本体32の内部で互いに直交する3軸方向の面内で圧力が印加されて埋設環境の状態にされる。容器本体32は、架台部材33、筒状の外筒枠体34、上蓋部材35により構成されている。   The container 12 includes a container main body 32 that stores the sample 11, and stress corresponding to an environment of several hundred meters underground from the axial direction and the circumferential direction is applied to the sample 11 stored in the container main body 32. That is, the sample 11 is placed in a state of an embedded environment by applying pressure in the plane of the three axial directions orthogonal to each other inside the container main body 32. The container body 32 includes a gantry member 33, a cylindrical outer cylinder frame 34, and an upper lid member 35.

容器本体32の架台部材33は、筒状の試料11の下側の端面部(一方面)を支持している。架台部材33の上面の外周部には外筒枠体34が設けられ、外筒枠体34の内周には、試料11の筒面が空洞部41(流体室となる隙間)を介して保持される。空洞部41の試料11の筒面との境界には弾性膜材としてのゴムスリーブ42が配されている。   The gantry member 33 of the container body 32 supports the lower end surface portion (one surface) of the cylindrical sample 11. An outer cylinder frame 34 is provided on the outer periphery of the upper surface of the gantry member 33, and the cylinder surface of the sample 11 is held via a cavity 41 (a gap serving as a fluid chamber) on the inner periphery of the outer cylinder frame 34. Is done. A rubber sleeve 42 as an elastic film material is disposed at the boundary between the hollow portion 41 and the cylindrical surface of the sample 11.

外筒枠体34の上部側には、試料11の上側の端面部(他方面)が支持される上蓋部材35が設けられている。上蓋部材35には非接触変位計24、土圧計25が保持される。   On the upper side of the outer cylinder frame 34, an upper lid member 35 on which the upper end surface portion (the other surface) of the sample 11 is supported is provided. A non-contact displacement gauge 24 and a soil pressure gauge 25 are held on the upper lid member 35.

外筒枠体34の内側(ゴムスリーブ42の内側)における架台部材33の上面側にはシリンダ室37が形成され、シリンダ室37の内部にはピストン38(一方向加圧手段:外力印加手段)が設けられている。試料11の底面(一方面)には透水板36が設けられ、ピストン38の駆動により透水板36を介して試料11が上方側(一方側)に押圧される。   A cylinder chamber 37 is formed on the upper surface side of the gantry member 33 inside the outer cylinder frame 34 (inside the rubber sleeve 42), and a piston 38 (one-way pressurizing means: external force applying means) is formed inside the cylinder chamber 37. Is provided. A water permeable plate 36 is provided on the bottom surface (one surface) of the sample 11, and the sample 11 is pressed upward (one side) through the water permeable plate 36 by driving the piston 38.

シリンダ室37に注水を行うための圧水供給手段45が備えられ、圧水供給手段45からシリンダ室37に圧水が供給されてピストン38が駆動される(軸圧を発生させる)。ピストン38を介して透水板36に送水して試料11に通水を行う通水手段46が備えられ、通水手段46から試料11に通水が行われる。   Pressure water supply means 45 for injecting water into the cylinder chamber 37 is provided, and pressure water is supplied from the pressure water supply means 45 to the cylinder chamber 37 to drive the piston 38 (generate axial pressure). A water passage means 46 is provided for supplying water to the water permeable plate 36 through the piston 38 and allowing water to pass through the sample 11, and water is passed from the water passage means 46 to the sample 11.

また、空洞部41に圧水を供給する他方向加圧手段としての拘束圧水供給手段47が備えられ、拘束圧水供給手段47から空洞部41に圧水が供給される。これにより、ゴムスリーブ42を介して試料11の周囲が拘束される。即ち、軸圧方向(一方向)に交差する方向に試料11が加圧される流体圧手段とされている(他方向加圧手段:外力印加手段)。   In addition, a constrained pressure water supply unit 47 is provided as a second-direction pressurizing unit that supplies pressurized water to the cavity 41, and the pressurized water is supplied from the constrained pressure water supply unit 47 to the cavity 41. Thereby, the periphery of the sample 11 is restrained via the rubber sleeve 42. That is, it is a fluid pressure unit that pressurizes the sample 11 in a direction crossing the axial pressure direction (one direction) (other direction pressurizing unit: external force applying unit).

