CN106353197B - High-pressure multiphase flow coupled rock true triaxial test system and method - Google Patents
High-pressure multiphase flow coupled rock true triaxial test system and method Download PDFInfo
- Publication number
- CN106353197B CN106353197B CN201610700040.6A CN201610700040A CN106353197B CN 106353197 B CN106353197 B CN 106353197B CN 201610700040 A CN201610700040 A CN 201610700040A CN 106353197 B CN106353197 B CN 106353197B
- Authority
- CN
- China
- Prior art keywords
- pressure
- pore
- loading
- rock sample
- metering pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011435 rock Substances 0.000 title claims abstract description 89
- 238000012360 testing method Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 98
- 239000011148 porous material Substances 0.000 claims abstract description 79
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000012530 fluid Substances 0.000 claims abstract description 50
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 49
- 238000006073 displacement reaction Methods 0.000 claims abstract description 43
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 41
- 238000007789 sealing Methods 0.000 claims abstract description 8
- 238000003825 pressing Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 4
- 239000000919 ceramic Substances 0.000 claims description 15
- 238000005192 partition Methods 0.000 claims description 12
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 239000000565 sealant Substances 0.000 claims description 6
- 238000007596 consolidation process Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 2
- 238000007689 inspection Methods 0.000 claims description 2
- 238000010998 test method Methods 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims 1
- 230000035699 permeability Effects 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 9
- 238000010168 coupling process Methods 0.000 abstract description 9
- 238000005859 coupling reaction Methods 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 abstract description 6
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 abstract description 5
- 238000011160 research Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/14—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0048—Hydraulic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0075—Strain-stress relations or elastic constants
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Acoustics & Sound (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域Technical field
本发明涉及岩石力学试验技术,尤其涉及一种高压多相流耦合岩石真三轴试验系统及方法。The invention relates to rock mechanics testing technology, and in particular to a high-pressure multi-phase flow coupled rock true triaxial testing system and method.
背景技术Background technique
温室气体的大量排放是影响全球气候变暖的主要因素之一。CO2捕集、封存与利用技术已经成为国际上降低二氧化碳排放量的关键技术之一。地下深部咸水层、油气资源开采废弃井田、深海以及非常规油气储层(页岩油气、煤层气和致密油等非常规资源)等场地作为二氧化碳封存主要场所。在CO2地质封存项目中对场地力学稳定性分析与评价是必不可少的环节。CO2地质封存(CCS)、非常规油气资源开发和二氧化碳钻井及压裂等地下工程均涉及岩石、水和二氧化碳的相互作用。近年来,多个两相流力学耦合分析软件应运而生,但由于缺乏含CO2-水两相流体作用下岩石力学特性的实验基础和本构模型,数值模拟结果仍然不能满足工程需求。为了提高数值分析与计算精度,有必要模拟深部储层的应力与空隙流体状态,开展二氧化碳和水两相流作用下砂岩的固结排水真三轴力学试验,测试和分析不同流体组分与压力下岩石的力学特性,并探究高压多相流耦合作用下岩石的力学特性相关参数的测定方法,为数值模拟力学本构模型的建立和相关力学参数的测定奠定基础。此外,针对CO2和水两相流条件下岩石力学特性的相关基础实验和理论研究相对匮乏,CO2与水耦合作用下岩石的强度准则、损伤机理和本构方程是有待解决的关键科学问题。Large amounts of greenhouse gas emissions are one of the main factors affecting global climate warming. CO 2 capture, storage and utilization technology has become one of the key technologies to reduce carbon dioxide emissions internationally. Sites such as deep underground saline aquifers, abandoned oil and gas resource mining well fields, deep seas, and unconventional oil and gas reservoirs (unconventional resources such as shale oil and gas, coalbed methane, and tight oil) are the main sites for carbon dioxide storage. In CO 2 geological storage projects, analysis and evaluation of site mechanical stability are essential links. Underground projects such as CO2 geological storage (CCS), unconventional oil and gas resource development, and CO2 drilling and fracturing all involve the interaction of rock, water, and CO2. In recent years, a number of two-phase fluid mechanics coupling analysis software has emerged. However, due to the lack of experimental basis and constitutive model of rock mechanical properties under the action of CO2-water two-phase fluid, numerical simulation results still cannot meet engineering needs. In order to improve the accuracy of numerical analysis and calculation, it is necessary to simulate the stress and pore fluid state of deep reservoirs, carry out true triaxial mechanical tests of sandstone consolidation and drainage under the action of two-phase flow of carbon dioxide and water, and test and analyze different fluid components and pressures. Under the influence of high-pressure multi-phase flow coupling, the mechanical properties of rocks are determined, and the methods for measuring the parameters related to the mechanical properties of rocks are explored, laying the foundation for the establishment of numerical simulation mechanical constitutive models and the determination of relevant mechanical parameters. In addition, there is a relative lack of basic experimental and theoretical research on the mechanical properties of rocks under the two-phase flow conditions of CO 2 and water. The strength criteria, damage mechanisms and constitutive equations of rocks under the coupling effect of CO 2 and water are key scientific issues to be solved. .
发明内容Contents of the invention
本发明的目的在于实现高压流体多相渗流耦合作用下岩石力学试验测试,充分考虑高压流体对岩石力学特性的影响,提供一种高压多相渗流耦合岩石真三轴试验系统及其方法,可以研究CO2、N2、甲烷和水等高压流体耦合作用下岩石的强度准则、裂纹扩展损伤演化机制及本构关系等,为规模化CO2地质封存力学稳定性风险评价建立有效的理论模型及数值模拟方法奠定基础。The purpose of this invention is to realize rock mechanical testing under the action of high-pressure fluid multi-phase seepage coupling, fully consider the impact of high-pressure fluid on rock mechanical properties, and provide a high-pressure multi-phase seepage coupled rock true triaxial test system and method, which can study The strength criteria, crack propagation damage evolution mechanism and constitutive relationship of rocks under the coupling action of high-pressure fluids such as CO2, N2, methane and water lay the foundation for establishing effective theoretical models and numerical simulation methods for the mechanical stability risk assessment of large-scale CO2 geological storage. Base.
