JP2010066148A - Static loading method and static loading apparatus used for centrifugal model experiment - Google Patents

Static loading method and static loading apparatus used for centrifugal model experiment Download PDF

Info

Publication number
JP2010066148A
JP2010066148A JP2008233249A JP2008233249A JP2010066148A JP 2010066148 A JP2010066148 A JP 2010066148A JP 2008233249 A JP2008233249 A JP 2008233249A JP 2008233249 A JP2008233249 A JP 2008233249A JP 2010066148 A JP2010066148 A JP 2010066148A
Authority
JP
Japan
Prior art keywords
loading
load
ground
centrifugal
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008233249A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
明 石川
Hiroyuki Hotta
洋之 堀田
Hideyuki Mano
英之 真野
Miharu Asaka
美治 浅香
Yoichi Taji
陽一 田地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2008233249A priority Critical patent/JP2010066148A/en
Publication of JP2010066148A publication Critical patent/JP2010066148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a static loading method and static loading apparatus used for a centrifugal model experiment, for faithfully reproducing a subsidence phenomenon of an actual ground where vertical displacement is distributed according to a load and underground stress. <P>SOLUTION: The static loading apparatus 10 used for the centrifugal model experiment includes a cylindrical loading tank 13 and a flowable loading object W for loading a load onto a loading surface G1 of a model ground G. The loading object W is supplied into the loading tank 13 with an opening installed on the loading surface G1 of the model ground G, and a load according to an amount of the loading object W in the loading tank 13 is loaded on the loading surface G1 of the model ground G through the opening in the loading tank 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、遠心力を利用して模型地盤の応力レベルを、実地盤を模擬した状態にし、静的載荷装置で模型地盤に荷重を載荷するとともに模型地盤の変位を計測して、実地盤の挙動を予測する遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置に関する。   In the present invention, the stress level of the model ground is simulated using the centrifugal force, the load is applied to the model ground with a static loading device, and the displacement of the model ground is measured. The present invention relates to a static loading method of a centrifugal model experiment for predicting behavior and a static loading device used for the centrifugal model experiment.

実際の建物の挙動(実地盤の挙動)を把握するためには、実物を用いてその挙動を調べることが確実である。しかしながら、実物を用いて実験を行う場合には、実大規模の模型を構築(製作)する必要が生じるため、多大な労力とコストを要する。   In order to grasp the actual behavior of the building (the behavior of the actual ground), it is certain to investigate the behavior using the real thing. However, when an experiment is performed using an actual object, it is necessary to construct (manufacture) a large-scale model, which requires a great deal of labor and cost.

これに対し、遠心力を利用して模型地盤の応力レベルを、実地盤を模擬した状態にし、特に応力−ひずみ(変位)の関係を実地盤と同様に再現することにより、縮小模型を用いて実物の挙動をより正確に把握できるようにした遠心模型実験が注目されている(例えば、特許文献1参照)。   On the other hand, the stress level of the model ground is made to simulate the actual ground using centrifugal force, and the relationship between the stress and strain (displacement) is reproduced in the same way as the actual ground. A centrifuge model experiment that can more accurately grasp the behavior of the real object has attracted attention (for example, see Patent Document 1).

例えば、この遠心模型実験で沈下実験を行う場合には、図7及び図8に示すように、試料容器1に模型地盤Gを充填し、変位計2や地圧計3を所定位置に配置するとともに、模型地盤Gの載荷面G1(地表面)に荷重を載荷する静的載荷装置4を設置する。そして、静的載荷装置4とともに試料容器1(模型地盤G)を遠心模型実験装置に搭載し、所定の遠心加速度で回転させることによって、遠心力を利用し模型地盤Gの応力レベルを、実地盤を模擬した状態にする。この段階から、静的載荷装置4によって模型地盤Gの載荷面G1に荷重を載荷し、模型地盤Gの鉛直方向の変位(沈下量)や地圧を計測する。例えば実際の建物構築過程で順次増加する荷重に応じて段階的に荷重を増加させ、荷重に対する変位、地圧を計測することによって、建物構築過程の各段階における実地盤の挙動を予測することが可能になる。
特開2004−93482号公報
For example, when a subsidence experiment is performed in this centrifugal model experiment, as shown in FIGS. 7 and 8, the sample ground 1 is filled with the model ground G, and the displacement meter 2 and the ground pressure meter 3 are arranged at predetermined positions. Then, a static loading device 4 for loading a load on the loading surface G1 (ground surface) of the model ground G is installed. Then, the sample container 1 (model ground G) is mounted on the centrifugal model experimental device together with the static loading device 4, and the stress level of the model ground G is measured using the centrifugal force by rotating at a predetermined centrifugal acceleration. Simulate the state. From this stage, a load is loaded on the loading surface G1 of the model ground G by the static loading device 4, and the vertical displacement (subsidence amount) and ground pressure of the model ground G are measured. For example, it is possible to predict the behavior of the actual ground at each stage of the building construction process by increasing the load stepwise according to the load that gradually increases in the actual building construction process and measuring the displacement against the load and the ground pressure. It becomes possible.
JP 2004-93482 A

ここで、従来、遠心模型実験で沈下実験を行う場合には、図7及び図8に示すように、ロードセル4aと載荷板4bを備えた静的載荷装置4を用いて模型地盤Gに荷重を載荷するようにしている。そして、このようなロードセル4aと載荷板4bを備えた静的載荷装置4を用いた場合には、載荷板4bが剛体であるため、変位制御荷重(すなわち、載荷面G1全体の鉛直変位が一定となる剛体荷重)しか載荷できない。このため、実際の建物構築過程では、建物の荷重分布が一定となり、実地盤の鉛直方向の変位が荷重と地中応力に応じて分布する場合が多いのに対し、変位分布が生じた載荷面G1に等分布荷重を載荷することができないため、鉛直変位が荷重と地中応力に応じて分布する実地盤の沈下現象を忠実に再現できないという問題があった。   Here, conventionally, when a settlement experiment is performed in a centrifugal model experiment, as shown in FIGS. 7 and 8, a load is applied to the model ground G using a static loading device 4 including a load cell 4a and a loading plate 4b. I try to load it. And when using the static loading apparatus 4 provided with such a load cell 4a and the loading board 4b, since the loading board 4b is a rigid body, displacement control load (namely, the vertical displacement of the whole loading surface G1 is constant). Can only be loaded). For this reason, in the actual building construction process, the load distribution of the building is constant, and the vertical displacement of the actual ground is often distributed according to the load and underground stress, whereas the loading surface where the displacement distribution occurred Since an equally distributed load cannot be loaded on G1, there is a problem that the subsidence phenomenon of the actual ground where the vertical displacement is distributed according to the load and the underground stress cannot be faithfully reproduced.