また、圧水供給手段45、通水手段46、拘束圧水供給手段47は挙動評価装置1(図1参照)の圧力発生装置17(図1参照)に接続されている。   The pressurized water supply means 45, the water flow means 46, and the restrained pressure water supply means 47 are connected to the pressure generator 17 (see FIG. 1) of the behavior evaluation apparatus 1 (see FIG. 1).

更に、ひずみセンサー26の信号線が通される接続口48が設けられ、接続口48から信号線を通してひずみセンサー26の検出信号が制御装置19(図1参照)に送られる。   Further, a connection port 48 through which the signal line of the strain sensor 26 is passed is provided, and a detection signal of the strain sensor 26 is sent from the connection port 48 to the control device 19 (see FIG. 1) through the signal line.

上述した挙動評価装置1の動作状況を説明する。   The operation state of the behavior evaluation apparatus 1 described above will be described.

保持部6に保持された容器12には、水圧供給装置15、接続部材16、圧力発生装置17により、所定の圧水が供給され、試料11に外力が印加される。即ち、容器本体32に収容された試料11に対し、ピストン38の駆動により軸方向の圧力が印加されると共に、空洞部41への注水により周方向から圧力が印加され、更に、通水手段46から通水が行われる。   A predetermined pressure water is supplied to the container 12 held by the holding unit 6 by the water pressure supply device 15, the connection member 16, and the pressure generation device 17, and an external force is applied to the sample 11. That is, the axial pressure is applied to the sample 11 accommodated in the container body 32 by driving the piston 38, and the pressure is applied from the circumferential direction by water injection into the cavity 41. Water is passed through.

本発明の容器12を用いることにより、地下数百メートルの環境に相当する、地上からの圧力、岩盤からの圧力、地下水の流れ(挙動)が再現される。そして、地下数百メートルの環境に相当する状況での自重応力が付与された状態で、地下水の移動や圧密・膨潤に伴う応力、ひずみの再現が行われる。   By using the container 12 of the present invention, the pressure from the ground, the pressure from the rock, and the flow (behavior) of the groundwater corresponding to an environment of several hundred meters underground are reproduced. The stress and strain associated with the movement of the groundwater and the consolidation / swelling are reproduced in a state where the self-weight stress in a situation corresponding to an environment of several hundred meters underground is applied.

必要に応じて、センサー類での検出値の変化では確認できない状況を直接確認するために、試料11を容器12に収容した直後の試料11の内部の状況を予めX線により撮影しておくことができる。   If necessary, in order to directly confirm the situation that cannot be confirmed by the change in the detection value of the sensors, the internal situation of the specimen 11 immediately after the specimen 11 is accommodated in the container 12 is previously photographed with X-rays. Can do.

本発明の容器12を用いて、地下数百メートルの環境に相当する状況が再現されている状態で、実物と同じ自重応力を縮尺模型で再現するため、挙動評価装置1を動作させて試料11に自重方向に遠心加速度を加える。   Using the container 12 of the present invention, the behavior evaluation apparatus 1 is operated to reproduce the same weight stress as that of the real object in a state where the situation corresponding to the environment of several hundred meters underground is reproduced. Add centrifugal acceleration in the direction of its own weight.

