JPH07193072A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07193072A
JPH07193072A JP5329365A JP32936593A JPH07193072A JP H07193072 A JPH07193072 A JP H07193072A JP 5329365 A JP5329365 A JP 5329365A JP 32936593 A JP32936593 A JP 32936593A JP H07193072 A JPH07193072 A JP H07193072A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
oxygen
wafer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329365A
Other languages
Japanese (ja)
Inventor
Hideki Tsuya
英樹 津屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5329365A priority Critical patent/JPH07193072A/en
Publication of JPH07193072A publication Critical patent/JPH07193072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26533Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically inactive species in silicon to make buried insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3226Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering of silicon on insulator

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To improve the gettering effect of an SIMOX substrate by a method wherein oxygen ions are accelerated by a high energy and implanted into a silicon substrate and, after a heat treatment is performed at a temperature within a specific range for a time within a specific range, a heat treatment temperature is elevated from a low temperature to a high temperature to subject the SIMOX substrate to a heat treatment. CONSTITUTION:Oxygen ions 0<+> are accelerated by a high energy and implanted into a silicon wafer 1. Then a heat treatment is performed at a temperature of 1200-1300 deg.C for 6-12 hours in a nitrogen atmosphere containing about 3% of oxygen to form an SiO2 layer 10 in a silicon wafer at a position about 0.3mum below the wafer surface. Then, a multistage heat treatment is performed by elevating a heat treatment temperature successively by 50-100 deg.C every stage starting from 500 deg.C until the temperature finally reaches 850 deg.C to form internal defects 20 and an SIMOX substrate having an intrinsic gettering effect is obtained. With this constitution, an intrinsic gettering effect is given to an SIMOX substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン半導体基板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon semiconductor substrate.

【0002】[0002]

【従来の技術】現在、シリコン超LSIはDRAMを例
にとると、4Mビットが量産の全盛であるが、16Mビ
ットの量産も開始されている。さらに64Mビットのサ
ンプル供給も発表され、高集積化は着実に進展してい
る。このまま推移していけば最小寸法0.1〜0.15
μmの1GビットDRAMが出現することも時間の問題
であろう。
2. Description of the Related Art At present, for a silicon VLSI, taking a DRAM as an example, a mass production of 4M bits is the most popular, but mass production of 16M bits has also started. Furthermore, the supply of 64 Mbit samples has been announced, and high integration is steadily progressing. The minimum size is 0.1 to 0.15
The emergence of μm 1 Gbit DRAMs will also be a matter of time.

【0003】1Gビット時代のトランジスタが構築され
るシリコン基板は、一段と高品質が要求され、また極限
にまで微細化されたデバイスの機能をフルに引き出すた
めには、SOI(Silicon on Insula
tor)構造が最適であると言われている。SOIとし
ては、SIMOX(Separation by Im
planted Oxygen)、貼り合わせウェー
ハ、固相エピウェーハなどについて研究開発が進められ
ているが、SIMOX技術はイオン注入と高温熱処理を
繰り返すことで、表面単結晶領域の結晶性が近年著しく
向上し、厚さ0.1μm程度のシリコン単結晶層を形成
することも容易になりつつあり、最も有望なSOIの一
つである。
A silicon substrate on which a transistor in the 1 G-bit era is constructed is required to have higher quality, and in order to fully bring out the function of a device which is miniaturized to the limit, SOI (Silicon on Insula) is required.
(tor) structure is said to be optimal. As SOI, SIMOX (Separation by Im)
Although research and development are being carried out on such as bonded oxygen), bonded wafers, and solid-phase epi-wafers, SIMOX technology has improved the crystallinity of the surface single crystal region significantly in recent years by repeating ion implantation and high-temperature heat treatment. It is becoming easier to form a silicon single crystal layer of about 0.1 μm, and it is one of the most promising SOIs.