本发明的目的是这样实现的:The purpose of the present invention is achieved as follows:
一、高压多相流耦合岩石真三轴试验系统(简称系统)1. High-pressure multiphase flow coupled rock true triaxial test system (referred to as the system)
包括围压室、X方向压轴、Y方向压轴、加载垫块、多孔隔板、Pcmax陶瓷板、O型密封圈、岩样、声发射传感器、计算机、温度调节水域、过滤器、孔隙二氧化碳计量泵、孔隙水计量泵、真空泵、控制器、位移支架和LVDT位移传感器;Including confining pressure chamber, X-direction finale, Y-direction finale, loading pad, porous partition, Pcmax ceramic plate, O-ring, rock sample, acoustic emission sensor, computer, temperature-regulated water area, filter, pore carbon dioxide metering pump , pore water metering pump, vacuum pump, controller, displacement bracket and LVDT displacement sensor;
其位置和连接关系是:Its location and connection relationship are:
在围压室的中心设置有岩样,在岩样的四周设置有加载垫块,X方向压轴压紧左、右加载垫块,Y方向压轴压紧前、后加载垫块;在左、前加载垫块上设置有位移支架,在右、后加载垫块上设置有LVDT位移传感器;左、右加载垫块均设置有流体通道;在左加载垫块内设置有Pcmax陶瓷板,并通过型密封圈进行密封;在左、右加载垫块上内嵌有多孔隔板;在后加载垫块上设置有声发射传感器;A rock sample is set in the center of the confining pressure chamber, and loading pads are set around the rock sample. The X-direction pressing axis presses the left and right loading pads, and the Y-direction pressing axis presses the front and rear loading pads; on the left and front The loading pad is provided with a displacement bracket, and the right and rear loading pads are provided with LVDT displacement sensors; the left and right loading pads are both equipped with fluid channels; the left loading pad is provided with a Pcmax ceramic plate, and is passed through the type The sealing ring is used for sealing; porous partitions are embedded in the left and right loading pads; an acoustic emission sensor is provided on the rear loading pad;
将岩样的上下两面抹胶密封;左、右加载垫块通过气体管路与过滤器相连;Apply glue to seal the upper and lower sides of the rock sample; the left and right loading pads are connected to the filter through gas pipelines;
过滤器分别与孔隙二氧化碳计量泵和孔隙水计量泵连接,孔隙二氧化碳计量泵和孔隙水计量泵共同连接于真空泵,将岩样抽真空;孔隙二氧化碳计量泵和孔隙水计量泵分别通过控制器和计算机连接,实现流体控制;The filter is connected to the pore carbon dioxide metering pump and the pore water metering pump respectively. The pore carbon dioxide metering pump and the pore water metering pump are jointly connected to the vacuum pump to evacuate the rock sample; the pore carbon dioxide metering pump and the pore water metering pump are respectively connected to the controller and computer. connection to achieve fluid control;
声发射传感器和LVDT位移传感器分别与计算机连接,采集声发射声信号和位移信号。The acoustic emission sensor and LVDT displacement sensor are connected to the computer respectively to collect the acoustic emission signal and displacement signal.
二、高压多相流耦合岩石真三轴试验方法(简称方法)2. High-pressure multiphase flow coupled rock true triaxial test method (referred to as method)
本方法主要包括以下步骤:This method mainly includes the following steps:
①岩样加工①Rock sample processing
将待测试岩石加工为长×宽×高=100mm×50mm×50mm或80mm×40mm×40mm表面平整的立方体岩样;Process the rock to be tested into a cubic rock sample with a length × width × height = 100mm × 50mm × 50mm or 80mm × 40mm × 40mm with a flat surface;
②岩样密封②Rock sample sealing
将岩样放在左、右、前和后加载垫块中心并夹紧,在岩样上下两面及棱角处均匀地涂抹一层密封胶,使得密封胶和加载垫块完全包裹住岩样,形成组合件;待密封胶风干,才可进行测试;Place the rock sample in the center of the left, right, front and rear loading pads and clamp it. Apply a layer of sealant evenly on the upper and lower sides of the rock sample and at the edges and corners, so that the sealant and loading pads completely wrap the rock sample, forming a Assembly; wait for the sealant to dry before testing;
③管路连接③Pipeline connection
将含有岩样的组合件放入围压室中间位置,并将X方向压轴和Y方向压轴压紧加载垫块;然后将加载垫块上的二氧化碳和孔隙水管路分别与孔隙二氧化碳计量泵和孔隙水计量泵连接,管路需途径温度调节水域;Place the assembly containing the rock sample into the middle of the confining pressure chamber, and press the X-direction and Y-direction presses against the loading pad; then connect the carbon dioxide and pore water pipelines on the loading pad to the pore carbon dioxide metering pump and pore water respectively. To connect the metering pump, the pipeline must pass through the temperature-regulated water area;
④系统气密性检查④System air tightness inspection
在孔隙流体控制单元中,向密封的岩样充入高压力气体,待压力恒定后,关闭阀门,观察压力变化,如过长时间内没有下降,则气密性良好;否则重复密封试样及步骤③④,直至该单元密封性良好为止;In the pore fluid control unit, fill the sealed rock sample with high-pressure gas. After the pressure becomes constant, close the valve and observe the pressure change. If it does not drop for a long time, the air tightness is good; otherwise, seal the sample again and Steps ③④ until the unit is well sealed;
⑤抽真空⑤Vacuum
开启真空泵,抽真空12小时,完成后先关闭气路阀门再关闭真空泵,保持密封岩样内部真空状态;Turn on the vacuum pump and vacuum for 12 hours. After completion, first close the gas valve and then the vacuum pump to maintain the vacuum state inside the sealed rock sample;