中心回転軸2を駆動回転させることにより、回転アーム3及びカウンターアーム4を所定の速度で旋回させる。回転アーム3の旋回により、遠心力が働いて保持部6の底部が外側に回動し、地下数百メートルの環境に相当する状況が再現されている状態の試料11に対し、自重方向に遠心加速度が加えられ、実物と同じ自重応力が再現されることになる。   By rotating the central rotating shaft 2, the rotating arm 3 and the counter arm 4 are turned at a predetermined speed. As the rotating arm 3 turns, the bottom of the holding unit 6 is rotated outward by the centrifugal force, and the sample 11 in a state in which the situation corresponding to an environment of several hundred meters underground is reproduced is centrifuged in its own weight direction. Acceleration is applied, and the same weight stress as the actual product is reproduced.

そして、地下数百メートルの環境に相当する状況で、遠心力により実物と同じ自重応力が再現された状態で、地下水の移動や圧密・膨潤に伴う応力、ひずみが検証される。   In a situation corresponding to an environment of several hundred meters underground, the stress and strain associated with the movement, consolidation, and swelling of groundwater are verified in a state where the same self-weight stress as the actual product is reproduced by centrifugal force.

即ち、実物と同じ自重応力が再現された状態で、試料11(縮尺模型)における非接触変位計24、土圧計25、ひずみセンサー26a、26b、26c、26dの検出情報が、記憶手段18に送られて記憶される。記憶手段18に記憶された情報は制御装置19に送られ、変位等に基づいて試料11の挙動が評価される。   That is, the detection information of the non-contact displacement meter 24, the earth pressure gauge 25, and the strain sensors 26a, 26b, 26c, and 26d in the sample 11 (scale model) is sent to the storage unit 18 in a state where the same weight stress as that of the actual product is reproduced. And memorized. The information stored in the storage means 18 is sent to the control device 19, and the behavior of the sample 11 is evaluated based on the displacement and the like.

つまり、非接触変位計24により地中隔離部材21の変位量が検出され、自重による沈み込み(沈下)や緩衝材22の膨潤による浮き上がり(浮上)等が検出される。また、土圧計25により緩衝材22の膨潤状況(膨潤特性)が検出され、ひずみセンサー26a、26b、26c、26dにより岩盤部材23(緩衝材22)の軸方向の所望位置のひずみが検出される。   That is, the displacement amount of the ground isolation member 21 is detected by the non-contact displacement meter 24, and subsidence (subsidence) due to its own weight, lifting (lifting) due to swelling of the buffer material 22, and the like are detected. The earth pressure gauge 25 detects the swelling state (swelling characteristics) of the buffer material 22, and the strain sensors 26 a, 26 b, 26 c, and 26 d detect the strain at a desired position in the axial direction of the rock member 23 (buffer material 22). .

制御装置19では、検出状況により試料11の状況が遠心力場の相似則により加速されて評価され、例えば、地中隔離部材21の埋設環境場の長期の挙動が短い時間で評価される。   In the control device 19, the state of the sample 11 is accelerated by the similarity law of the centrifugal force field according to the detection state and evaluated, for example, the long-term behavior of the buried environment field of the underground isolation member 21 is evaluated in a short time.

図6に基づいて非接触変位計24、土圧計25、ひずみセンサー26の検出状況の一例を説明する。   An example of the detection status of the non-contact displacement gauge 24, the earth pressure gauge 25, and the strain sensor 26 will be described with reference to FIG.

図6には変位の経時変化を示してあり、図6(a)は非接触変位計24の検出情報の経時変化、図6(b)は土圧計25の検出情報の経時変化、図6(c)はひずみセンサー26a、26b、26c、26dの検出情報の経時変化である。   FIG. 6 shows a change with time of displacement, FIG. 6 (a) shows a change with time of detection information of the non-contact displacement meter 24, FIG. 6 (b) shows a change with time of detection information of the earth pressure gauge 25, FIG. c) is a change with time of the detection information of the strain sensors 26a, 26b, 26c, and 26d.