本発明は、上記事情に鑑み、鉛直変位が荷重と地中応力に応じて分布する実地盤の沈下現象を忠実に再現することが可能な遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置を提供することを目的とする。   In view of the above circumstances, the present invention is used for a static loading method and a centrifugal model experiment of a centrifugal model experiment capable of faithfully reproducing the subsidence phenomenon of an actual ground in which vertical displacement is distributed according to load and underground stress. An object is to provide a static loading device.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の遠心模型実験の静的載荷方法は、遠心模型実験の静的載荷方法であって、静的載荷装置が筒状の載荷用タンクと、流動性を有し、模型地盤の載荷面に荷重を載荷するための載荷体とを備えて構成され、前記模型地盤の載荷面上に開口部を配して設けた前記載荷用タンク内に前記載荷体を供給するとともに、前記載荷用タンク内の前記載荷体の量に応じた荷重を、前記載荷用タンクの開口部を通じて前記模型地盤の載荷面に載荷するようにしたことを特徴とする。   The static loading method of the centrifugal model experiment of the present invention is a static loading method of the centrifugal model experiment, in which the static loading device has a cylindrical loading tank and fluidity, and is mounted on the loading surface of the model ground. A load body for loading a load, and supplying the load body into the load tank described above provided with an opening on the load surface of the model ground, and the inside of the load tank The load according to the amount of the load described above is loaded on the loading surface of the model ground through the opening of the load tank described above.

この発明においては、例えば粉粒体や液体などの流動性を有する載荷体を用いて模型地盤の載荷面に荷重を載荷するようにしたことで、載荷体が載荷面の変位に応じて流動(載荷面の変位に従動)するため、常時、実地盤上に構築する建物(構造物)の荷重に応じた等分布荷重を載荷面に載荷することが可能になる。   In the present invention, for example, a load is applied to the loading surface of the model ground using a loading body having fluidity such as a granular material or a liquid, so that the loading body flows according to the displacement of the loading surface ( Therefore, it is possible to always load an evenly distributed load on the loading surface according to the load of the building (structure) constructed on the actual ground.

また、本発明の遠心模型実験の静的載荷方法において、前記載荷用タンクには、供給した前記載荷体を前記載荷用タンク内に貯留するための膜体が設けられており、前記遠心力が作用した状態で、前記載荷用タンク内の前記載荷体と前記模型地盤の載荷面との間に介装された前記膜体が前記模型地盤の載荷面に密着し、前記膜体を介して前記載荷体の量に応じた荷重を前記模型地盤の載荷面に載荷するようにしてもよい。   Further, in the static loading method of the centrifugal model experiment of the present invention, the loading tank is provided with a film body for storing the supplied loading body in the loading tank, and the centrifugal force is In the acted state, the film body interposed between the load body in the load tank described above and the loading surface of the model ground is in close contact with the loading surface of the model ground, and the film body is interposed through the film body. You may make it load the load according to the quantity of the loading body on the loading surface of the said model ground.

この発明においては、載荷用タンクに供給した載荷体を膜体によって載荷用タンク内に貯留することが可能になる。そして、この膜体が載荷面の変位に応じて載荷面に常時密着するように変形し、膜体の変形とともに載荷体が流動するため、常時、実地盤上に構築する建物の荷重に応じた等分布荷重を載荷面に載荷することが可能になる。   In the present invention, the loaded body supplied to the loading tank can be stored in the loading tank by the film body. And this film body is deformed so as to be always in close contact with the loading surface according to the displacement of the loading surface, and the loading body flows with the deformation of the film body, so it always corresponds to the load of the building constructed on the actual ground It becomes possible to load an evenly distributed load on the loading surface.

さらに、本発明の遠心模型実験の静的載荷方法においては、複数の変位計を設け、該複数の変位計によって前記模型地盤の載荷面の複数箇所の変位を計測することが望ましい。   Furthermore, in the static loading method of the centrifugal model experiment of the present invention, it is desirable to provide a plurality of displacement meters and measure the displacements at a plurality of locations on the loading surface of the model ground with the plurality of displacement meters.

この発明においては、載荷面の複数箇所の変位を計測することで、この載荷面の変位分布を捉えることができ、載荷時の実地盤の地表面(載荷面)の沈下分布を精度よく予測することが可能になる。   In this invention, the displacement distribution of this loading surface can be grasped by measuring the displacement of a plurality of places on the loading surface, and the settlement distribution of the ground surface (loading surface) of the actual ground at the time of loading is accurately predicted. It becomes possible.

また、本発明の遠心模型実験の静的載荷方法においては、前記模型地盤の載荷面と前記載荷体の間に、前記実地盤上に構築される実構造物の剛性を模した模擬板を設置することがより望ましい。   Further, in the static loading method of the centrifugal model experiment of the present invention, a simulation board simulating the rigidity of the actual structure constructed on the actual ground is installed between the loading surface of the model ground and the load body described above. It is more desirable to do.

この発明においては、例えば建物の基礎などの実地盤上に構築される実構造物の剛性を模した模擬板を設置することで、より実際に近い変位分布を捉えることができ、より高精度で実地盤の沈下分布を予測することが可能になる。   In this invention, for example, by installing a simulation board that simulates the rigidity of an actual structure constructed on the actual ground such as the foundation of a building, it is possible to capture a displacement distribution that is closer to the actual, with higher accuracy. It becomes possible to predict the settlement distribution of the actual ground.

さらに、本発明の遠心模型実験の静的載荷方法においては、前記載荷体に液体を用いることが望ましい。   Furthermore, in the static loading method of the centrifugal model experiment of the present invention, it is desirable to use a liquid for the load described above.

この発明においては、載荷体として例えば水や重液などの液体を用いることによって、載荷体が載荷面の変位に応じて確実に流動して、常時、実地盤上に構築する建物の荷重に応じた等分布荷重を確実に載荷面に載荷することが可能になる。   In the present invention, by using a liquid such as water or heavy liquid as the loading body, the loading body surely flows according to the displacement of the loading surface, and always responds to the building load constructed on the actual ground. It is possible to reliably load the evenly distributed load on the loading surface.

また、本発明の遠心模型実験の静的載荷方法においては、前記液体に重液を用いることがより望ましい。   In the static loading method of the centrifugal model experiment of the present invention, it is more desirable to use a heavy liquid as the liquid.

この発明においては、液体(載荷体)に重液を用いることによって、例えば水を用いる場合と比較し、少量の重液を載荷用タンクに供給して所望の荷重を載荷することが可能になり、効率的に沈下実験を行うことが可能になる。   In the present invention, by using heavy liquid for the liquid (loading body), it becomes possible to supply a small amount of heavy liquid to the loading tank and load a desired load, for example, compared to the case of using water. This makes it possible to conduct subsidence experiments efficiently.

本発明の遠心模型実験に用いる静的載荷装置は、遠心模型実験に用いる静的載荷装置であって、筒状の載荷用タンクと、流動性を有し、模型地盤の載荷面に荷重を載荷するための載荷体とを備えており、前記模型地盤の載荷面上に開口部を配して設けた前記載荷用タンク内に前記載荷体を供給するとともに、前記載荷用タンク内の前記載荷体の量に応じた荷重を、前記載荷用タンクの開口部を通じて前記模型地盤の載荷面に載荷するように構成されていることを特徴とする。   The static loading device used for the centrifugal model experiment of the present invention is a static loading device used for the centrifugal model experiment, which has a cylindrical loading tank and fluidity, and loads a load on the loading surface of the model ground. A loading body for supplying the above described loading body into the above loading tank provided with an opening disposed on the loading surface of the model ground, and the above described loading body in the loading tank The load according to the amount of the load is configured to be loaded on the loading surface of the model ground through the opening of the loading tank described above.