【0004】一方、高品質化について言及すれば、集積
度の増大とともに、デバイス形成領域の欠陥密度を指数
関数的に低減しなければならない。
On the other hand, regarding the improvement of quality, it is necessary to exponentially reduce the defect density in the device formation region as the degree of integration increases.

【0005】[0005]

【発明が解決しようとする課題】この欠陥生成には重金
属不純物が深く関わっており、デバイス形成領域から重
金属不純物を除去・低減するゲッタリング技術が極めて
重要になっている。したがってGビット時代にはSIM
OX基板のゲッタリング技術を確率することが必須であ
る。
Heavy metal impurities are deeply involved in the generation of defects, and a gettering technique for removing and reducing heavy metal impurities from the device formation region is extremely important. Therefore SIM in the G-bit era
It is essential to establish gettering technology for OX substrates.

【0006】本発明の目的はSIMOX基板のゲッタリ
ング効果を高める製造方法を提供することである。通常
SIMOX基板の製造はイオン注入と熱処理で行われ。
例えば150KeVの加速エネルギでドーズ量2×10
18/cm2 の酸素イオンをシリコン基板表面から注入
し、表面から少し内部へ入った領域にSiO2 層からな
る絶縁層(Insulator)を形成する。次いで、
このイオン注入により生成された微少な転移ループ等の
格子欠陥を消滅させるために、1300°C程度の高温
で熱処理を行う。
An object of the present invention is to provide a manufacturing method for enhancing the gettering effect of a SIMOX substrate. Normally, SIMOX substrates are manufactured by ion implantation and heat treatment.
For example, with an acceleration energy of 150 KeV, a dose amount of 2 × 10
Oxygen ions of 18 / cm 2 are implanted from the surface of the silicon substrate, and an insulating layer (Insulator) made of a SiO 2 layer is formed in a region slightly inside the surface. Then
In order to eliminate lattice defects such as minute transition loops generated by this ion implantation, heat treatment is performed at a high temperature of about 1300 ° C.

【0007】一方、ゲッタリング技術としては、ウェー
ハ裏面にサンドブラストで歪をつける方法、多結晶シリ
コン膜を堆積する方法、高濃度のP(リン)を注入する
方法などがあるが、シリコンウェーハ内部に析出した酸
素析出物に起因する結晶欠陥の歪場を利用するイントリ
ンシック・ゲッタリング(IG)が量産性に優れ、クリ
ーンなゲッタリング方法として一部では量産に用いられ
ている。
On the other hand, as the gettering technique, there are a method of applying strain to the back surface of the wafer by sandblasting, a method of depositing a polycrystalline silicon film, a method of implanting high-concentration P (phosphorus), and the like. Intrinsic gettering (IG), which utilizes the strain field of crystal defects caused by precipitated oxygen precipitates, has excellent mass productivity and is partially used for mass production as a clean gettering method.

【0008】SIMOXはイオン注入後1300°C程
度の高温熱処理を施すため、IG効果が期待できないと
言われている。これはSiO2 析出物などの結晶欠陥に
捕捉された重金属不純物が高温熱処理で再び溶解し、ウ
ェーハ内に拡散してしまうからである。また高温熱処理
によりSiO2 析出物が再溶解し、ゲッタリング能力が
低下するからでもある。そのためSIMOXでは裏面に
多結晶シリコン膜を堆積する方法や、デバイス形成領域
の極く近傍にカーボン原子などをイオン注入し、その歪
場でゲッタリングする方法などが検討されている。しか
しながらこれらの方法は低温プロセス化の時代にはそぐ
わないものであり、またコストの増大、技術的な問題な
ど多くの難点があるのに対して、IG技術は優れたゲッ
タリング方法であり、ウェーハ製造コストも比較的安
く、Gビット時代に適した方法である。
Since SIMOX is subjected to high temperature heat treatment at about 1300 ° C. after ion implantation, it is said that the IG effect cannot be expected. This is because the heavy metal impurities captured by crystal defects such as SiO 2 precipitates are dissolved again by the high temperature heat treatment and diffused into the wafer. Further, this is also because the SiO 2 precipitate is redissolved by the high temperature heat treatment and the gettering ability is lowered. Therefore, in SIMOX, a method of depositing a polycrystalline silicon film on the back surface, a method of ion-implanting carbon atoms or the like in the immediate vicinity of a device formation region, and a method of gettering in the strain field are being studied. However, these methods are not suitable for the era of low temperature process, and there are many drawbacks such as increase in cost and technical problems, while IG technology is an excellent gettering method and wafer manufacturing. The cost is relatively low, and this method is suitable for the G-bit era.