⑥预应力加载⑥ Prestressed loading
启动三轴压力机加载系统,按照预先试验方案对岩样施加预定的三轴应力;Start the triaxial press loading system and apply predetermined triaxial stress to the rock sample according to the pre-test plan;
⑦孔隙流体加载⑦Pore fluid loading
启动孔隙二氧化碳计量泵和孔隙水计量泵、温度调节水域,先注入高压孔隙水,并保持预定的压力;待固结平衡后,注入高压力孔隙二氧化碳,并保持预定的压力,固结平衡时间保持24小时;Start the pore carbon dioxide metering pump, pore water metering pump, and temperature-regulated water area. First inject high-pressure pore water and maintain the predetermined pressure. After consolidation and equilibrium, inject high-pressure pore carbon dioxide and maintain the predetermined pressure. The consolidation equilibrium time remains 24 hours;
⑧试验测试⑧Experimental test
首先启动声发射监测单元和位移监测单元,再根据预先设定好的应力路径,控制和调节三轴压力机和孔隙流体压力,开展多相流耦合岩石真三种力学特性试验;First, start the acoustic emission monitoring unit and displacement monitoring unit, and then control and adjust the triaxial press and pore fluid pressure according to the preset stress path to carry out multi-phase flow coupled rock true three mechanical properties tests;
⑨整理设备⑨Organize equipment
待完成测试后,首先将高压气体放出,再卸载应力,取出试验后被破坏的岩样,清理干净围压室,关闭三轴压力机、声发射监测单元和孔隙流体控制单元;After the test is completed, first release the high-pressure gas, then unload the stress, take out the rock samples that were damaged after the test, clean the confining pressure chamber, and close the triaxial press, acoustic emission monitoring unit and pore fluid control unit;
⑩试验数据整理⑩Test data sorting
对保存在计算机中的试验测试数据进行整理和分析。Organize and analyze experimental test data saved in the computer.
本发明具有下列优点和积极效果:The invention has the following advantages and positive effects:
①利用伺服控制真三轴应力系统可以实现应力和位移的精准控制;①Using servo control of the true three-axis stress system can achieve precise control of stress and displacement;
②利用流体计量泵能实现了复杂应力状态下对流体压力及岩样饱和度的精确控制和测量,并能够精确测量出流体的瞬态质量、流量等参数;② The use of fluid metering pumps can achieve precise control and measurement of fluid pressure and rock sample saturation under complex stress conditions, and can accurately measure the transient mass, flow rate and other parameters of the fluid;
③基于轴平移技术特殊设计的加载垫块可以对岩样施加多种流体,实现多相流体耦合模拟环境,并且可采用致密均质岩石制作的高透气隔板能够形成10MPa以上得基质吸力;③ The specially designed loading pad based on axial translation technology can apply a variety of fluids to the rock sample to achieve a multi-phase fluid coupling simulation environment, and the highly permeable partition made of dense homogeneous rock can form a matrix suction of more than 10MPa;
④利用真三轴应力控制系统和孔隙流体控制系统能够模拟出深部储层岩体所处的真实应力和孔隙流体状态;④ The true triaxial stress control system and pore fluid control system can be used to simulate the real stress and pore fluid state of deep reservoir rock masses;
⑤利用加载垫块上的LVDT位移传感器可以精确测量出试样的变形;⑤The deformation of the sample can be accurately measured using the LVDT displacement sensor on the loading pad;
⑥声发射传感器可以接收孔隙介质在加卸载过程中裂隙发育和扩展产生的破坏信号,实现多相孔隙介质应力、损伤和渗流强耦合研究;⑥The acoustic emission sensor can receive damage signals caused by the development and expansion of cracks in porous media during the loading and unloading process, and realize strong coupling research on the stress, damage and seepage of multi-phase porous media;
⑦本系统可以获取岩石在高压二氧化碳和水耦合条件下的力学特性和变形机制研究。⑦ This system can obtain the mechanical properties and deformation mechanism research of rocks under high-pressure carbon dioxide and water coupling conditions.
总之,本发明可以研究深部采矿和深埋地质工程所共同面临的高压多相耦合岩体变形破裂机理与断裂滑动诱发地震等地质灾害发生机制,并为工程优化设计和安全运行提供关键的实验与理论支撑。In short, this invention can study the high-pressure multi-phase coupled rock mass deformation and rupture mechanism and the occurrence mechanism of geological disasters such as earthquakes induced by fault sliding that are faced by deep mining and deep burial geological engineering, and provide key experiments and experiments for engineering optimization design and safe operation. Theoretical support.
附图说明Description of the drawings
图1是本系统的结构示意图(俯视,剖);Figure 1 is a schematic structural diagram of this system (top view, cross-section);
图2是本系统X方向上加载垫块剖面示意图;Figure 2 is a schematic cross-sectional view of the loading pad in the X direction of this system;
图3.1是左(右)加载垫块的主视图,Figure 3.1 is the front view of the left (right) loading pad.
图3.2是左(右)加载垫块的俯视图,Figure 3.2 is a top view of the left (right) loading pad.
图3.3是左(右)加载垫块的左视图;Figure 3.3 is the left view of the left (right) loading pad;
图4.1是多孔隔板的主视图,Figure 4.1 is the front view of the porous separator.
图4.2是多孔隔板的俯视图,Figure 4.2 is a top view of a porous separator.
图4.3是多孔隔板的左视图。Figure 4.3 is a left side view of a porous separator.