この発明においては、例えば粉粒体や液体などの流動性を有する載荷体を用いて模型地盤の載荷面に荷重を載荷することができ、載荷体が載荷面の変位に応じて流動(載荷面の変位に従動)するため、常時、実地盤上に構築する建物(構造物)の荷重に応じた等分布荷重を載荷面に載荷することが可能になる。   In the present invention, a load can be loaded on the loading surface of the model ground using a loading body having fluidity such as a granular material or a liquid, and the loading body flows according to the displacement of the loading surface (loading surface). Therefore, it is possible to always load an evenly distributed load on the loading surface according to the load of the building (structure) constructed on the actual ground.

また、本発明の遠心模型実験に用いる静的載荷装置において、前記載荷用タンクには、供給した前記載荷体を前記載荷用タンク内に貯留するための膜体が設けられており、前記遠心力が作用した状態で、前記載荷用タンク内の前記載荷体と前記模型地盤の載荷面との間に介装された前記膜体が前記模型地盤の載荷面に密着するように構成されていてもよい。   Further, in the static loading device used in the centrifugal model experiment of the present invention, the cargo tank described above is provided with a film body for storing the supplied cargo described above in the cargo tank described above, and the centrifugal force The film body interposed between the load body in the load tank described above and the loading surface of the model ground is configured to be in close contact with the loading surface of the model ground. Good.

この発明においては、載荷用タンクに供給した載荷体を膜体によって載荷用タンク内に貯留することが可能になる。そして、この膜体が載荷面の変位に応じて載荷面に常時密着するように変形し、膜体の変形とともに載荷体が流動するため、常時、実地盤上に構築する建物の荷重に応じた等分布荷重を載荷面に載荷することが可能になる。   In the present invention, the loaded body supplied to the loading tank can be stored in the loading tank by the film body. And this film body is deformed so as to be always in close contact with the loading surface according to the displacement of the loading surface, and the loading body flows with the deformation of the film body, so it always corresponds to the load of the building constructed on the actual ground It becomes possible to load an evenly distributed load on the loading surface.

さらに、本発明の遠心模型実験に用いる静的載荷装置においては、前記模型地盤の載荷面の複数箇所の変位を計測する複数の変位計が設けられていることが望ましい。   Furthermore, in the static loading apparatus used for the centrifugal model experiment of the present invention, it is desirable that a plurality of displacement meters for measuring the displacement at a plurality of locations on the loading surface of the model ground be provided.

この発明においては、載荷面の複数箇所の変位を計測することで、この載荷面の変位分布を捉えることができ、載荷時の実地盤の地表面(載荷面)の沈下分布を精度よく予測することが可能になる。   In this invention, the displacement distribution of this loading surface can be grasped by measuring the displacement of a plurality of places on the loading surface, and the settlement distribution of the ground surface (loading surface) of the actual ground at the time of loading is accurately predicted. It becomes possible.

また、本発明の遠心模型実験に用いる静的載荷装置においては、前記模型地盤の載荷面と前記載荷体の間に、前記実地盤上に構築される実構造物の剛性を模した模擬板が設置されていることがより望ましい。   Further, in the static loading device used for the centrifugal model experiment of the present invention, a simulated board imitating the rigidity of the actual structure constructed on the actual ground is provided between the loading surface of the model ground and the load body described above. It is more desirable that it is installed.

この発明においては、例えば建物の基礎などの実地盤上に構築される実構造物の剛性を模した模擬板を設置することで、より実際に近い変位分布を捉えることができ、より高精度で実地盤の沈下分布を予測することが可能になる。   In this invention, for example, by installing a simulation board that simulates the rigidity of an actual structure constructed on the actual ground such as the foundation of a building, it is possible to capture a displacement distribution that is closer to the actual, with higher accuracy. It becomes possible to predict the settlement distribution of the actual ground.

さらに、本発明の遠心模型実験に用いる静的載荷装置においては、前記載荷体が液体であることが望ましい。   Furthermore, in the static loading apparatus used for the centrifugal model experiment of the present invention, it is desirable that the load body described above is a liquid.

この発明においては、載荷体として例えば水や重液などの液体を用いることによって、載荷体が載荷面の変位に応じて確実に流動して、常時、実地盤上に構築する建物の荷重に応じた等分布荷重を確実に載荷面に載荷することが可能になる。   In the present invention, by using a liquid such as water or heavy liquid as the loading body, the loading body surely flows according to the displacement of the loading surface, and always responds to the building load constructed on the actual ground. It is possible to reliably load the evenly distributed load on the loading surface.

また、本発明の遠心模型実験に用いる静的載荷装置においては、前記液体が重液であることがより望ましい。   Moreover, in the static loading apparatus used for the centrifugal model experiment of the present invention, it is more desirable that the liquid is a heavy liquid.

この発明においては、液体(載荷体)に重液を用いることによって、例えば水を用いる場合と比較し、少量の重液を載荷用タンクに供給して所望の荷重を載荷することが可能になり、効率的に沈下実験を行うことが可能になる。   In the present invention, by using heavy liquid for the liquid (loading body), it becomes possible to supply a small amount of heavy liquid to the loading tank and load a desired load, for example, compared to the case of using water. This makes it possible to conduct subsidence experiments efficiently.

本発明の遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置によれば、例えば粉粒体や液体などの流動性を有する載荷体を用いて模型地盤の載荷面に荷重を載荷するようにしたことで、この載荷体が載荷面の変位に応じて流動するため、常時、実地盤上に構築する建物(構造物)の荷重に応じた等分布荷重を載荷面に載荷することが可能になる。これにより、鉛直変位が荷重と地中応力に応じて分布する実地盤の沈下現象を忠実に再現することが可能になる。   According to the static loading method of the centrifugal model experiment of the present invention and the static loading device used for the centrifugal model experiment, for example, a load is applied to the loading surface of the model ground using a loading body having fluidity such as a granular material or a liquid. Since this loading body flows according to the displacement of the loading surface by loading it, always load an evenly distributed load on the loading surface according to the load of the building (structure) built on the actual ground It becomes possible. Thereby, it becomes possible to faithfully reproduce the subsidence phenomenon of the actual ground in which the vertical displacement is distributed according to the load and the underground stress.

以下、図1から図5を参照し、本発明の一実施形態に係る遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置について説明する。本実施形態は、遠心力を利用して模型地盤の応力レベルを、実地盤を模擬した状態にし、静的載荷装置で模型地盤に荷重を載荷するとともに模型地盤の鉛直方向の変位を計測して、実地盤の挙動を予測する遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置に関するものである。   Hereinafter, a static loading method of a centrifugal model experiment and a static loading device used for the centrifugal model experiment according to an embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the stress level of the model ground is simulated using the centrifugal force, the load is applied to the model ground with a static loading device, and the vertical displacement of the model ground is measured. The present invention relates to a static loading method of a centrifugal model experiment for predicting the behavior of an actual ground and a static loading device used for the centrifugal model experiment.

はじめに、本実施形態において、遠心模型実験装置は、周知のアーム可動型遠心載荷実験装置であり、回転軸を鉛直方向に配して設けられた回転軸と、この回転軸の上部に固設されるとともに水平方向に延出し、回転軸中心に対称に配設された回転アームと、回転アームの先端側に、この回転アームの延設方向に向けた垂直方向に回動自在に懸吊されたプラットホームとを備えて構成されている。   First, in this embodiment, the centrifugal model experimental device is a well-known arm-movable centrifugal loading experimental device, which is fixed to a rotating shaft provided with a rotating shaft arranged in a vertical direction, and an upper portion of the rotating shaft. The rotating arm extends horizontally and is symmetrically arranged about the rotation axis, and is suspended at the tip of the rotating arm so as to be rotatable in the vertical direction toward the extending direction of the rotating arm. And a platform.