【0009】したがってSIMOXに適したIG効果を
実現するための熱処理方法を開発しなければならない。
Therefore, it is necessary to develop a heat treatment method for realizing the IG effect suitable for SIMOX.

【0010】[0010]

【課題を解決するための手段】本発明は、シリコン単結
晶基板に酸素イオンを高エネルギで加速して注入したの
ち、該基板を水素雰囲気または酸素を少量含む窒素雰囲
気中で、1200〜1300°Cの温度で6〜12時間
の熱処理を施したのち、低温から高温へ段階的または連
続的に温度を上昇させて熱処理を施すことを特徴とす
る。
According to the present invention, oxygen ions are accelerated and implanted into a silicon single crystal substrate at a high energy, and then the substrate is heated to 1200 to 1300 ° in a hydrogen atmosphere or a nitrogen atmosphere containing a small amount of oxygen. The heat treatment is performed at a temperature of C for 6 to 12 hours, and then the heat treatment is performed by gradually or continuously increasing the temperature from a low temperature to a high temperature.

【0011】段階的な熱処理方法としては、500°C
から出発し、50〜100°Cの段階で順次上昇させ、
最終温度を850°Cまでとする。
The stepwise heat treatment method is 500 ° C.
Starting from, the temperature rises in steps of 50-100 ° C,
Bring the final temperature up to 850 ° C.

【0012】また連続的な熱処理方法としては、500
°Cから出発し、0.2°C/min〜1.0°C/m
inの勾配で、最終温度を850°Cとする。
Further, as a continuous heat treatment method, 500
Starting from ° C, 0.2 ° C / min to 1.0 ° C / m
A final temperature of 850 ° C with an in gradient.

【0013】[0013]

【実施例】以下実施例を図面を用いて詳細に説明する。
イオン注入プロセスと熱処理プロセスの組合せ及び二通
りの熱処理を施した。
Embodiments will be described in detail below with reference to the drawings.
A combination of an ion implantation process and a heat treatment process and two heat treatments were performed.

【0014】実施例1 まず図1に示すように200KeVの加速エネルギでド
ーズ量2×1018/cm2 の酸素イオンO+ をP型(1
00)シリコンウェーハ1に注入した。イオン注入前の
シリコンウェーハの格子間酸素濃度は旧ASTMの係数
で15×1017atoms/cm3 であった。次いで1
300°C,6Hの熱処理を酸素3%を含む窒素雰囲気
中で施した。その結果厚さ4000AのSiO2 層10
がウェーハ表面から0.3μm直下に形成された。次い
で500°Cから出発し、100°C毎に熱処理温度を
順次上昇させ、最終段階の温度として800°Cを用
い、多段階熱処理を施して内部欠陥20を形成した。多
段階熱処理の各段階での処理時間は8Hとし、乾燥酸素
雰囲気で行なった。これらのフローを図1に示す。また
評価のため一部のウェーハに1140°C,2H,湿式
酸素雰囲気中で熱処理を行った。
Example 1 First, as shown in FIG. 1, oxygen ions O + with a dose amount of 2 × 10 18 / cm 2 were accelerated to a P-type (1
00) Implanted in a silicon wafer 1. The interstitial oxygen concentration of the silicon wafer before ion implantation was 15 × 10 17 atoms / cm 3 as a coefficient according to old ASTM. Then 1
A heat treatment at 300 ° C. and 6 H was performed in a nitrogen atmosphere containing 3% oxygen. As a result, a 4000 A thick SiO 2 layer 10
Was formed just under 0.3 μm from the wafer surface. Then, starting from 500 ° C., the heat treatment temperature was sequentially increased every 100 ° C., and 800 ° C. was used as the final temperature, and multi-stage heat treatment was performed to form the internal defects 20. The treatment time in each stage of the multi-stage heat treatment was 8H, and the treatment was performed in a dry oxygen atmosphere. These flows are shown in FIG. For evaluation, some wafers were heat-treated in a wet oxygen atmosphere at 1140 ° C. for 2H.