图中:In the picture:
1—围压室;1—Confining pressure chamber;
2—X方向压轴;2—Last axis in X direction;
3—Y方向压轴;3—Last axis in Y direction;
4—加载垫块,4—Load the pad,
4-1—左加载垫块,4-2—右加载垫块,4-3—前加载垫块,4-4—后加载垫块;4-1—Left loading pad, 4-2—Right loading pad, 4-3—Front loading pad, 4-4—Rear loading pad;
5—多孔隔板;5—porous partition;
6—Pcmax陶瓷板;6—Pcmax ceramic plate;
7—O型密封圈;7—O-type sealing ring;
8—岩样;8—rock sample;
9—声发射传感器;9—Acoustic emission sensor;
10—计算机;10—Computer;
11—温度调节水域;11—Temperature-regulated waters;
12—过滤器;12—Filter;
13—孔隙二氧化碳计量泵;13—pore carbon dioxide metering pump;
14—孔隙水计量泵;14—pore water metering pump;
15—真空泵;15—vacuum pump;
16—控制器;16—Controller;
17—位移支架;17—Displacement bracket;
18—LVDT位移传感器。18—LVDT displacement sensor.
具体实施方式Detailed ways
下面结合附图和实施例详细说明:Described below in detail with reference to the drawings and examples:
一、系统1. System
1、总体1. Overall
如图1、2,本系统包括围压室1、X方向压轴2、Y方向压轴3、加载垫块4、多孔隔板5、Pcmax陶瓷板6、O型密封圈7、岩样8、声发射传感器9、计算机10、温度调节水域11、过滤器12、孔隙二氧化碳计量泵13、孔隙水计量泵14、真空泵15、控制器16、位移支架17和LVDT位移传感器18;As shown in Figures 1 and 2, this system includes a confining pressure chamber 1, an X-direction pressure axis 2, a Y-direction pressure axis 3, a loading pad 4, a porous partition 5, a Pcmax ceramic plate 6, an O-ring 7, a rock sample 8, an acoustic Emission sensor 9, computer 10, temperature-regulated water area 11, filter 12, pore carbon dioxide metering pump 13, pore water metering pump 14, vacuum pump 15, controller 16, displacement bracket 17 and LVDT displacement sensor 18;
其位置和连接关系是:Its location and connection relationship are:
在围压室1的中心设置有岩样8,在岩样8的四周设置有加载垫块4,X方向压轴2压紧左、右加载垫块4-1、4-2,Y方向压轴3压紧前、后加载垫块4-3、4-4;在左、前加载垫块4-1、4-3上设置有位移支架17,在右、后加载垫块4-2、4-4上设置有LVDT位移传感器18;左、右加载垫块4-1、4-2均设置有流体通道;在左加载垫块4-1内设置有Pcmax陶瓷板6,并通过O型密封圈7进行密封;在左、右加载垫块4-1、4-2上内嵌有多孔隔板5;在后加载垫块4-4上设置有声发射传感器9;A rock sample 8 is provided in the center of the confining chamber 1, and a loading pad 4 is provided around the rock sample 8. The X-direction axis 2 presses the left and right loading pads 4-1 and 4-2, and the Y-direction axis 3 presses the left and right loading pads 4-1 and 4-2. Press the front and rear loading pads 4-3, 4-4; a displacement bracket 17 is provided on the left and front loading pads 4-1, 4-3, and a displacement bracket 17 is provided on the right and rear loading pads 4-2, 4- LVDT displacement sensor 18 is provided on 4; the left and right loading pads 4-1 and 4-2 are both provided with fluid channels; a Pcmax ceramic plate 6 is provided in the left loading pad 4-1 and is passed through an O-ring 7 for sealing; porous partitions 5 are embedded in the left and right loading pads 4-1 and 4-2; an acoustic emission sensor 9 is provided on the rear loading pad 4-4;
将岩样8的上下两面抹胶密封;左、右加载垫块(4-1、4-2)通过气体管路与过滤器12相连;Apply glue to seal the upper and lower sides of the rock sample 8; the left and right loading pads (4-1, 4-2) are connected to the filter 12 through gas pipelines;
过滤器12分别与孔隙二氧化碳计量泵13和孔隙水计量泵14连接,孔隙二氧化碳计量泵13和孔隙水计量泵14共同连接于真空泵15,将岩样8抽真空;孔隙二氧化碳计量泵13和孔隙水计量泵14分别通过控制器16和计算机10连接,实现流体控制;The filter 12 is connected to the pore carbon dioxide metering pump 13 and the pore water metering pump 14 respectively. The pore carbon dioxide metering pump 13 and the pore water metering pump 14 are jointly connected to the vacuum pump 15 to evacuate the rock sample 8; the pore carbon dioxide metering pump 13 and the pore water The metering pump 14 is connected to the computer 10 through the controller 16 to realize fluid control;
声发射传感器9和LVDT位移传感器18分别与计算机10连接,采集声发射声信号和位移信号。The acoustic emission sensor 9 and the LVDT displacement sensor 18 are respectively connected to the computer 10 to collect acoustic emission signals and displacement signals.
2、功能部件2. Functional components
1)围压室11) Confining pressure chamber 1
围压室1是一种不锈钢制带上盖的密闭圆筒腔体;Confining pressure chamber 1 is a closed cylindrical cavity made of stainless steel with a cover;
其功能是:室内充满高压油,可产生100MPa的最大围压,为岩样8施加Z方向的均匀应力,并设置气体及电气线路穿层通道。Its function is: the chamber is filled with high-pressure oil, which can generate a maximum confining pressure of 100MPa, apply uniform stress in the Z direction to the rock sample 8, and set up gas and electrical circuit through-layer channels.
2)X方向压轴22) X direction finale 2
X方向压轴2是一种不锈钢制圆柱体;The X-direction finale 2 is a stainless steel cylinder;
其功能是:传递三轴压力机产生的X方向压力,三轴压力机在X方向最大加载能力500t。Its function is to transmit the X-direction pressure generated by the three-axis press. The maximum loading capacity of the three-axis press in the X direction is 500t.