この遠心模型実験装置においては、模型地盤Gを充填した試料容器1がプラットホームに搭載される。そして、回転軸を回転させ、この回転軸の軸線回りに回転アームを回動させると、試料容器1を搭載したプラットホームが遠心加速度の増加に伴って振り上がり、試料容器1内の模型地盤Gに遠心力が作用する。これにより、所定の遠心加速度に達するとともに模型地盤Gの応力レベルが実地盤を模擬した状態になる。そして、模型地盤Gの応力レベルが実地盤を模擬して再現された段階で、模型地盤Gに荷重を載荷し変位を計測することによって実地盤の沈下挙動を予測することが可能になる。   In this centrifugal model experimental apparatus, the sample container 1 filled with the model ground G is mounted on the platform. Then, when the rotating shaft is rotated and the rotating arm is rotated around the axis of the rotating shaft, the platform on which the sample container 1 is mounted swings up with an increase in the centrifugal acceleration, and the model ground G in the sample container 1 is lifted. Centrifugal force acts. Thereby, while reaching a predetermined centrifugal acceleration, the stress level of the model ground G becomes a state simulating the actual ground. Then, when the stress level of the model ground G is reproduced by simulating the actual ground, it is possible to predict the settlement behavior of the actual ground by loading the model ground G and measuring the displacement.

ここで、模型地盤Gに荷重を載荷するための本実施形態の静的載荷装置10は、図1及び図2に示すように、試料容器1と一体に設けられたフレーム11と、試料容器1よりも上方に位置するフレーム11の上部に取り付けて支持された液体補給用タンク12と、載荷用タンク13と、電磁バルブ14aを介して液体補給用タンク12と載荷用タンク13に繋げられた液体供給管14と、変位計15、16、17とを備えて構成されている。   Here, as shown in FIGS. 1 and 2, the static loading device 10 for loading a load on the model ground G includes a frame 11 provided integrally with the sample container 1, and the sample container 1. Liquid replenishment tank 12 attached to and supported by the upper portion of frame 11 located above, loading tank 13, and liquid connected to liquid replenishing tank 12 and loading tank 13 via electromagnetic valve 14a A supply pipe 14 and displacement meters 15, 16, and 17 are provided.

液体補給用タンク12は、試料容器1に充填した模型地盤Gの載荷面G1に荷重を載荷するための液体(流動性を有する載荷体)Wを貯留するタンクであり、この載荷用の液体Wとして例えば水、あるいはSPT(ポリタングステン酸ナトリウム)、液体水銀などの重液が貯留されている。   The liquid replenishing tank 12 is a tank for storing a liquid (loading body having fluidity) W for loading a load on the loading surface G1 of the model ground G filled in the sample container 1, and this loading liquid W For example, water or heavy liquid such as SPT (sodium polytungstate) or liquid mercury is stored.

載荷用タンク13は、図1及び図2に示すように、例えば方形の筒状に形成されており、その上端側をフレーム11に繋げて支持され、下端側の開口部13aを模型地盤Gの載荷面G1(地表面)上に配して設置されている。また、図3に示すように、載荷用タンク13には、液体供給管14の電磁バルブ14aを開いて液体補給用タンク12から供給された液体Wを載荷用タンク13内で貯留するための袋状で柔軟性を有する膜体20が設けられている。この膜体20は、載荷用タンク13の上端側で開口し、底部20aが載荷用タンク13の下端の開口部13a側に配されて、載荷用タンク13内に緩挿した状態で設置されている。さらに、膜体20は、液体補給用タンク12から供給して貯留された液体Wと模型地盤Gの載荷面G1の間に底部13aが載荷用タンク13の開口部13aを通じて介装され、遠心力が作用した状態で、常時、この膜体20の底部20aが模型地盤Gの載荷面G1に密着するように設けられている。   As shown in FIGS. 1 and 2, the loading tank 13 is formed in, for example, a rectangular tube shape, and is supported by connecting the upper end side to the frame 11, and the opening 13 a on the lower end side is connected to the model ground G. It is arranged on the loading surface G1 (ground surface). As shown in FIG. 3, the loading tank 13 is a bag for storing the liquid W supplied from the liquid supply tank 12 by opening the electromagnetic valve 14 a of the liquid supply pipe 14 in the loading tank 13. A flexible film body 20 is provided. The film body 20 is opened at the upper end side of the loading tank 13, and the bottom portion 20 a is disposed on the opening 13 a side at the lower end of the loading tank 13, and is installed in a state of being loosely inserted into the loading tank 13. Yes. Further, the membrane body 20 is interposed between the liquid W supplied and stored from the liquid replenishment tank 12 and the loading surface G1 of the model ground G through the opening 13a of the loading tank 13, and centrifugal force Is always provided so that the bottom 20a of the film body 20 is in close contact with the loading surface G1 of the model ground G.

変位計15、16、17は、接触式変位計であり、図1から図3に示すように、変位計本体15a、16a、17aと、この変位計本体15a、16a、17aに伸縮自在に繋がるロッド15b、16b、17bと、ロッド15b、16b、17bの先端部が当接するターゲット板15c、16c、17cとを備えて構成されている。そして、変位計本体15a、16a、17aをフレーム11の上部に取り付けて支持され、ロッド15b、16b、17bが膜体20(載荷用タンク13)の内部に配され、このロッド15b、16b、17bの先端部が当接するターゲット板15c、16c、17cを膜体20の底部20aの内側に取り付けて設置されている。また、本実施形態においては、模型地盤Gの載荷面G1の中央とこの中央を挟んで左右両側の変位をそれぞれ計測するように、3つの変位計15、16、17が設置されている。このように設置した各変位計15、16、17は、ターゲット板15c、16c、17cが、遠心力が作用した状態で、載荷面G1に密着する膜体20の底部20aに取り付けられているため、このターゲット板15c、16c、17cが模型地盤Gの載荷面G1とともに変位することになり、膜体20を介して模型地盤G(載荷面G1)の変位を計測することができる。   The displacement meters 15, 16, and 17 are contact displacement meters. As shown in FIGS. 1 to 3, the displacement meter bodies 15a, 16a, and 17a are connected to the displacement meter bodies 15a, 16a, and 17a so as to be extendable and contractable. It comprises rods 15b, 16b, 17b and target plates 15c, 16c, 17c with which the tip portions of rods 15b, 16b, 17b abut. The displacement meter bodies 15a, 16a, 17a are attached to and supported by the upper part of the frame 11, and the rods 15b, 16b, 17b are arranged inside the film body 20 (loading tank 13). The rods 15b, 16b, 17b The target plates 15c, 16c, and 17c with which the tip ends of the film body 20 are attached are installed inside the bottom portion 20a of the film body 20. In the present embodiment, three displacement meters 15, 16, and 17 are installed so as to measure the center of the loading surface G1 of the model ground G and the displacements on both the left and right sides of the center. Since the displacement meters 15, 16, and 17 installed in this way are attached to the bottom 20a of the film body 20 that is in close contact with the loading surface G1 in a state where the centrifugal force is applied to the target plates 15c, 16c, and 17c. The target plates 15c, 16c, and 17c are displaced together with the loading surface G1 of the model ground G, and the displacement of the model ground G (loading surface G1) can be measured through the film body 20.