【0015】比較例1 基本的には実施例1と同様なフローであるが、多段階熱
処理の代りに800°C,16Hの熱処理を施した。フ
ローを図2に示す。
Comparative Example 1 Basically, the flow is the same as in Example 1, but heat treatment at 800 ° C. and 16H is performed instead of the multi-step heat treatment. The flow is shown in FIG.

【0016】比較例2 酸素イオンを注入する前にIG効果のための熱処理を施
した。まずシリコンウェーハ表面から酸素を外方拡散さ
せるために、図3に示すように1150°C,8H,酸
素を3%含む窒素雰囲気中で熱処理を行い、次いで実施
例1と同様に酸素イオンを注入し、結晶欠陥回復のため
の熱処理を1300°C,6H行った。
Comparative Example 2 Before implanting oxygen ions, heat treatment for the IG effect was performed. First, in order to diffuse oxygen outward from the silicon wafer surface, as shown in FIG. 3, heat treatment is performed in a nitrogen atmosphere containing 1150 ° C., 8H, and 3% oxygen, and then oxygen ions are implanted in the same manner as in Example 1. Then, heat treatment for recovering crystal defects was performed at 1300 ° C. for 6 hours.

【0017】以上の3つの例についてIG効果の能力を
評価した。まずウェーハをヘキ開し、その断面をライト
液でエッチングし内部欠陥密度を測定した。実施例1の
ウェーハは5×105 個/cm2 の内部欠陥が観察され
たが、比較例1のウェーハは2×104 個/cm2 ,比
較例2のウェーハは1×104 個/cm2 であり、実施
例1のウェーハではIG効果に必要な内部欠陥が十分残
存していることが分った。しかしながら比較例1,2の
ウェーハの内部欠陥密度は低くIG効果には不十分であ
ることが推定された。図4に各々の例での内部欠陥密度
を示す。次に表面欠陥を評価するために1140°C,
2H,湿式酸素中で熱処理したウェーハを3つの例とも
ジルトル液でエッチングした。シャローピットとして観
察される表面欠陥密度は実施例1のウェーハではほぼ0
個/cm2 ,比較例1のウェーハは5×104 個/cm
2 ,比較例2のウェーハでは1×105 個/cm2 で、
後二者はゲッタリングが不十分であった。図5に各例で
の表面欠陥密度を示す。
The ability of the IG effect was evaluated for the above three examples. First, the wafer was cleaved and its cross section was etched with a Wright solution to measure the internal defect density. Although internal defects of the wafer of 5 × 10 5 cells / cm 2 in Example 1 was observed, the wafer of Comparative Example 1 is 2 × 10 4 cells / cm 2, the wafer of Comparative Example 2 1 × 10 4 cells / cm 2, and the wafer of example 1 was found to internal defects necessary for IG effect is sufficiently remained. However, it was estimated that the internal defect densities of the wafers of Comparative Examples 1 and 2 were low and were insufficient for the IG effect. FIG. 4 shows the internal defect density in each example. Next, to evaluate surface defects, 1140 ° C,
Wafers that had been heat-treated in 2H wet oxygen were etched with a dilute solution in all three examples. The surface defect density observed as shallow pits is almost 0 in the wafer of Example 1.
Wafers / cm 2 , the wafer of Comparative Example 1 is 5 × 10 4 wafers / cm 2 .
2 , the wafer of Comparative Example 2 was 1 × 10 5 pieces / cm 2 ,
The latter two did not getter enough. FIG. 5 shows the surface defect density in each example.