3)Y方向压轴33) Y direction final axis 3
Y方向压轴3是一种不锈钢制圆柱体;The final axis 3 in the Y direction is a stainless steel cylinder;
其功能是:传递三轴压力机产生的Y方向压力,三轴压力机在Y方向最大加载能力250t。Its function is to transmit the Y-direction pressure generated by the three-axis press. The maximum loading capacity of the three-axis press in the Y direction is 250t.
4)加载垫块44) Loading pad 4
加载垫块4是一种不锈钢制长方形块体,包括左、右、前、后加载垫块4-1、4-2、4-3、4-4;The loading pad 4 is a stainless steel rectangular block, including left, right, front and rear loading pads 4-1, 4-2, 4-3, 4-4;
其左、右加载垫块4-1、4-2均分别设置有流体通道,左加载垫块4-1的流体通道需装Pcmax陶瓷板6作为水通道,右加载垫块4-2的流体通道作为气体通道。The left and right loading pads 4-1 and 4-2 are respectively provided with fluid channels. The fluid channel of the left loading pad 4-1 needs to be equipped with a Pcmax ceramic plate 6 as a water channel, and the fluid channel of the right loading pad 4-2 needs to be installed. Channels serve as gas channels.
5)多孔隔板55) Porous partition 5
多孔隔板5是一种带有多孔的不锈钢板,其形状和加载垫块4适配;The porous partition 5 is a porous stainless steel plate whose shape is adapted to the loading pad 4;
其功能是:嵌入加载垫块4内,传递应力并能使流体通过。Its function is: embedded in the loading pad 4, transmitting stress and allowing fluid to pass through.
6)Pcmax陶瓷板66) Pcmax ceramic plate 6
Pcmax陶瓷板6是一种高阻气值和高压力的陶瓷板(或者致密均质岩石);Pcmax ceramic plate 6 is a ceramic plate (or dense homogeneous rock) with high gas barrier value and high pressure;
其功能是可以透水隔气,最大可阻挡达10MPa高压气体,可有效调节孔隙水和孔隙二氧化碳等气体的组分压力。Its function is to be water-permeable and gas-proof, and can block high-pressure gases up to 10MPa, and can effectively adjust the component pressure of gases such as pore water and pore carbon dioxide.
7)O型密封圈77) O-ring 7
O型密封圈是一种O型橡胶圈;O-ring is an O-type rubber ring;
其功能是:对不同部件的连接处进行密封。Its function is to seal the connections between different components.
8)岩样88) Rock sample 8
岩样8是待测试的对象。Rock sample 8 is the object to be tested.
9)声发射传感器99) Acoustic emission sensor 9
声发射传感器9是一种采集声信号的传感器;Acoustic emission sensor 9 is a sensor that collects acoustic signals;
其功能是:采集岩石破裂过程中的声发射事件数。Its function is: to collect the number of acoustic emission events during the rock fracture process.
10)计算机1010) Computer 10
计算机10是一种通用的计算机;Computer 10 is a general-purpose computer;
其功能是:对流量泵进行控制和对声发射传感器、位移传感器进行数据采集。Its functions are: controlling the flow pump and collecting data from the acoustic emission sensor and displacement sensor.
11)温度调节水域1111) Temperature-regulated waters 11
温度调节水域11是一种通用的恒温水浴槽;Temperature regulating water area 11 is a universal constant temperature water bath;
其功能是:使流入岩样的流体保持在预定的温度,实现流体的恒温控制。Its function is to maintain the fluid flowing into the rock sample at a predetermined temperature and achieve constant temperature control of the fluid.
12)过滤器1212) Filter 12
过滤器12是一种通用的可以过滤流体中一定粒径的固体颗粒的装置;The filter 12 is a universal device that can filter solid particles of a certain size in the fluid;
其功能是:过滤流体中杂质,防止管路被堵。Its function is to filter impurities in the fluid and prevent the pipeline from being blocked.
13)孔隙二氧化碳计量泵1313) Pore carbon dioxide metering pump 13
孔隙二氧化碳计量泵13采用TELEDYNE ISCO公司的D系列100DX计量泵;The pore carbon dioxide metering pump 13 adopts the D series 100DX metering pump of TELEDYNE ISCO;
其功能是:精确控制二氧化碳的压力,并精确测量二氧化碳的瞬态质量和流量等参数,并具有恒压和恒流两种工作模式,恒压工作模式可调节压力范围为0.06895~68.95MPa,压力显示分辨率为6.895kPa。Its function is to accurately control the pressure of carbon dioxide, and accurately measure parameters such as the transient mass and flow rate of carbon dioxide, and has two working modes: constant pressure and constant flow. The constant pressure working mode can adjust the pressure range from 0.06895 to 68.95MPa. The display resolution is 6.895kPa.
14)孔隙水计量泵1414) Pore water metering pump 14
孔隙水计量泵14采用TELEDYNE ISCO公司的D系列100DX计量泵;The pore water metering pump 14 adopts TELEDYNE ISCO's D series 100DX metering pump;
其功能是:精确控制水的压力,并精确测量水的瞬态质量和流量等参数,并具有恒压和恒流两种工作模式,恒压工作模式可调节压力范围为0.06895~68.95MPa,压力显示分辨率为6.895kPa。Its function is to accurately control the pressure of water, and accurately measure parameters such as transient mass and flow of water, and has two working modes: constant pressure and constant flow. The constant pressure working mode can adjust the pressure range from 0.06895 to 68.95MPa. The display resolution is 6.895kPa.
15)真空泵1515) Vacuum pump 15
真空泵15是一种通用的抽真空设备;Vacuum pump 15 is a general vacuuming equipment;
其功能是:可抽出岩样中的气体,并使之处于高负压状态。Its function is to extract the gas from the rock sample and put it in a high negative pressure state.