ついで、上記構成からなる静的載荷装置10によって模型地盤Gに荷重を載荷し、遠心模型実験で沈下実験を行う方法について説明するとともに、本実施形態の遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置10の作用及び効果について説明する。   Next, a method for loading the model ground G with the static loading device 10 having the above-described configuration and performing a settlement experiment in the centrifugal model experiment will be described, and the static loading method and the centrifugal model of the centrifugal model experiment of the present embodiment will be described. The operation and effect of the static loading device 10 used in the experiment will be described.

遠心模型実験で沈下実験を行う際には、はじめに、遠心模型実験装置のプラットホームに模型地盤Gを充填した試料容器1及びフレーム11を搭載する。ついで、膜体20を設けた載荷用タンク13を、フレーム11に取り付けて支持させ、その下端側の開口部13aを模型地盤Gの載荷面G1上に配して設置する。また、膜体20の底部20aにターゲット板15c、16c、17cを設置するとともに、変位計本体15a、16a、17aをフレーム11の上部に取り付けるとともにロッド15b、16b、17bの先端部をターゲット板15c、16c、17cに当接させて、各変位計15、16、17を設置する。さらに、液体補給用タンク12に載荷用の液体Wを入れて貯留する。   When conducting a settlement experiment in the centrifugal model experiment, first, the sample container 1 and the frame 11 filled with the model ground G are mounted on the platform of the centrifugal model experimental device. Next, the loading tank 13 provided with the film body 20 is attached to and supported by the frame 11, and the opening 13a on the lower end side thereof is disposed on the loading surface G1 of the model ground G and installed. Further, the target plates 15c, 16c, and 17c are installed on the bottom 20a of the film body 20, the displacement meter bodies 15a, 16a, and 17a are attached to the upper portion of the frame 11, and the tips of the rods 15b, 16b, and 17b are attached to the target plate 15c. , 16c, 17c, and the displacement meters 15, 16, 17 are installed. Further, the loading liquid W is put in the liquid supply tank 12 and stored.

そして、このように静的載荷装置10を設置した段階で、遠心模型実験装置の回転軸を回転させ、回転アームを回転させる。これにより、模型地盤Gを充填した試料容器1及び静的載荷装置10を搭載したプラットホームが遠心加速度の増加に伴って振り上がり、所定の遠心加速度に達するとともに、試料容器1内の模型地盤Gの応力レベルが実地盤を模擬した状態になる。   And in the stage which installed the static loading apparatus 10 in this way, the rotating shaft of a centrifuge model experimental apparatus is rotated, and a rotating arm is rotated. As a result, the sample container 1 filled with the model ground G and the platform loaded with the static loading device 10 are swung up as the centrifugal acceleration increases, reach a predetermined centrifugal acceleration, and the model ground G in the sample container 1 The stress level simulates the actual ground.

模型地盤Gの応力レベルが実地盤を模擬して再現された段階で、電磁バルブ14aを開き、液体供給管14を通じて液体補給用タンク12から膜体20(載荷用タンク13)の内部に所定量の液体Wを落下させる。このように液体Wを載荷用タンク13内に供給すると、遠心力が加えられた液体Wによって、膜体20の底部20aが模型地盤Gの載荷面G1に密着するとともに、液体Wの量に応じた所定の荷重が模型地盤Gの載荷面G1に載荷される。また、この荷重に応じて模型地盤Gの載荷面G1に変位が生じた場合には、柔軟性を有する膜体20の底部20aが模型地盤Gの載荷面G1に密着した状態を維持するように載荷面G1とともに変位(変形)し、さらに流動性を有する液体Wが載荷面G1の変位に応じて流動(従動)する。このため、載荷面G1内で変位分布が生じた場合においても、液体Wによって、常時、例えば実地盤上に構築する建物の荷重に応じた等分布荷重が載荷面G1に載荷されることになる。   When the stress level of the model ground G is reproduced by simulating the actual ground, the electromagnetic valve 14a is opened, and a predetermined amount is supplied from the liquid supply tank 12 to the inside of the film body 20 (loading tank 13) through the liquid supply pipe 14. The liquid W is dropped. When the liquid W is supplied into the loading tank 13 in this way, the bottom 20a of the film body 20 is brought into close contact with the loading surface G1 of the model ground G by the liquid W to which centrifugal force is applied, and the amount of the liquid W is determined. The predetermined load is loaded on the loading surface G1 of the model ground G. Further, when displacement occurs on the loading surface G1 of the model ground G according to this load, the bottom 20a of the flexible film body 20 is maintained in close contact with the loading surface G1 of the model ground G. Displacement (deformation) is performed together with the loading surface G1, and the liquid W having fluidity flows (follows) according to the displacement of the loading surface G1. For this reason, even when displacement distribution occurs in the loading surface G1, the liquid W always loads, for example, an evenly distributed load corresponding to the load of the building constructed on the actual ground onto the loading surface G1. .

また、膜体20の底部20aが載荷面G1に密着して載荷面G1とともに変位することで、この膜体20の底部20aに取り付けたターゲット板15c、16c、17cが載荷面G1の変位に従動して変位する。これにより、変位計15、16、17によって載荷面G1の変位量(模型地盤Gの変位量(沈下量))が計測される。さらに、電磁バルブ14aを開閉し、段階的に載荷用タンク13内に液体Wを供給することにより、実際の建物構築過程で順次増加する荷重に応じて段階的に荷重を増加させてゆき、各段階の荷重に対する変位(沈下量)を計測する。そして、このとき、載荷面G1の変位に応じて流動する液体Wによって、常時載荷面G1に建物の荷重に応じた等分布荷重が載荷されるため、中央と左右両側に設けた変位計15、16、17でそれぞれ計測した結果は、鉛直変位が荷重と地中応力に応じて分布する実地盤の沈下現象を忠実に再現したものになる。   Further, when the bottom portion 20a of the film body 20 is brought into close contact with the loading surface G1 and displaced together with the loading surface G1, the target plates 15c, 16c, and 17c attached to the bottom portion 20a of the film body 20 are driven by the displacement of the loading surface G1. To be displaced. Thereby, the displacement amount of the loading surface G1 (the displacement amount (sinking amount) of the model ground G) is measured by the displacement meters 15, 16, and 17. Furthermore, by opening and closing the electromagnetic valve 14a and supplying the liquid W into the loading tank 13 step by step, the load is increased stepwise according to the load that sequentially increases in the actual building construction process. Measure displacement (settlement) with respect to stage load. At this time, the liquid W that flows in accordance with the displacement of the loading surface G1 is loaded with an evenly distributed load corresponding to the load of the building on the loading surface G1 at all times. The results measured at 16 and 17 faithfully reproduce the subsidence phenomenon of the actual ground where the vertical displacement is distributed according to the load and the underground stress.

ここで、図5は、図4に示すように液体Wの量を段階的に増加させて模型地盤Gの載荷面G1に載荷する荷重を段階的に増加させた場合における載荷面G1の中央、左右両側の変位の計測結果を示している。この試験結果から、段階的に荷重を載荷するとともに沈下が生じる状況を再現でき、且つ載荷面G1内での変位分布を捉えて、鉛直変位が荷重と地中応力に応じて分布する実地盤の沈下現象を忠実に再現できることが確認された。   Here, FIG. 5 shows the center of the loading surface G1 when the amount of the liquid W is increased stepwise as shown in FIG. 4 and the load loaded on the loading surface G1 of the model ground G is increased stepwise. The measurement results of the left and right displacements are shown. From this test result, it is possible to reproduce the situation where subsidence occurs while loading loads step by step, and by capturing the displacement distribution in the loading surface G1, the vertical displacement is distributed according to the load and underground stress. It was confirmed that the settlement phenomenon can be faithfully reproduced.