【0018】実施例2 次に多段階熱処理の代りに500°Cから800°Cま
で0.5°C/minの勾配で湿度を上昇させた。各実
施例のウェーハとも内部欠陥湿度及び表面欠陥密度は定
性的に実施例1を同様な傾向を示した。温度上昇の勾配
は0.1°C/minから2°C/minまで行った
が、IG効果に必要な内部欠陥を生成するためには0.
2°C/min〜1.0°C/minが最適であった。
また最終温度は850°Cまで上げることができる。
Example 2 Next, instead of the multi-step heat treatment, the humidity was increased at a gradient of 0.5 ° C / min from 500 ° C to 800 ° C. The internal defect humidity and the surface defect density of the wafers of the respective examples were qualitatively similar to those of the example 1. The gradient of the temperature rise was from 0.1 ° C / min to 2 ° C / min, but it was 0.degree. C. in order to generate internal defects necessary for the IG effect.
2 ° C / min to 1.0 ° C / min was optimal.
Also, the final temperature can be increased to 850 ° C.

【0019】なおイオン注入後の高温処理温度及び雰囲
気についても検討したが、1200°Cの場合は12H
程度が望ましく、また1300°Cでは6Hで十分であ
り、雰囲気については水素及び少量の酸素を含む窒素雰
囲気とが大差はなかった。また実施例1では100°C
きざみで多段階熱処理をしたが、きざみは、50〜10
0°Cの範囲ならよく、最終温度も850°Cまではよ
い。
The high temperature processing temperature and the atmosphere after the ion implantation were also examined.
6H is sufficient at 1300 ° C, and the atmosphere is not much different from the nitrogen atmosphere containing hydrogen and a small amount of oxygen. In Example 1, 100 ° C
Multi-step heat treatment was performed in the steps, but the steps were 50 to 10
The temperature may be in the range of 0 ° C, and the final temperature may be up to 850 ° C.

【0020】[0020]

【発明の効果】以上述べたように、イオン注入後適切な
低温から高温への熱処理を施すことにより、SIMOX
ウェーハにIG効果を附与することができ、従来言われ
ていたSIMOXでIG効果を期待することは難しいと
いう考えが否定され、Gビット時代へ向けての高品質S
OIウェーハの製造方法が確立された。
As described above, SIMOX can be obtained by performing heat treatment from an appropriate low temperature to a high temperature after ion implantation.
The idea that the IG effect can be added to the wafer and it is difficult to expect the IG effect with SIMOX, which was said to have been denied, is rejected, and high quality S for the G-bit era
A method for manufacturing an OI wafer has been established.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のプロセスフローの図である。FIG. 1 is a diagram of a process flow of Example 1.

【図2】比較例1のプロセスフローの図である。2 is a process flow diagram of Comparative Example 1. FIG.

【図3】比較例2のプロセスフローの図である。FIG. 3 is a diagram of a process flow of Comparative Example 2.

【図4】図1〜3の例の代表的な内部欠陥密度の図であ
る。
FIG. 4 is a diagram of representative internal defect densities for the examples of FIGS.

【図5】図1〜3の例の代表的な表面欠陥密度の図であ
る。
FIG. 5 is a diagram of representative surface defect densities for the examples of FIGS.

【符号の説明】[Explanation of symbols]

1 シリコンウェーハ 10 SiO2 層 20 内部欠陥1 Silicon wafer 10 SiO 2 layer 20 Internal defects

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶基板に酸素イオンを高エ
ネルギで加速して注入したのち、該基板を水素雰囲気ま
たは酸素を少量含む窒素雰囲気中で、1200〜130
0°Cの温度で6〜12時間の熱処理を施したのち、低
温から高温へ段階的または連続的に温度を上昇させて熱
処理を施すことを特徴とする半導体基板の製造方法。
1. A silicon single crystal substrate is implanted with oxygen ions accelerated at a high energy, and then the substrate is exposed to hydrogen in a hydrogen atmosphere or a nitrogen atmosphere containing a small amount of oxygen in a range of 1200 to 130.
A method for manufacturing a semiconductor substrate, which comprises performing a heat treatment at a temperature of 0 ° C. for 6 to 12 hours and then increasing the temperature stepwise or continuously from a low temperature to a high temperature to perform the heat treatment.
【請求項2】 段階的な熱処理方法としては、500°
Cから出発し、50〜100°Cの段階で順次上昇さ
せ、最終温度を850°Cまでとすることを特徴とする
請求項1記載の半導体基板の製造方法。
2. The stepwise heat treatment method is 500 °
2. The method of manufacturing a semiconductor substrate according to claim 1, wherein the temperature starts from C and is gradually increased at a temperature of 50 to 100 [deg.] C. until the final temperature reaches 850 [deg.] C.
【請求項3】 連続的な熱処理方法としては、500°
Cから出発し、0.2°C/min〜1.0°C/mi
nの勾配で、最終温度を850°Cとすることを特徴と
する請求項1記載の半導体基板の製造方法。
3. A continuous heat treatment method includes 500 ° C.
Starting from C, 0.2 ° C / min to 1.0 ° C / mi
The method for manufacturing a semiconductor substrate according to claim 1, wherein the final temperature is 850 ° C. with a gradient of n.
JP5329365A 1993-12-27 1993-12-27 Manufacture of semiconductor device Pending JPH07193072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329365A JPH07193072A (en) 1993-12-27 1993-12-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329365A JPH07193072A (en) 1993-12-27 1993-12-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07193072A true JPH07193072A (en) 1995-07-28