16)控制器1616) Controller 16
控制器16是一种和TELEDYNE ISCO公司的D系列100DX计量泵配套的控制器,可以完成计算机对计量泵实时控制命令并将信息实时传输给计算机的电子设备;The controller 16 is an electronic device that is matched with TELEDYNE ISCO's D series 100DX metering pump and can complete real-time computer control commands for the metering pump and transmit information to the computer in real time;
其功能是:将孔隙二氧化碳计量泵13和孔隙水计量泵14流量参数实时反馈给计算机10及执行计算机10的命令对孔隙二氧化碳计量泵13和孔隙水计量泵14进行控制。Its function is to feed back the flow parameters of the pore carbon dioxide metering pump 13 and the pore water metering pump 14 to the computer 10 in real time and execute the commands of the computer 10 to control the pore carbon dioxide metering pump 13 and the pore water metering pump 14.
17)位移支架1717) Displacement bracket 17
位移支架17是一种不锈钢制固定于加载垫块4上的脚架;The displacement bracket 17 is a stainless steel tripod fixed on the loading pad 4;
其功能是:固定LVDT位移传感器18,并能将岩样8的尺寸变化转换成位移支架17间的距离变化。Its function is to fix the LVDT displacement sensor 18 and convert the size change of the rock sample 8 into the distance change between the displacement brackets 17.
18)LVDT位移传感器18。18) LVDT displacement sensor 18.
LVDT位移传感器18是一种常用高精度位移传感器;LVDT displacement sensor 18 is a commonly used high-precision displacement sensor;
其功能是:可将位移支架17之间的距离转换成电信号,经计算机10处理还原成位移,可以实时监测岩样8的尺寸变形。Its function is to convert the distance between the displacement brackets 17 into electrical signals, which can be restored to displacement after processing by the computer 10, so that the dimensional deformation of the rock sample 8 can be monitored in real time.
3、本系统的工作原理3. Working principle of this system
本系统由三轴应力控制单元、孔隙流体控制单元、变形测量单元和声发射测量单元4部分构成;本系统能够独立精确控制三向轴应力、CO2流体孔隙压力、孔隙水压力,并精确测量CO2和水的瞬态质量和流量等参数。This system consists of 4 parts: triaxial stress control unit, pore fluid control unit, deformation measurement unit and acoustic emission measurement unit; this system can independently and accurately control triaxial stress, CO2 fluid pore pressure, pore water pressure, and accurately measure CO2 and parameters such as transient mass and flow rate of water.
1)三轴应力控制单元1) Triaxial stress control unit
由围压室1、X方向压轴2、Y方向压轴3和三轴压力机组成的三轴应力控制单元,为系统提供应力支持,完成岩样8的力学特性试样;The triaxial stress control unit composed of confining pressure chamber 1, X direction pressure axis 2, Y direction pressure axis 3 and a triaxial press provides stress support for the system and completes the mechanical properties of rock sample 8;
三轴应力控制单元由三轴压力机产生巨大的应力通过X、Y两个水平方向的压轴和加载垫块对岩样8施加,油压泵通过向围压室注入液压油对岩样8施加Z方向的应力;三个方向的应力可以独立加载和伺服控制(位移控制模式和力控制模式),Y方向压力最大加载能力为250t,X方向最大加载能力500t,Z方向最大加载能力为100MPa;可对长×宽×高=100mm× 50mm×50mm或80mm× 40mm×40mm两种方形岩样8进行加载。The triaxial stress control unit generates huge stress from the triaxial press and applies it to the rock sample 8 through the two horizontal pressing axes and loading pads in the X and Y directions. The hydraulic pump exerts pressure on the rock sample 8 by injecting hydraulic oil into the confining pressure chamber. Stress in the Z direction; the stress in the three directions can be independently loaded and servo controlled (displacement control mode and force control mode). The maximum loading capacity of the Y direction pressure is 250t, the maximum loading capacity of the X direction is 500t, and the maximum loading capacity of the Z direction is 100MPa; It can load two kinds of square rock samples 8: length × width × height = 100mm × 50mm × 50mm or 80mm × 40mm × 40mm.
2)孔隙流体控制单元2) Pore fluid control unit
由加载垫块4、多孔隔板5、Pcmax陶瓷板6、O型密封圈7、温度调节水域11、过滤器12、孔隙二氧化碳计量泵13、孔隙水计量泵14、真空泵15及控制器16组成的孔隙流体控制单元,为岩样8提供高压多相流体的模拟环境,并能够对多个流体参数进行控制和计量;It consists of loading pad 4, porous partition 5, Pcmax ceramic plate 6, O-ring 7, temperature-regulated water area 11, filter 12, pore carbon dioxide metering pump 13, pore water metering pump 14, vacuum pump 15 and controller 16 The pore fluid control unit provides a high-pressure multi-phase fluid simulation environment for rock sample 8, and can control and measure multiple fluid parameters;
孔隙流体控制单元由孔隙二氧化碳计量泵13和孔隙水计量泵14通过加载垫块4的流体通道对岩样8注入二氧化碳和水等流体,实现岩样8的高压流体的模拟环境;孔隙二氧化碳计量泵13和孔隙水计量泵14均采用TELEDYNE ISCO公司的D系列100DX计量泵,并能精确地控制流体压力和流量;在左加载垫块4-1内嵌的Pcmax隔板为高阻气值和高压力陶瓷板或者致密岩石(具有稳定的突破压力),通过轴平移吸力控制技术可以有效调节和控制CO2和水的孔隙压力,可防止远高于空隙水压力值的二氧化碳气体串入孔隙水计量泵14实现不同压力值的流体注入。The pore fluid control unit injects fluids such as carbon dioxide and water into the rock sample 8 through the fluid channel of the loading pad 4 by the pore carbon dioxide metering pump 13 and the pore water metering pump 14 to realize a simulated environment of high-pressure fluid in the rock sample 8; the pore carbon dioxide metering pump 13 and pore water metering pump 14 both use TELEDYNE ISCO's D series 100DX metering pump, which can accurately control fluid pressure and flow; the Pcmax partition embedded in the left loading pad 4-1 has a high gas resistance value and high Pressure ceramic plates or dense rocks (with stable breakthrough pressure) can effectively adjust and control the pore pressure of CO2 and water through axis translation suction control technology, which can prevent carbon dioxide gas that is much higher than the pore water pressure value from flowing into the pore water metering pump. 14Achieve fluid injection with different pressure values.