したがって、本実施形態の遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置10においては、液体W(流動性を有する載荷体)を用いて模型地盤Gの載荷面G1に荷重を載荷することにより、この液体Wが載荷面G1の変位に応じて流動(載荷面G1の変位に従動)して、常時、実地盤上に構築する建物の荷重に応じた等分布荷重を載荷面G1に載荷することが可能になる。これにより、鉛直変位が荷重と地中応力に応じて分布する実地盤の沈下現象を忠実に再現することが可能になる。   Therefore, in the static loading method of the centrifugal model experiment of this embodiment and the static loading device 10 used for the centrifugal model experiment, a load is applied to the loading surface G1 of the model ground G by using the liquid W (loading body having fluidity). The liquid W flows according to the displacement of the loading surface G1 (followed by the displacement of the loading surface G1), and always loads an evenly distributed load according to the load of the building constructed on the actual ground. It becomes possible to load on the surface G1. Thereby, it becomes possible to faithfully reproduce the subsidence phenomenon of the actual ground in which the vertical displacement is distributed according to the load and the underground stress.

また、載荷用タンク13に膜体20を設けることによって、載荷用タンク13に供給した液体Wをこの膜体20によって載荷用タンク13内に貯留することが可能になる。そして、膜体20が載荷面G1の変位に応じてこの載荷面G1に常時密着するように変形し、膜体20の変形とともに液体Wが流動するため、常時、実地盤上に構築する建物の荷重に応じた等分布荷重を載荷面G1に載荷することが可能になる。   Further, by providing the film body 20 in the loading tank 13, the liquid W supplied to the loading tank 13 can be stored in the loading tank 13 by the film body 20. Then, the film body 20 is deformed so as to be always in close contact with the loading surface G1 according to the displacement of the loading surface G1, and the liquid W flows along with the deformation of the film body 20, so that the building always constructed on the actual ground It becomes possible to load an evenly distributed load corresponding to the load on the loading surface G1.

さらに、複数の変位計15、16、17を設けて、載荷面G1の複数箇所の変位を計測することで、この載荷面G1の変位分布を捉えることができ、載荷時の実地盤の地表面(載荷面G1)の沈下分布を精度よく予測することが可能になる。   Furthermore, by providing a plurality of displacement gauges 15, 16, and 17 and measuring the displacement at a plurality of locations on the loading surface G1, the displacement distribution of the loading surface G1 can be grasped, and the ground surface of the actual ground at the time of loading is obtained. It becomes possible to accurately predict the settlement distribution of (loading surface G1).

また、載荷体として例えば水や重液などの液体Wを用いることによって、載荷体(液体W)が載荷面G1の変位に応じて確実に流動して、常時、実地盤上に構築する建物の荷重に応じた等分布荷重を確実に載荷面G1に載荷することが可能になる。さらに、このとき、液体Wに重液を用いることによって、例えば水を用いる場合と比較し、少量の重液を載荷用タンク13に供給して所望の荷重を載荷することが可能になり、効率的に沈下実験を行うことが可能になるとともに、液体補給用タンク12や載荷用タンク13を小さく形成することも可能になる。また、重液としてSPTを用いた場合には、無害であるため、例えば液体水銀などを用いる場合よりもその取扱いを容易にすることが可能である。   Further, by using a liquid W such as water or heavy liquid as the loading body, the loading body (liquid W) flows reliably according to the displacement of the loading surface G1, and is always built on the actual ground. It is possible to reliably load an evenly distributed load corresponding to the load on the loading surface G1. Furthermore, at this time, by using heavy liquid as the liquid W, it becomes possible to supply a small amount of heavy liquid to the loading tank 13 and load a desired load, compared with the case where water is used, for example. In addition, it is possible to conduct a subsidence experiment and to make the liquid replenishing tank 12 and the loading tank 13 small. In addition, when SPT is used as a heavy liquid, it is harmless, and therefore, it is possible to handle it more easily than when liquid mercury or the like is used, for example.

以上、本発明に係る遠心模型実験の静的載荷方法及び遠心模型実験に用いる静的載荷装置の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、載荷体が液体Wであるものとして説明を行ったが、本発明に係る載荷体は、流動性を有していればよく、例えば金属の粉粒体を用いてもよい。また、このような粉粒体を載荷体として用いる場合には、載荷用タンク13内に供給して貯留するとともに、載荷用タンク13の開口部13aを通じて直接模型地盤Gの載荷面G1に接触させて、載荷面G1に荷重を載荷することが可能である。このため、必ずしも膜体20を載荷用タンク13に設けることに限定しなくてもよい。   As mentioned above, although one embodiment of the static loading method of the centrifugal model experiment and the static loading apparatus used for the centrifugal model experiment according to the present invention has been described, the present invention is not limited to the above-described one embodiment. Changes can be made as appropriate without departing from the spirit of the invention. For example, in the present embodiment, the description has been made on the assumption that the loaded body is the liquid W. However, the loaded body according to the present invention only needs to have fluidity, and for example, metal powder particles may be used. Good. Moreover, when using such a granular material as a loading body, while supplying and storing in the loading tank 13, it is made to contact the loading surface G1 of the model ground G directly through the opening part 13a of the loading tank 13. Thus, it is possible to load a load on the loading surface G1. For this reason, the film body 20 is not necessarily limited to being provided in the loading tank 13.

また、本実施形態では、載荷用タンク13がその上端側をフレーム11に取り付けて支持されているものとしたが、載荷用タンク13を、フレーム11で支持することなく、模型地盤G上に載置して設けてもよい。   Further, in the present embodiment, the loading tank 13 is supported by attaching the upper end side to the frame 11, but the loading tank 13 is mounted on the model ground G without being supported by the frame 11. It may be provided.

さらに、本実施形態では、遠心模型実験装置がアーム可動型遠心載荷実験装置であるものとして説明を行ったが、本発明は、ドラム型遠心載荷実験装置を用いて沈下実験を行う際にも適用可能である。   Furthermore, in the present embodiment, the centrifugal model experiment device has been described as an arm movable centrifugal loading test device. However, the present invention is also applicable when a subsidence experiment is performed using a drum type centrifugal loading test device. Is possible.

また、本実施形態では、変位計15、16、17が接触式変位計であるものとしたが、模型地盤Gの載荷面G1の変位を計測することができれば、特に接触式変位計に限定する必要はない。   In the present embodiment, the displacement meters 15, 16, and 17 are contact displacement meters. However, if the displacement of the loading surface G1 of the model ground G can be measured, the displacement meters are limited to the contact displacement meters. There is no need.