図6(a)に示すように、地中隔離部材21の軸方向の変位を検出する非接触変位計24の検出値は、小さくなる側(沈下側)の値を示した後、大きくなる側(浮上側)の値を示し、浮上後に小さくなる側(沈下側)の値となって変化する。   As shown in FIG. 6 (a), the detected value of the non-contact displacement meter 24 for detecting the axial displacement of the underground separating member 21 shows a value on the smaller side (sinking side) and then becomes larger. This indicates the value of (floating side), and changes to become the value of the side that becomes smaller (the sinking side) after rising.

図6(b)に示すように、緩衝材22の膨潤状況を検出する土圧計25の検出値は、地下水に相当する通水が進み、大きくなる側(膨潤側)の値を示した後、飽和されて小さくなる側の値となって変化する。   As shown in FIG. 6 (b), the detected value of the earth pressure gauge 25 for detecting the swelling state of the buffer material 22 shows a value on the side (swelling side) on which the water flow corresponding to groundwater advances and becomes larger, It changes as it becomes saturated and becomes smaller.

つまり、緩衝材22が膨潤するまでの間は地中隔離部材21が自重により沈下した後、緩衝材22の膨潤に伴って地中隔離部材21が浮上する。そして、緩衝材22が飽和すると、地中隔離部材21は再び自重により沈下することが評価できる。   That is, until the buffer material 22 swells, the ground isolation member 21 sinks due to its own weight, and then the ground isolation member 21 rises as the buffer material 22 swells. And if the buffer material 22 is saturated, it can be evaluated that the underground isolation member 21 sinks again by its own weight.

図6(c)に示すように、試料11の下側のひずみセンサー26dの検出値が最初に大きくなる側の値を示し、順次、ひずみセンサー26c、26b、26aと上側のひずみセンサー26検出値が大きくなる側の値を示す。つまり、試料11の自重の影響に応じて岩盤部材23(緩衝材22)が変位することが評価できる。   As shown in FIG. 6 (c), the detection value of the lower strain sensor 26d on the lower side of the sample 11 is the first value that increases, and the detected values of the strain sensors 26c, 26b, 26a and the upper strain sensor 26 are sequentially detected. The value on the side where becomes larger. That is, it can be evaluated that the rock mass member 23 (buffer material 22) is displaced according to the influence of the weight of the sample 11.

図6に示したように、時間加速の効果を加味した短時間での挙動を評価することで、試料11の長期の挙動を短い時間で評価することができる。   As shown in FIG. 6, the long-term behavior of the sample 11 can be evaluated in a short time by evaluating the behavior in a short time considering the effect of time acceleration.

これにより、地下数百メートルの環境に相当する応力・環境(圧密、透水現象)を加速させ、地中隔離部材21の変位(浮上、沈下)、緩衝材22の膨潤挙動、岩盤部材23(緩衝材22)のひずみの計測を行うことができ、岩盤・土と地下水等の隙間流体との二相混合体において、埋設環境場での地中隔離部材21、緩衝材22、岩盤部材23の長期にわたる挙動を評価することができる。   As a result, the stress and environment (consolidation, water permeability) corresponding to an environment of several hundred meters underground is accelerated, the displacement (floating, sinking) of the underground isolation member 21, the swelling behavior of the buffer material 22, the rock member 23 (buffer) The strain of the material 22) can be measured, and in the two-phase mixture of rock / soil and interstitial fluid such as groundwater, the long-term operation of the underground isolation member 21, the buffer material 22 and the rock member 23 in the buried environment field Can be evaluated.

必要に応じて、センサー類での評価に加え、試料11の内部の状況をX線により撮影し、地中隔離部材21の実際の位置の変化、緩衝材22の継ぎ目の変化を直接確認することができる。   If necessary, in addition to the evaluation with sensors, the internal situation of the sample 11 should be photographed by X-ray, and the actual position change of the ground isolation member 21 and the change of the joint of the buffer material 22 should be confirmed directly. Can do.