3)变形测量单元3) Deformation measurement unit
由位移支架17、LVDT位移传感器18和计算机10组成变形测量单元,可以监测岩样8在试验过程中X、Y方向的变形情况;The deformation measurement unit is composed of a displacement bracket 17, an LVDT displacement sensor 18 and a computer 10, which can monitor the deformation of the rock sample 8 in the X and Y directions during the test;
变形测量单元由LVDT位移传感器18监测两个相对位置的位移支架17的距离变化,间接地监测岩样8的尺寸变化情况;LVDT位移传感器18量程0-5mm,耐压120MPa,可以满足高围压环境的工作条件。The deformation measurement unit uses an LVDT displacement sensor 18 to monitor the distance changes of the displacement brackets 17 at two relative positions, and indirectly monitors the dimensional changes of the rock sample 8; the LVDT displacement sensor 18 has a range of 0-5mm and a pressure resistance of 120MPa, which can meet high confining pressures. Environmental working conditions.
4)声发射测量单元4) Acoustic emission measurement unit
由声发射传感器9和计算机10组成的声发射测量单元可以监测岩石破裂过程中的声发射事件数,研究特征应力和应变的关系。The acoustic emission measurement unit composed of the acoustic emission sensor 9 and the computer 10 can monitor the number of acoustic emission events during the rock fracture process and study the relationship between characteristic stress and strain.
声发射测量单元由声发射监测岩石破裂过程中的声发射事件数,通过计算机10分析声发射时间数可以得到特征应力和应变的关系。The acoustic emission measurement unit monitors the number of acoustic emission events during the rock fracture process by acoustic emission, and the relationship between characteristic stress and strain can be obtained by analyzing the number of acoustic emission times through the computer 10 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610700040.6A CN106353197B (en) | 2016-08-22 | 2016-08-22 | High-pressure multiphase flow coupled rock true triaxial test system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610700040.6A CN106353197B (en) | 2016-08-22 | 2016-08-22 | High-pressure multiphase flow coupled rock true triaxial test system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106353197A CN106353197A (en) | 2017-01-25 |
CN106353197B true CN106353197B (en) | 2023-09-15 |
Family
ID=57844374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610700040.6A Active CN106353197B (en) | 2016-08-22 | 2016-08-22 | High-pressure multiphase flow coupled rock true triaxial test system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106353197B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106645158B (en) * | 2017-02-28 | 2023-06-16 | 武汉大学 | Device and test method for rock mass fracture three-phase flow displacement dispersion capture research |
CN109187195A (en) * | 2018-10-30 | 2019-01-11 | 河南理工大学 | Rock mechanics experiment auxiliary device when a kind of controllable temperature gas-liquid dynamic ringing |
CN109342291B (en) * | 2018-11-12 | 2021-02-19 | 东北大学 | Rock permeability measuring device and method under true triaxial stress full coupling |
CN110095209B (en) * | 2019-05-05 | 2021-02-02 | 三峡大学 | Experimental device and experimental method for researching rock stress distribution by using magnetic fluid |
CN110132820A (en) * | 2019-06-19 | 2019-08-16 | 四川大学 | Device design and method for anisotropic seepage test of fractured rock mass by using rock true triaxial loading test system |
CN110514523B (en) * | 2019-08-29 | 2024-09-24 | 广东工业大学 | Stress loading combined device |
CN110940596B (en) * | 2019-10-23 | 2020-10-09 | 中国科学院武汉岩土力学研究所 | A rock high stress high temperature micro-nano indentation test system |
CN111238922B (en) * | 2020-03-09 | 2021-05-14 | 山东科技大学 | Test method for accurately measuring wetting range by using wave velocity attenuation |
CN112904784A (en) * | 2021-05-07 | 2021-06-04 | 中国科学院武汉岩土力学研究所 | Servo control method and equipment for medium strain rate rock dynamic triaxial test |
CN114137012B (en) * | 2021-10-29 | 2022-11-15 | 合肥综合性国家科学中心能源研究院(安徽省能源实验室) | A true triaxial experimental magnetic signal capture device and application method |
CN115165502B (en) * | 2022-07-22 | 2024-06-18 | 清华大学 | Preparation method of test rock sample and multi-field coupling test method |
CN115524403A (en) * | 2022-10-20 | 2022-12-27 | 重庆大学 | Simulated CO 2 Passive earthquake monitoring experiment analysis method in injection process |
CN115824824B (en) * | 2023-01-06 | 2023-04-21 | 昆明理工大学 | Rock true triaxial seepage coupling test device and method for deep well water burst simulation |
CN119666688A (en) * | 2023-09-21 | 2025-03-21 | 中国石油天然气股份有限公司 | Dense rock breakthrough pressure measurement system, method, device and computer equipment |
CN118225561A (en) * | 2024-05-23 | 2024-06-21 | 东北大学 | True triaxial rock sample holder suitable for high-temperature complex unloading stress path |
CN118937186A (en) * | 2024-10-15 | 2024-11-12 | 东北大学 | Multi-directional wide-band amplitude dynamic disturbance rock true triaxial seepage test device and method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635070A (en) * | 1990-07-13 | 1997-06-03 | Isco, Inc. | Apparatus and method for supercritical fluid extraction |
JP2004205469A (en) * | 2002-12-20 | 2004-07-22 | Tomoyoshi Nishimura | Humidity-controlled triaxial compression tester |
CN103226081A (en) * | 2013-04-08 | 2013-07-31 | 西安理工大学 | True triaxial apparatus of unsaturated soil |
CN103439189A (en) * | 2013-08-22 | 2013-12-11 | 中国科学院武汉岩土力学研究所 | Rock biaxial compression micromechanics testing device under stress-water current-chemical coupling actions |