さらに、例えば図6に示すように、模型地盤Gの載荷面G1と液体W(載荷体)の間に、実地盤上に構築される例えば建物の基礎スラブなどの実構造物の剛性を模した模擬板21を設置するようにしてもよい。この場合には、模擬板21によって建物の基礎スラブなどの変形の影響を反映させて、模型地盤Gの載荷面G1に載荷体による荷重を載荷することができる。このため、より実際に近い変位分布を捉えることができ、より高精度で実地盤の沈下分布を予測することが可能になる。   Furthermore, as shown in FIG. 6, for example, the rigidity of an actual structure such as a foundation slab of a building constructed on the actual ground is simulated between the loading surface G1 of the model ground G and the liquid W (loading body). A simulated board 21 may be installed. In this case, the simulated plate 21 can reflect the influence of deformation such as the foundation slab of the building, and the load due to the loading body can be loaded on the loading surface G1 of the model ground G. For this reason, it is possible to capture a displacement distribution that is closer to reality, and it is possible to predict the settlement distribution of the actual ground with higher accuracy.

本発明の一実施形態に係る静的載荷装置を示す図である。It is a figure which shows the static loading apparatus which concerns on one Embodiment of this invention. 図1のX1−X1線矢視図である。It is the X1-X1 arrow view figure of FIG. 本発明の一実施形態に係る静的載荷装置の載荷用タンク(膜体)を示す図である。It is a figure which shows the tank for a loading (film | membrane body) of the static loading apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る静的載荷装置を用いて行った試験における荷重履歴を示す図である。It is a figure which shows the load log | history in the test done using the static loading apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る静的載荷装置を用いて行った試験結果を示す図である。It is a figure which shows the test result performed using the static loading apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る静的載荷装置の変形例を示す図である。It is a figure which shows the modification of the static loading apparatus which concerns on one Embodiment of this invention. 従来の静的載荷装置を示す図である。It is a figure which shows the conventional static loading apparatus. 従来の静的載荷装置を示す図である。It is a figure which shows the conventional static loading apparatus.

符号の説明Explanation of symbols

1 試験容器
10 静的載荷装置
11 フレーム
12 液体補給用タンク
13 載荷用タンク
13a 開口部
14 液体供給管
14a 電磁バルブ
15 変位計(中央)
16 変位計(左側)
17 変位計(右側)
20 膜体
20a 底部
G 模型地盤
G1 載荷面
DESCRIPTION OF SYMBOLS 1 Test container 10 Static loading apparatus 11 Frame 12 Tank for liquid supply 13 Loading tank 13a Opening part 14 Liquid supply pipe 14a Electromagnetic valve 15 Displacement meter (center)
16 Displacement meter (left side)
17 Displacement meter (right side)
20 Film body 20a Bottom G Model ground G1 Loading surface

Claims (12)

遠心模型実験の静的載荷方法であって、
静的載荷装置が筒状の載荷用タンクと、流動性を有し、模型地盤の載荷面に荷重を載荷するための載荷体とを備えて構成され、
前記模型地盤の載荷面上に開口部を配して設けた前記載荷用タンク内に前記載荷体を供給するとともに、前記載荷用タンク内の前記載荷体の量に応じた荷重を、前記載荷用タンクの開口部を通じて前記模型地盤の載荷面に載荷するようにしたことを特徴とする遠心模型実験の静的載荷方法。
A static loading method for a centrifugal model experiment,
The static loading device includes a cylindrical loading tank and a loading body that has fluidity and loads a load on the loading surface of the model ground.
The load described above is supplied into the load tank described above provided with an opening on the loading surface of the model ground, and a load corresponding to the amount of the load described above in the load tank is used for the load described above. A static loading method for a centrifugal model experiment, wherein the loading is performed on a loading surface of the model ground through an opening of a tank.
請求項1記載の遠心模型実験の静的載荷方法において、
前記載荷用タンクには、供給した前記載荷体を前記載荷用タンク内に貯留するための膜体が設けられており、
前記遠心力が作用した状態で、前記載荷用タンク内の前記載荷体と前記模型地盤の載荷面との間に介装された前記膜体が前記模型地盤の載荷面に密着し、前記膜体を介して前記載荷体の量に応じた荷重を前記模型地盤の載荷面に載荷するようにしたことを特徴とする遠心模型実験の静的載荷方法。
In the static loading method of the centrifugal model experiment according to claim 1,
The aforementioned cargo tank is provided with a film body for storing the supplied previous cargo in the aforementioned cargo tank,
In a state where the centrifugal force is applied, the film body interposed between the load body in the load tank described above and the load surface of the model ground is in close contact with the load surface of the model ground, and the film body A static loading method for a centrifugal model experiment, wherein a load corresponding to the amount of the load body described above is loaded on the loading surface of the model ground.
請求項1または請求項2に記載の遠心模型実験の静的載荷方法において、
複数の変位計を設け、該複数の変位計によって前記模型地盤の載荷面の複数箇所の変位を計測することを特徴とする遠心模型実験の静的載荷方法。
In the static loading method of the centrifugal model experiment according to claim 1 or claim 2,
A static loading method of a centrifugal model experiment, comprising a plurality of displacement meters, and measuring displacements at a plurality of locations on a loading surface of the model ground with the plurality of displacement meters.
請求項1から請求項3のいずれかに記載の遠心模型実験の静的載荷方法において、
前記模型地盤の載荷面と前記載荷体の間に、前記実地盤上に構築される実構造物の剛性を模した模擬板を設置することを特徴とする遠心模型実験の静的載荷方法。
In the static loading method of the centrifugal model experiment according to any one of claims 1 to 3,
A static loading method of a centrifugal model experiment, characterized in that a simulated plate simulating the rigidity of an actual structure constructed on the actual ground is installed between the loading surface of the model ground and the load body described above.
請求項1から請求項4のいずれかに記載の遠心模型実験の静的載荷方法において、
前記載荷体に液体を用いることを特徴とする遠心模型実験の静的載荷方法。
In the static loading method of the centrifugal model experiment according to any one of claims 1 to 4,
A static loading method for a centrifugal model experiment, characterized in that a liquid is used for the package described above.
請求項5記載の遠心模型実験の静的載荷方法において、
前記液体に重液を用いることを特徴とする遠心模型実験の静的載荷方法。
In the static loading method of the centrifugal model experiment according to claim 5,
A static loading method for a centrifugal model experiment, wherein heavy liquid is used as the liquid.
遠心模型実験に用いる静的載荷装置であって、
筒状の載荷用タンクと、流動性を有し、模型地盤の載荷面に荷重を載荷するための載荷体とを備えており、
前記模型地盤の載荷面上に開口部を配して設けた前記載荷用タンク内に前記載荷体を供給するとともに、前記載荷用タンク内の前記載荷体の量に応じた荷重を、前記載荷用タンクの開口部を通じて前記模型地盤の載荷面に載荷するように構成されていることを特徴とする遠心模型実験に用いる静的載荷装置。
A static loading device used for a centrifugal model experiment,
A cylindrical tank for loading, and a fluidity, and a loading body for loading a load on the loading surface of the model ground,
The load described above is supplied into the load tank described above provided with an opening on the loading surface of the model ground, and a load corresponding to the amount of the load described above in the load tank is used for the load described above. A static loading device used for a centrifugal model experiment, wherein the static loading device is configured to be loaded on a loading surface of the model ground through an opening of a tank.
請求項7記載の遠心模型実験に用いる静的載荷装置において、
前記載荷用タンクには、供給した前記載荷体を前記載荷用タンク内に貯留するための膜体が設けられており、
前記遠心力が作用した状態で、前記載荷用タンク内の前記載荷体と前記模型地盤の載荷面との間に介装された前記膜体が前記模型地盤の載荷面に密着するように構成されていることを特徴とする遠心模型実験に用いる静的載荷装置。
In the static loading apparatus used for the centrifugal model experiment according to claim 7,
The aforementioned cargo tank is provided with a film body for storing the supplied previous cargo in the aforementioned cargo tank,
In a state where the centrifugal force is applied, the film body interposed between the load body in the load tank described above and the load surface of the model ground is configured to be in close contact with the load surface of the model ground. A static loading device used for centrifugal model experiments.
請求項7または請求項8に記載の遠心模型実験に用いる静的載荷装置において、
前記模型地盤の載荷面の複数箇所の変位を計測する複数の変位計が設けられていることを特徴とする遠心模型実験に用いる静的載荷装置。
In the static loading apparatus used for the centrifugal model experiment according to claim 7 or claim 8,
A static loading device used for a centrifugal model experiment, wherein a plurality of displacement meters for measuring a plurality of displacements on a loading surface of the model ground are provided.
請求項7から請求項9のいずれかに記載の遠心模型実験に用いる静的載荷装置において、
前記模型地盤の載荷面と前記載荷体の間に、前記実地盤上に構築される実構造物の剛性を模した模擬板が設置されていることを特徴とする遠心模型実験に用いる静的載荷装置。
In the static loading apparatus used for the centrifugal model experiment according to any one of claims 7 to 9,
Static loading used for centrifugal model experiments, characterized in that a simulated plate simulating the rigidity of the actual structure constructed on the actual ground is installed between the loading surface of the model ground and the load body described above. apparatus.
請求項7から請求項10のいずれかに記載の遠心模型実験に用いる静的載荷装置において、
前記載荷体が液体であることを特徴とする遠心模型実験に用いる静的載荷装置。
In the static loading apparatus used for the centrifugal model experiment according to any one of claims 7 to 10,
A static loading device used for a centrifugal model experiment, wherein the load is a liquid.
請求項11記載の遠心模型実験に用いる静的載荷装置において、
前記液体が重液であることを特徴とする遠心模型実験に用いる静的載荷装置。
In the static loading apparatus used for the centrifugal model experiment according to claim 11,
A static loading apparatus used for a centrifugal model experiment, wherein the liquid is a heavy liquid.
JP2008233249A 2008-09-11 2008-09-11 Static loading method and static loading apparatus used for centrifugal model experiment Pending JP2010066148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233249A JP2010066148A (en) 2008-09-11 2008-09-11 Static loading method and static loading apparatus used for centrifugal model experiment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233249A JP2010066148A (en) 2008-09-11 2008-09-11 Static loading method and static loading apparatus used for centrifugal model experiment