尚、上述した実施例では、試料11を収容した容器12を保持部6に保持して試料11の評価を行ったが、試料11の評価を行う場合、挙動評価装置1を用いずに他の評価装置の試料保持部に使用する事も可能である。また、容器12を所定の環境下に設置して、地下数百メートルの環境に相当する応力・環境にある試料11の経時変化を検出することも可能である。   In the above-described embodiment, the sample 11 is evaluated by holding the container 12 containing the sample 11 in the holding unit 6. However, when the sample 11 is evaluated, the behavior evaluation apparatus 1 is not used. It can also be used for the sample holder of the evaluation device. It is also possible to install the container 12 in a predetermined environment and detect a change with time of the sample 11 in a stress / environment corresponding to an environment of several hundred meters underground.

挙動評価装置1は、岩盤・土と地下水等の隙間流体との二相混合体において、遠心作用の付与で自重応力を与えることができ、埋設環境場での地中隔離部材21、緩衝材22、岩盤部材23の長期にわたる挙動を評価することができ、地下水の移動や圧密・膨潤に伴う応力、ひずみの再現を行うことが可能になる。この結果、複数の要因の相互作用の影響を考慮して長期間の埋設環境を物理的に評価して地中隔離部材の埋設環境場での挙動評価を行うことが可能になる。   The behavior evaluation apparatus 1 can apply a self-weight stress by applying a centrifugal action to a two-phase mixture of rock / soil and a crevice fluid such as groundwater, and the underground isolation member 21 and the buffer material 22 in a buried environment field. Therefore, it is possible to evaluate the behavior of the rock member 23 over a long period of time, and it is possible to reproduce the stress and strain accompanying the movement of the groundwater and the consolidation / swelling. As a result, it is possible to evaluate the behavior of the underground isolation member in the embedded environment field by physically evaluating the embedded environment for a long period in consideration of the influence of the interaction of a plurality of factors.

上述した容器12は、周辺の岩盤の影響を含めた地中隔離部材21の埋設環境場の挙動評価を行うための試料11を収容する容器12とすることが可能になる。   The container 12 described above can be used as a container 12 for storing the sample 11 for evaluating the behavior of the buried environment field of the underground isolation member 21 including the influence of the surrounding rock.

本発明は、周辺の岩盤の影響を含めた地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器の産業分野で利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized in the industrial field | area of the container which accommodates the buried environment member model for performing the behavior evaluation of the buried environment field of the underground isolation member including the influence of the surrounding rock mass.

1 挙動評価装置
2 中心回転軸
3 回転アーム
4 カウンターアーム
5 カウンターウエイト
6 保持部
11 試料
12 容器
15 水圧供給装置
16 接続部材
17 圧力発生装置
18 記憶手段
19 制御装置
21 地中隔離部材
22 緩衝材
23 岩盤部材
24 非接触変位計
25 土圧計
26 ひずみセンサー
32 容器本体
33 架台部材
34 外筒枠体
35 上蓋部材
36 透水板
37 シリンダ室
38 ピストン
41 空洞部
42 ゴムスリーブ
45 圧水供給手段
46 通水手段
47 拘束圧水供給手段
48 接続口
DESCRIPTION OF SYMBOLS 1 Behavior evaluation apparatus 2 Center rotating shaft 3 Rotating arm 4 Counter arm 5 Counter weight 6 Holding part 11 Sample 12 Container 15 Water pressure supply device 16 Connection member 17 Pressure generator 18 Memory | storage means 19 Control apparatus 21 Underground isolation member 22 Buffer 23 Rock member 24 Non-contact displacement meter 25 Earth pressure gauge 26 Strain sensor 32 Container body 33 Base member 34 Outer cylinder frame 35 Upper lid member 36 Water permeable plate 37 Cylinder chamber 38 Piston 41 Cavity 42 Rubber sleeve 45 Pressure water supply means 46 Water passage means 47 Restrained pressurized water supply means 48 Connection port

Claims (3)