Family

ID=18220646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329365A Pending JPH07193072A (en) 1993-12-27 1993-12-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07193072A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097892A1 (en) * 2001-05-29 2002-12-05 Nippon Steel Corporation Soi substrate
WO2005020307A1 (en) * 2003-08-14 2005-03-03 Ibis Technology Corporation Internal gettering in simox soi silicon substrates
JP2005286282A (en) * 2004-03-01 2005-10-13 Sumco Corp Method of manufacturing simox substrate and simox substrate resulting from same
JP2005340348A (en) * 2004-05-25 2005-12-08 Sumco Corp Manufacturing method of simox substrate and simox substrate obtained thereby
WO2006009148A1 (en) * 2004-07-20 2006-01-26 Sumco Corporation Simox substrate manufacturing method
JP2007067321A (en) * 2005-09-02 2007-03-15 Sumco Corp Simox substrate and its manufacturing method
JP2010062503A (en) * 2008-09-08 2010-03-18 Sumco Corp Method for reducing crystal defect of simox wafer and simox wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721825A (en) * 1980-07-14 1982-02-04 Nec Corp Increasing method for gettering effect due to internal defect in semiconductor substrate
JPH03166733A (en) * 1989-11-27 1991-07-18 Olympus Optical Co Ltd Manufacture of semiconductor device
JPH0461341A (en) * 1990-06-29 1992-02-27 Kyushu Electron Metal Co Ltd Method of forming oxygen deposit at semiconductor wafer
JPH0582525A (en) * 1991-09-19 1993-04-02 Nec Corp Simox substrate and manufacture thereof
JPH05299349A (en) * 1992-02-18 1993-11-12 Mitsubishi Materials Corp Manufacture of soi substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721825A (en) * 1980-07-14 1982-02-04 Nec Corp Increasing method for gettering effect due to internal defect in semiconductor substrate
JPH03166733A (en) * 1989-11-27 1991-07-18 Olympus Optical Co Ltd Manufacture of semiconductor device
JPH0461341A (en) * 1990-06-29 1992-02-27 Kyushu Electron Metal Co Ltd Method of forming oxygen deposit at semiconductor wafer
JPH0582525A (en) * 1991-09-19 1993-04-02 Nec Corp Simox substrate and manufacture thereof
JPH05299349A (en) * 1992-02-18 1993-11-12 Mitsubishi Materials Corp Manufacture of soi substrate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084459B2 (en) 2001-05-29 2006-08-01 Nippon Steel Corporation SOI substrate
WO2002097892A1 (en) * 2001-05-29 2002-12-05 Nippon Steel Corporation Soi substrate
WO2005020307A1 (en) * 2003-08-14 2005-03-03 Ibis Technology Corporation Internal gettering in simox soi silicon substrates
JP2007502541A (en) * 2003-08-14 2007-02-08 アイビス・テクノロジー・コーポレイション Internal gettering in SIMOX SOI silicon substrate
JP2005286282A (en) * 2004-03-01 2005-10-13 Sumco Corp Method of manufacturing simox substrate and simox substrate resulting from same
JP2005340348A (en) * 2004-05-25 2005-12-08 Sumco Corp Manufacturing method of simox substrate and simox substrate obtained thereby
WO2005117122A1 (en) * 2004-05-25 2005-12-08 Sumitomo Mitsubishi Silicon Corporation Process for producing simox substrate and simox substrate produced by the process
JP2006032752A (en) * 2004-07-20 2006-02-02 Sumco Corp Method of manufacturing simox substrate
WO2006009148A1 (en) * 2004-07-20 2006-01-26 Sumco Corporation Simox substrate manufacturing method
US7560363B2 (en) 2004-07-20 2009-07-14 Sumco Corporation Manufacturing method for SIMOX substrate
JP4706199B2 (en) * 2004-07-20 2011-06-22 株式会社Sumco SIMOX substrate manufacturing method
JP2007067321A (en) * 2005-09-02 2007-03-15 Sumco Corp Simox substrate and its manufacturing method
JP2010062503A (en) * 2008-09-08 2010-03-18 Sumco Corp Method for reducing crystal defect of simox wafer and simox wafer

Similar Documents

Publication Publication Date Title
JP3143473B2 (en) Silicon-on-porous silicon; manufacturing method and material
US6461939B1 (en) SOI wafers and methods for producing SOI wafer
JP3204855B2 (en) Semiconductor substrate manufacturing method
KR20070096969A (en) Method of producing simox wafer
JPH07193072A (en) Manufacture of semiconductor device
JP4931212B2 (en) Thin buried oxide by low dose oxygen implantation into modified silicon
JP5205840B2 (en) Manufacturing method of semiconductor substrate
JP2004031715A (en) Soi wafer and manufacture thereof
JPH10270434A (en) Semiconductor wafer cleaning method for oxide film forming method
JP3533377B2 (en) Method of forming oxide film on semiconductor substrate surface and method of manufacturing semiconductor device
JP2001135805A (en) Semiconductor member and method for manufacturing semiconductor device
JPH0822991A (en) Manufacture of semiconductor device
JPH11214322A (en) Manufacturing for silicon semiconductor substrate
JP4442090B2 (en) Manufacturing method of SOI substrate
KR910008979B1 (en) Poly-silicon film forming method of metal annealing
JPH05175190A (en) Manufacture of semiconductor device
JPH1197377A (en) Manufacture of soi substrate
WO2003079456A1 (en) Method for producing substrate material and semiconductor device including plasma processing
JP2980966B2 (en) Device and manufacturing method thereof
JPH0493079A (en) Manufacture of semiconductor device
JPS59127841A (en) Manufacture of semiconductor device
CN114068412A (en) Method for manufacturing CMOS device
JPH04276628A (en) Semiconductor device production method
JPS6276559A (en) Manufacture of semiconductor device
JPH0529240A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971021