Publications (1)

Publication Number Publication Date
JP2010066148A true JP2010066148A (en) 2010-03-25

Family

ID=42191855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233249A Pending JP2010066148A (en) 2008-09-11 2008-09-11 Static loading method and static loading apparatus used for centrifugal model experiment

Country Status (1)

Country Link
JP (1) JP2010066148A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162632A (en) * 2013-03-26 2013-06-19 中国水利水电科学研究院 Three-dimensional (3D) optical displacement measuring system for centrifugal model
JP2015141192A (en) * 2014-01-30 2015-08-03 一般財団法人電力中央研究所 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member
JP2015141191A (en) * 2014-01-30 2015-08-03 一般財団法人電力中央研究所 Behavior evaluation device of buried environmental field of underground isolation member
CN106383019A (en) * 2016-08-19 2017-02-08 长安大学 Water immersion system for centrifugal model test and test method
CN113883996A (en) * 2021-09-14 2022-01-04 中铁西北科学研究院有限公司 Simulation device and analysis method for influence of foundation additional stress on superstructure
WO2023123731A1 (en) * 2021-12-31 2023-07-06 北京空间机电研究所 Truss-type structure loading device and method for static test of spacecraft hull propulsion module
WO2024083163A1 (en) * 2022-10-19 2024-04-25 山东交通学院 Multi-servo channel-based roadbed foundation dynamic stress loading system and control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162632A (en) * 2013-03-26 2013-06-19 中国水利水电科学研究院 Three-dimensional (3D) optical displacement measuring system for centrifugal model
JP2015141192A (en) * 2014-01-30 2015-08-03 一般財団法人電力中央研究所 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member
JP2015141191A (en) * 2014-01-30 2015-08-03 一般財団法人電力中央研究所 Behavior evaluation device of buried environmental field of underground isolation member
CN106383019A (en) * 2016-08-19 2017-02-08 长安大学 Water immersion system for centrifugal model test and test method
CN113883996A (en) * 2021-09-14 2022-01-04 中铁西北科学研究院有限公司 Simulation device and analysis method for influence of foundation additional stress on superstructure
CN113883996B (en) * 2021-09-14 2024-02-02 中铁西北科学研究院有限公司 Simulation device and analysis method for influence of foundation additional stress on upper structure
WO2023123731A1 (en) * 2021-12-31 2023-07-06 北京空间机电研究所 Truss-type structure loading device and method for static test of spacecraft hull propulsion module
WO2024083163A1 (en) * 2022-10-19 2024-04-25 山东交通学院 Multi-servo channel-based roadbed foundation dynamic stress loading system and control method

Similar Documents

Publication Publication Date Title
JP2010066148A (en) Static loading method and static loading apparatus used for centrifugal model experiment
Phillips Centrifuge modelling: practical considerations
US6752019B2 (en) Vibration testing apparatus and vibration testing method
CN107101927B (en) Experimental device and method for permeability test of aerostat capsule material
CN103512806B (en) A kind of novel test method of concrete circular barrel shell security performance
Couto et al. Design and instrumentation of a mid-size test station for measuring static and dynamic pressures in silos under different conditions–Part I: Description
CN105931558A (en) Tunnel excavation unloading simulation testing device and testing method
Ng et al. Performance of existing piled raft and pile group due to adjacent multipropped excavation: 3D centrifuge and numerical modeling
Bui et al. Soil cracking modelling using the mesh-free SPH method
Ruiz et al. Design and instrumentation of a mid-size test station for measuring static and dynamic pressures in silos under different conditions–Part II: Construction and validation
CN105527190A (en) Device and method for determining soil water characteristic curve under constant pressure
CN105696636A (en) Foundation pit model testing device capable of simulating changes of groundwater level during excavation process of foundation pit
CN108035387A (en) Controllable confined pressure is used for the experimental provision for simulating closing pile installation process
CN105115887A (en) Metal material corrosion testing device and method under high-pressure densely-compacted bentonite environment
CN105699210A (en) Dynamic powder flowing behavior analyzer
Abadie et al. Cyclic loading response of monopile foundations in cohesionless soils
EP2339323B1 (en) The method of simulation of kinetics movement of bulk solid particles and facilities to carry out the method
CN105203735A (en) Implementation method of conducting dry-wet cycle by simulating soil body bearing load in engineering
CN102927944A (en) Soil body displacement measuring method and device in large-size test
CN106959195A (en) Geotechnological shaketalle test adds discharge mechanism and method
CN107367441A (en) A kind of device and method of high resolution correlation measure gas adsorption equilibration time
CN207891932U (en) A kind of controllable confining pressure is used to simulate the experimental provision of closing pile installation process
Jassim et al. Design and fabrication of frustum confining vessel apparatus for model pile testing in saturated soils
CN105928794B (en) Built-in soil pressure calculation system
Terzi et al. Experimental investigations of backfill conditions on the performance of high‐density polyethelene pipes