地中隔離部材の周囲に緩衝材が配され、更に、岩盤部材が周囲に配された埋設環境部材模型を収容する容器であって、
周辺が覆われた状態で前記埋設環境部材模型が収容される容器本体と、
前記容器本体に設けられ前記地中隔離部材の変位を検出する第1変位検出手段と、
前記容器本体に設けられ前記緩衝材の膨潤状況を検出する膨潤検出手段と、
前記岩盤部材の変位を検出する第2変位検出手段と、
前記埋設環境部材模型を一方向に加圧する一方向加圧手段と、
一方向に交差する方向に前記埋設環境部材模型を加圧する他方向加圧手段と、
前記埋設環境部材模型に通水を行う通水手段とを備えた
ことを特徴とする地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器。
A container for accommodating a buried environmental member model in which a cushioning material is arranged around the ground isolation member, and further, a rock member is arranged around,
A container body in which the embedded environment member model is accommodated in a state where the periphery is covered;
First displacement detection means provided on the container body for detecting the displacement of the underground isolation member;
Swelling detection means for detecting the swelling state of the buffer material provided in the container body;
Second displacement detection means for detecting displacement of the rock member;
Unidirectional pressurizing means for pressurizing the embedded environmental member model in one direction;
Other direction pressurizing means for pressurizing the embedded environment member model in a direction crossing one direction;
A container for storing a buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member, characterized in that the buried environment member model includes water passage means for passing water.
請求項1に記載の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器において、
前記第1変位検出手段は、前記地中隔離部材の変位を前記緩衝材の空洞部を通して非接触で検出する非接触変位手段であり、
前記膨潤検出手段は、前記緩衝材の圧力を検出することで前記緩衝材の膨潤状況を検出する圧力検出手段であり、
前記第2変位検出手段は、前記岩盤部材に取り付けられてひずみを検出するひずみ検出手段であり、
前記一方向加圧手段は、流体圧により駆動して埋設環境部材模型を一方側に押圧するピストンであり、
前記他方向加圧手段は、前記埋設環境部材模型の前記一方向に対して交差する方向の周囲に弾性膜材を介して形成される流体室である
ことを特徴とする地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器。
In a container for storing a buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member according to claim 1,
The first displacement detection means is a non-contact displacement means for detecting the displacement of the ground isolation member in a non-contact manner through the cavity of the buffer material,
The swelling detection means is a pressure detection means for detecting the swelling state of the buffer material by detecting the pressure of the buffer material,
The second displacement detection means is a strain detection means for detecting a strain attached to the rock member,
The one-way pressurizing means is a piston that is driven by fluid pressure and presses the embedded environment member model to one side,
The other-direction pressurizing means is a fluid chamber formed through an elastic membrane material around a direction intersecting the one direction of the embedded environment member model. A container that houses a buried environmental member model for evaluating the behavior of an environmental field.
請求項2に記載の地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器において、
前記埋設環境部材模型における、
前記地中隔離部材は円柱形であり、
緩衝部材は、
前記地中隔離部材の周囲の軸方向に複数積層されて配されるリング状のベントナイト系部材であり、
前記岩盤部材は、
複数積層されたベントナイト系部材の周囲に配される筒状の岩盤部材であり、
筒状の前記埋設環境部材模型の軸方向が一方向とされて前記埋設環境部材模型が前記容器本体に収容され、
前記容器本体は、
筒状の前記埋設環境部材模型の端面部の一方面が支持される架台部材と、
架台部材の上面に配され、筒状の前記埋設環境部材模型の筒面が、前記他方向加圧手段の前記流体室となる隙間を介して保持される外筒枠体と、
前記外筒枠体の上部側に配され、前記埋設環境部材模型の端面部の他方面が支持される上蓋部材とで構成され、
前記一方向加圧手段の前記ピストンは、前記架台部材の上面と前記埋設環境部材模型の端面部の一方面との間に設けられ、
前記架台部材には、前記ピストンを駆動して前記埋設環境部材模型に軸圧を発生させるための圧水を供給する圧水供給手段、及び、前記他方向加圧手段の前記流体室に圧水を供給する拘束圧水供給手段が設けられ、
前記非接触変位手段、及び、前記圧力検出手段は、前記上蓋部材に保持されている
ことを特徴とする地中隔離部材の埋設環境場の挙動評価を行うための埋設環境部材模型を収容する容器。
In a container for storing a buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member according to claim 2,
In the buried environment member model,
The underground isolation member is cylindrical,
The buffer member
A ring-shaped bentonite-based member arranged in a plurality of layers in the axial direction around the underground isolation member;
The rock member is
It is a cylindrical rock mass member that is arranged around the bentonite-based members that are stacked in multiple layers,
The axial direction of the cylindrical embedded environmental member model is one direction, and the embedded environmental member model is accommodated in the container body,
The container body is
A gantry member on which one surface of the end surface portion of the cylindrical embedded environment member model is supported;
An outer cylinder frame which is arranged on the upper surface of the gantry member, and the cylindrical surface of the embedded environment member model is held via a gap serving as the fluid chamber of the other-direction pressurizing means;
It is arranged on the upper side of the outer cylinder frame body, and is configured with an upper lid member on which the other surface of the end surface portion of the embedded environment member model is supported,
The piston of the one-way pressurizing means is provided between the upper surface of the gantry member and one surface of the end surface portion of the embedded environment member model,
The gantry member has a pressurized water supply means for supplying the pressurized water for driving the piston to generate an axial pressure in the buried environment member model, and a pressurized water for the fluid chamber of the other direction pressurizing means. A restraint pressure water supply means for supplying
The non-contact displacement means and the pressure detection means are held by the upper lid member. A container for accommodating a buried environment member model for evaluating the behavior of the buried environment field of the underground isolation member, .
JP2014016212A 2014-01-30 2014-01-30 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member Pending JP2015141192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016212A JP2015141192A (en) 2014-01-30 2014-01-30 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016212A JP2015141192A (en) 2014-01-30 2014-01-30 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member

Publications (1)

Publication Number Publication Date
JP2015141192A true JP2015141192A (en) 2015-08-03

Family

ID=53771622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016212A Pending JP2015141192A (en) 2014-01-30 2014-01-30 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member

Country Status (1)

Country Link
JP (1) JP2015141192A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254171A (en) * 2018-01-16 2018-07-06 无锡科洛特轻工机械有限公司 Automatic voltage measurement device
KR20190102734A (en) * 2018-02-27 2019-09-04 한국원자력연구원 Apparatus simulation degradation condition of a sample and simulation method for degradation condition of a sample
CN113123737A (en) * 2021-05-28 2021-07-16 中煤科工集团重庆研究院有限公司 Non-extrusion sealing gum sleeve type chuck
KR20230060245A (en) 2021-10-27 2023-05-04 한국원자력연구원 Deep disposal of radioactive waste simulating apparatus
KR20230079936A (en) 2021-11-29 2023-06-07 한국원자력연구원 Deep disposal of radioactive waste gas behavior simulating apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083955A (en) * 2001-09-10 2003-03-19 Kajima Corp Own sealing performance-measuring apparatus of swelling soil material
JP2010066148A (en) * 2008-09-11 2010-03-25 Shimizu Corp Static loading method and static loading apparatus used for centrifugal model experiment
JP2012018015A (en) * 2010-07-06 2012-01-26 Central Res Inst Of Electric Power Ind Bedrock sample permeability testing method
JP2012224694A (en) * 2011-04-18 2012-11-15 Gunma Univ Water-blocking filler and filler for manmade multi-barrier using the water-blocking filler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083955A (en) * 2001-09-10 2003-03-19 Kajima Corp Own sealing performance-measuring apparatus of swelling soil material
JP2010066148A (en) * 2008-09-11 2010-03-25 Shimizu Corp Static loading method and static loading apparatus used for centrifugal model experiment
JP2012018015A (en) * 2010-07-06 2012-01-26 Central Res Inst Of Electric Power Ind Bedrock sample permeability testing method
JP2012224694A (en) * 2011-04-18 2012-11-15 Gunma Univ Water-blocking filler and filler for manmade multi-barrier using the water-blocking filler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
西本壮志、岡田哲実、澤田昌孝: "遠心力載荷装置を用いた高レベル放射性廃棄物処分場周辺の長期挙動評価(その2) −ニアフィールド模型試", 電力中央研究所報告, vol. N11040, JPN7017002991, April 2012 (2012-04-01), JP, ISSN: 0003766512 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254171A (en) * 2018-01-16 2018-07-06 无锡科洛特轻工机械有限公司 Automatic voltage measurement device
KR20190102734A (en) * 2018-02-27 2019-09-04 한국원자력연구원 Apparatus simulation degradation condition of a sample and simulation method for degradation condition of a sample
KR102106085B1 (en) 2018-02-27 2020-05-04 한국원자력연구원 Apparatus simulation degradation condition of a sample and simulation method for degradation condition of a sample
CN113123737A (en) * 2021-05-28 2021-07-16 中煤科工集团重庆研究院有限公司 Non-extrusion sealing gum sleeve type chuck
KR20230060245A (en) 2021-10-27 2023-05-04 한국원자력연구원 Deep disposal of radioactive waste simulating apparatus
KR102631902B1 (en) 2021-10-27 2024-01-31 한국원자력연구원 Deep disposal of radioactive waste simulating apparatus
KR20230079936A (en) 2021-11-29 2023-06-07 한국원자력연구원 Deep disposal of radioactive waste gas behavior simulating apparatus
KR102640319B1 (en) * 2021-11-29 2024-02-23 한국원자력연구원 Deep disposal of radioactive waste gas behavior simulating apparatus

Similar Documents

Publication Publication Date Title
JP2015141192A (en) Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member
US10197549B2 (en) Wellbore cement simulator
Xu et al. Gas breakthrough in saturated compacted GaoMiaoZi (GMZ) bentonite under rigid boundary conditions
CN106018740B (en) Hole pressure touching methods demarcate can system
Phillips Centrifuge modelling: practical considerations
JP2008046086A (en) Water penetration test machine and water penetration test method
Zhang et al. Examining setup mechanisms of driven piles in sand using laboratory model pile tests
US11385159B2 (en) Supergravity simulation system for In-situ stress field and seepage field of deep earth engineering
CN106644733A (en) Testing equipment for simulating response on embedded type pile-seabed by one-dimensional wave load
CN108333060A (en) The testing machine that claystone shear crack infiltration coefficient develops is measured using steady state method
Banagan et al. Microbial strengthening of loose sand
CN105716754B (en) A kind of terrane stress transformation temperature responds monitoring device
He et al. Experimental study on the vertical deformation of soils due to groundwater withdrawal
CN216646507U (en) Deep underground rock excavation effect simulation test device
Madabhushi et al. Use of a mini-drum centrifuge for teaching of geotechnical engineering
Kundu et al. Centrifuge modeling and DIC of dynamic compaction on sandy soils with shallow water table
JP2015141191A (en) Behavior evaluation device of buried environmental field of underground isolation member
CN110208493A (en) Pore expansion theory experimental rig and its test method
Song et al. One‐dimensional fluid diffusion induced by constant‐rate flow injection: Theoretical analysis and application to the determination of fluid permeability and specific storage of a cored rock sample
Kirsch On the face stability of shallow tunnels in sand
Timms et al. Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions
WO2023124914A1 (en) Earthquake physical simulation experiment apparatus and method
Kurup Calibration chamber studies of miniature piezocone penetration tests in cohesive soil specimens
CN110261281B (en) Soft rock seepage simple test system under low stress condition and use method thereof
Zhang et al. Temperature-controlled triaxial compression/creep test device for thermodynamic properties of soft sedimentary rock and corresponding theoretical prediction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180328