CN103558137A (en) * | 2013-11-21 | 2014-02-05 | 中国科学院武汉岩土力学研究所 | Device for measuring gas-water two-phase relative permeability of porous medium |
CN104458918A (en) * | 2014-12-30 | 2015-03-25 | 重庆大学 | Super-critical carbon dioxide fractured shale damage positioning monitoring device and method |
CN104655495A (en) * | 2015-02-13 | 2015-05-27 | 太原理工大学 | High temperature and high pressure coal and rock true triaxial fracturing and seepage test device and test method |
CN206002395U (en) * | 2016-08-22 | 2017-03-08 | 中国科学院武汉岩土力学研究所 | A kind of high pressure multiphase flow couples rock actual triaxial testing apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2965925B1 (en) * | 2010-10-12 | 2015-06-19 | Total Sa | MEASURING THE PROPERTIES OF SAMPLES OF HIGH-PRESSURE CURING COMPOSITIONS |
-
2016
- 2016-08-22 CN CN201610700040.6A patent/CN106353197B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635070A (en) * | 1990-07-13 | 1997-06-03 | Isco, Inc. | Apparatus and method for supercritical fluid extraction |
JP2004205469A (en) * | 2002-12-20 | 2004-07-22 | Tomoyoshi Nishimura | Humidity-controlled triaxial compression tester |
CN103226081A (en) * | 2013-04-08 | 2013-07-31 | 西安理工大学 | True triaxial apparatus of unsaturated soil |
CN103439189A (en) * | 2013-08-22 | 2013-12-11 | 中国科学院武汉岩土力学研究所 | Rock biaxial compression micromechanics testing device under stress-water current-chemical coupling actions |
CN103558137A (en) * | 2013-11-21 | 2014-02-05 | 中国科学院武汉岩土力学研究所 | Device for measuring gas-water two-phase relative permeability of porous medium |
CN104458918A (en) * | 2014-12-30 | 2015-03-25 | 重庆大学 | Super-critical carbon dioxide fractured shale damage positioning monitoring device and method |
CN104655495A (en) * | 2015-02-13 | 2015-05-27 | 太原理工大学 | High temperature and high pressure coal and rock true triaxial fracturing and seepage test device and test method |
CN206002395U (en) * | 2016-08-22 | 2017-03-08 | 中国科学院武汉岩土力学研究所 | A kind of high pressure multiphase flow couples rock actual triaxial testing apparatus |
Non-Patent Citations (2)
Title |
---|
刘明泽 等.CO2–水两相条件下砂岩致裂特征与有效应力模型的试验研究.《岩石力学与工程学报》.2016,第35卷(第2期),第250-259页. * |
詹良通 等.非饱和膨胀土变形和强度特性的三轴试验研究.《岩土工程学报》.2006,第28卷(第2期),第196-201页. * |
Also Published As
Publication number | Publication date |
---|---|
CN106353197A (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106353197B (en) | High-pressure multiphase flow coupled rock true triaxial test system and method | |
CN206002395U (en) | A kind of high pressure multiphase flow couples rock actual triaxial testing apparatus | |
CN108982228B (en) | True triaxial test device for combustible ice sediments | |
CN104596909B (en) | Multidimensional adds the close coupling of unloading multiphase porous media to damage Seepage Experiment method | |
CN110320149A (en) | It is a kind of to flow to adjustable irregular rock sample high-pressure osmosis device and test method | |
CN108333093A (en) | Three-dimensional fracture network rock mass two-phase medium seepage flow test device under a kind of stress | |
CN106918531A (en) | Can be used for multiphase coupled sound combination loading rock test rig and test method | |
CN104535470A (en) | Penetration and corrosion triaxial testing apparatus for gravel soil and testing method thereof | |
CN110221036A (en) | Water-retaining production " sound emission-infra-red radiation " experimental system with seepage apparatus | |
CN106226502A (en) | Deep high-ground stress coal and rock dynamic disaster and displacement simulation pilot system and method | |
Liu et al. | Experimental study of the seepage characteristics of loaded coal under true triaxial conditions | |
WO2024041145A1 (en) | Large-size true triaxial coal-rock mass multi-field seepage coupling system experimental device and method | |
CN103983533B (en) | A kind of gas bearing shale crack develops and seepage flow characteristics test device and method | |
CN108316916A (en) | Mining pressure drop under different conditions of coal bed gas reservoir controls simulation experiment method | |
CN108663298A (en) | True triaxial crack propagation simulation and permeability test integrated experimental device and method | |
CN112630121B (en) | Device and method for testing permeability of fractured surrounding rock of deep chamber under stress action | |
Geng et al. | Development and application of triaxial seepage test system for gas-water two-phase in coal rock | |
CN103114851B (en) | Different cranny development coal seams aerogenesis contribution capacity of water testing arrangement | |
CN209707317U (en) | Dynamic load perturbation process rock permeability test macro | |
CN108169098B (en) | Simulation device for reasonable drainage and production speed in single-phase flow stage of coalbed methane vertical well | |
WO2020087861A1 (en) | Coalbed methane horizontal well hole collapse de-stressed mining simulation test method | |
CN105954099A (en) | Built-in retaining wall type soil pressure seepage effect test method | |
CN106198342A (en) | Quickly measure the hydraulic pressure succusion pilot system of hypotonic rock permeability parameter | |
CN106840996B (en) | A device for measuring permeability of coal body affected by mining and using method thereof | |
CN110778355B (en) | In-situ drainage and mining test device and method for coal bed gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |