JPH07192537A - Conductive film and manufacture thereof - Google Patents

Conductive film and manufacture thereof

Info

Publication number
JPH07192537A
JPH07192537A JP33007293A JP33007293A JPH07192537A JP H07192537 A JPH07192537 A JP H07192537A JP 33007293 A JP33007293 A JP 33007293A JP 33007293 A JP33007293 A JP 33007293A JP H07192537 A JPH07192537 A JP H07192537A
Authority
JP
Japan
Prior art keywords
electrodes
conductive
conductive film
particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33007293A
Other languages
Japanese (ja)
Other versions
JP3156477B2 (en
Inventor
Kazuhide Ota
和秀 太田
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33007293A priority Critical patent/JP3156477B2/en
Publication of JPH07192537A publication Critical patent/JPH07192537A/en
Application granted granted Critical
Publication of JP3156477B2 publication Critical patent/JP3156477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To concurrently improve at a low cost conductivity between electrodes to be joined and an insulation property between adjoining electrodes by adding and scattering conductive particles and nonconductive bars into the adhesive of a dielectric film for sticking opposite electrodes to electrically connect them. CONSTITUTION:An ITO transparent electrode 2 mounted on a glass substrate 1 and a copper electrode 5 mounted on a flexible electrode plate 4 are faced to be stuck via a conductive film 3 to be electrically connected. Conductive particles 7 and bars 8 such as glass fibers are added and scattered to the binder 6 of the adhesive of this conductive film 3. The particles are preferable to have deformability such as gold-plated polymer particles. Part of the particles and bars is sandwiched between both the electrodes, and the particles 7 are electrically connected and the bars 8 keep given intervals. It is preferable that the particles 7 and the bars 8 are added and scattered, and then the conductive film 3 is extended in a surface direction and in a direction orthogonal to a direction between adjoining electrodes to separate the particles 7 in a surface direction to orient the bars 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、対向する電極の接続材
料に使用される導電フィルムに係り、詳しくは、多数の
電極が極めて近接して設けられる高密度電極の接続に使
用される導電フィルム及びその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive film used as a connecting material for opposing electrodes, and more particularly to a conductive film used for connecting high density electrodes in which a large number of electrodes are provided in close proximity to each other. And a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、この種の技術では、液晶パネルの
透明電極等の接続に使用される導電フィルムがよく知ら
れている。この導電フィルムはハンダ付けの困難なIT
O(酸化インジウム・酸化スズ)などの酸化物系透明電
極との接合に多く利用される。図6に導電フィルムの例
を示す。電極100が形成された2枚の基板101a,
101bの間に、導電フィルム102が挟みこまれてい
る。導電フィルム102は主に樹脂からなるバインダ1
03で構成され、バインダ103内には導電粒子104
が拡散されている。導電粒子104には、金、ニッケ
ル、ハンダ等の金属粒子が使用されている。最近では、
金属粒子の代わりに、電極100との接触面積が大きく
とれる変形性導電粒子が主に用いられている。変形性導
電粒子として、金メッキ、ニッケルメッキが施されたポ
リマー粒子が使用されている。前記両基板101a,1
01bを押圧することにより、電極100は金属粒子1
04aと接触して電気的に接続されるとともに、隣接す
る電極100間とは絶縁状態が維持される。
2. Description of the Related Art Conventionally, in this type of technique, a conductive film used for connecting transparent electrodes of a liquid crystal panel is well known. This conductive film is an IT that is difficult to solder
It is often used for bonding with oxide-based transparent electrodes such as O (indium oxide / tin oxide). FIG. 6 shows an example of the conductive film. Two substrates 101a on which electrodes 100 are formed,
The conductive film 102 is sandwiched between 101b. The conductive film 102 is a binder 1 mainly made of resin.
03, and conductive particles 104 are contained in the binder 103.
Has been diffused. As the conductive particles 104, metal particles such as gold, nickel and solder are used. recently,
Instead of the metal particles, deformable conductive particles that can provide a large contact area with the electrode 100 are mainly used. Polymer particles plated with gold or nickel are used as the deformable conductive particles. Both substrates 101a, 1
By pressing 01b, the electrode 100 becomes the metal particles 1
04a is contacted and electrically connected, and an insulating state is maintained between adjacent electrodes 100.

【0003】近年、電極100はより高密度化が進み、
電極幅、電極間隔はより狭くなってきている。このた
め、図6に示すように、隣接する導電粒子104,10
4aが接触し、あるいは静電誘導や放電等のために絶縁
破壊を起こして絶縁不良が発生することがあり、電極の
隣接する横方向の絶縁を保つことが困難になってきてい
る。この問題を解決するため、導電粒子に電気絶縁膜を
コートした導電フィルムが提案されている。
In recent years, the density of the electrode 100 has been further increased,
The electrode width and the electrode interval are becoming narrower. Therefore, as shown in FIG. 6, adjacent conductive particles 104, 10
4a may come into contact with each other, or dielectric breakdown may occur due to electrostatic induction, discharge, or the like, resulting in defective insulation, which makes it difficult to maintain insulation in the lateral direction adjacent to the electrodes. In order to solve this problem, a conductive film in which conductive particles are coated with an electrically insulating film has been proposed.

【0004】図7に示すように、導電粒子107に絶縁
膜105をコートした導電フィルム106は、基板10
1a,101bの電極100の接合方向に圧力と熱が加
えられ、導電粒子107を押圧するように接着される。
すると、導電粒子107aの電極100に接触した部分
の絶縁膜105が取れて、電極100は導電粒子107
aと導通する。電極100の無い部分においては、十分
な力が加わらないため、導電粒子107の絶縁膜105
が取れることはない。従って、導電粒子同士が近接して
も絶縁膜105により横方向の絶縁が保たれ、さらに、
接合方向へは導通が得られる。
As shown in FIG. 7, the conductive film 106 in which the conductive particles 107 are coated with the insulating film 105 is formed on the substrate 10.
Pressure and heat are applied in the joining direction of the electrodes 100 of 1a and 101b, and the conductive particles 107 are bonded so as to be pressed.
Then, the insulating film 105 at the portion of the conductive particle 107a that is in contact with the electrode 100 is removed, and the electrode 100 becomes the conductive particle 107a.
Conducts with a. Since sufficient force is not applied to the portion where the electrode 100 is not present, the insulating film 105 of the conductive particles 107 is not applied.
You can't get rid of it. Therefore, even if the conductive particles are close to each other, the insulating film 105 maintains the lateral insulation, and
Conduction is obtained in the joining direction.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来技
術では、導電粒子107,107aに絶縁膜105をコ
ートしたため、導通の必要な接合方向の抵抗が増加し、
導通が不安定となり信頼性が低下する。この接合方向の
抵抗を下げるために前述のように熱を加え、導電粒子1
07aが押圧されるようになっているが、時には導電部
分が露出して横方向の絶縁が低下することがある。従っ
て、横方向への絶縁性を確保するために導電粒子の大き
さ及び濃度が制限され、対向する電極間の導電性を向上
させることが困難である。また、加熱により、導電層を
メッキしたポリマー粒子の変形量が制御できなくなり、
導電接着材層の厚み(電極間ギャップ)の制御ができな
い。よって、熱サイクル等で発生するひずみにより、接
合部の信頼性が低下するという虞がある。
However, in the above prior art, since the conductive particles 107, 107a are coated with the insulating film 105, the resistance in the joining direction which requires conduction increases,
Continuity becomes unstable and reliability decreases. In order to reduce the resistance in the joining direction, heat is applied as described above, and the conductive particles 1
Although 07a is pressed, sometimes the conductive portion is exposed and the lateral insulation may be deteriorated. Therefore, the size and concentration of the conductive particles are limited in order to secure the insulating property in the lateral direction, and it is difficult to improve the conductivity between the opposing electrodes. Also, due to heating, the amount of deformation of the polymer particles plated with the conductive layer cannot be controlled,
The thickness of the conductive adhesive layer (gap between electrodes) cannot be controlled. Therefore, there is a concern that the reliability of the joint may be deteriorated due to the strain generated in the thermal cycle or the like.

【0006】また、接合方向に導通させ、横方向に絶縁
を保つという効果を得るためには、絶縁膜105の厚み
や導電粒子の分散密度を厳しく管理する必要があり、導
電粒子107の製造コストが著しく上昇するという問題
がある。
Further, in order to obtain the effect of conducting in the joining direction and maintaining the insulation in the lateral direction, it is necessary to strictly control the thickness of the insulating film 105 and the dispersion density of the conductive particles, and the manufacturing cost of the conductive particles 107. However, there is a problem that

【0007】本発明は前述した事情に鑑みてなされたも
のであって、その目的は、接合する電極間の導電性が高
く、しかも、隣接する電極間の絶縁性が高い低コストの
導電フィルム及びその製造方法を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and an object thereof is a low-cost conductive film having high conductivity between electrodes to be joined and high insulation between adjacent electrodes. It is to provide the manufacturing method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明では、フィルムを挟んで互いに対向する
電極を接着するともに、当該電極間を電気的に接続する
導電フィルムの製造方法であって、前記導電フィルムの
接着剤に対して、導電性の粒子及び非導電性の棒材を添
加拡散することをその要旨としている。
In order to achieve the above object, in the first invention, a method for producing a conductive film is provided in which electrodes facing each other with a film sandwiched therebetween are bonded and the electrodes are electrically connected. The gist of the invention is to add and diffuse conductive particles and non-conductive rods to the adhesive of the conductive film.

【0009】第2の発明では、導電性の粒子及び非導電
性の棒材を添加拡散した後、導電フィルムを面方向に延
伸することをその要旨としている。第3の発明では、フ
ィルムの面内において絶縁を必要とする互いに隣接した
電極間方向とは直角の方向に延伸を行うことをその要旨
としている。
The gist of the second invention is that after the conductive particles and the non-conductive rod are added and diffused, the conductive film is stretched in the plane direction. The gist of the third invention is that the film is stretched in a direction at a right angle to the direction between adjacent electrodes which require insulation in the plane of the film.

【0010】第4の発明では、フィルムを挟んで互いに
対向する電極を接着するともに、当該電極間を電気的に
接続する導電フィルムであって、前記両電極を接着する
接着剤と、前記接着剤に混入され、前記両電極を電気的
に接続する導電性の粒子と、前記接着剤に混入され、前
記導電性粒子を前記導電フィルムの面方向に分離する非
導電性の棒材とを含むことをその要旨としている。
According to a fourth aspect of the present invention, electrodes which face each other with a film sandwiched therebetween are adhered to each other, and a conductive film which electrically connects the electrodes is provided. And conductive particles for electrically connecting the electrodes to each other, and a non-conductive rod material mixed in the adhesive and separating the conductive particles in the surface direction of the conductive film. Is the gist.

【0011】第5の発明では、前記棒材は導電フィルム
の面方向に配向されていることをその要旨としている。
第6の発明では、前記棒材は、フィルムの面内において
絶縁を必要とする互いに隣接した電極間方向とは直角方
向に配向されていることをその要旨としている。
A fifth aspect of the present invention is characterized in that the rod is oriented in the plane direction of the conductive film.
In the sixth invention, the gist is that the rod is oriented in a direction at right angles to the direction between electrodes adjacent to each other that require insulation in the plane of the film.

【0012】[0012]

【作用】上記の構成によれば、第1の発明においては、
導電フィルムの接着剤には、導電性の粒子及び非導電性
の棒材が添加拡散される。この導電フィルムによりフィ
ルムを挟んで互いに対向する電極が接着されるともに、
当該電極間が電気的に接続される。
According to the above construction, in the first invention,
Conductive particles and non-conductive rods are added and diffused to the adhesive of the conductive film. With this conductive film, electrodes facing each other with the film sandwiched therebetween are bonded,
The electrodes are electrically connected.

【0013】第2の発明において、導電性の粒子及び非
導電性の棒材が添加拡散された後、導電フィルムは面方
向に延伸される。第3の発明において、フィルムの面内
において、絶縁を必要とする互いに隣接した電極間方向
とは直角の方向に延伸が行われる。
In the second invention, after the conductive particles and the non-conductive rod are added and diffused, the conductive film is stretched in the plane direction. In the third invention, stretching is performed in the plane of the film in a direction perpendicular to the direction between adjacent electrodes which require insulation.

【0014】また、第4の発明においては、接着剤は両
電極を接着する。接着剤には導電性の粒子が混入され、
この粒子は両電極を電気的に接続する。また、接着剤に
はさらに非導電性の棒材が混入され、この棒材により導
電性粒子は導電フィルムの面方向に分離される。このた
め、電極間は電気的に接続されるとともに、導電性粒子
の面方向の絶縁性が向上される。
In the fourth invention, the adhesive bonds both electrodes. Conductive particles are mixed in the adhesive,
This particle electrically connects both electrodes. Further, a non-conductive rod material is further mixed into the adhesive, and the conductive particles are separated by the rod material in the surface direction of the conductive film. Therefore, the electrodes are electrically connected to each other, and the insulating property in the plane direction of the conductive particles is improved.

【0015】第5の発明において、棒材は導電フィルム
の面方向に配向され、この棒材により、導電性粒子間及
び導電性粒子と電極との間が分離される。第6の発明に
おいて、棒材は、フィルムの面内において絶縁を必要と
する互いに隣接した電極間方向とは直角方向に配向さ
れ、この棒材により、導電性粒子間及び導電性粒子と電
極との間が分離される。
In the fifth invention, the rod is oriented in the plane direction of the conductive film, and the rod separates between the conductive particles and between the conductive particles and the electrode. In the sixth invention, the rod is oriented in a plane at right angles to the direction between the electrodes adjacent to each other which requires insulation in the plane of the film, and by this rod, between the conductive particles and between the conductive particles and the electrode. The spaces are separated.

【0016】[0016]

【実施例】以下、本発明を、フィルムの接着方向と導電
性方向とが異なる異方導電フィルム及びその製造方法に
具体化した一実施例を図面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an anisotropic conductive film having a film adhesion direction and a conductive direction different from each other and a manufacturing method thereof will be described in detail with reference to the drawings.

【0017】図1及び図2に示すように、ガラス基板1
上にはITO(酸化インジウンム)などからなる複数の
透明電極2が並列に延びて形成され、導電フィルム3を
挟んでフレキシブル基板4が接着されている。フレキシ
ブル基板4のガラス基板側の面には複数の銅電極5が並
列に延びて形成され、各銅電極5の端部は前記ガラス基
板1上の透明電極2の端部とそれぞれ対向するように配
置されている。
As shown in FIGS. 1 and 2, the glass substrate 1
A plurality of transparent electrodes 2 made of ITO (indium oxide) or the like are formed to extend in parallel on the upper side, and a flexible substrate 4 is bonded with a conductive film 3 interposed therebetween. A plurality of copper electrodes 5 are formed to extend in parallel on the surface of the flexible substrate 4 on the glass substrate side, and end portions of the copper electrodes 5 face the end portions of the transparent electrodes 2 on the glass substrate 1, respectively. It is arranged.

【0018】図1に示す導電フィルム3は主に樹脂から
なるバインダ6で構成され、接着剤であるバインダ6内
には導電性粒子7が拡散されている。この導電性粒子7
は、金あるいはニッケルメッキされたポリマー粒子であ
って、変形性を備えている。さらにバインダ6内には、
棒材である棒状に形成されたガラスファイバ8が拡散さ
れている。
The conductive film 3 shown in FIG. 1 is mainly composed of a binder 6 made of resin, and conductive particles 7 are diffused in the binder 6 which is an adhesive. This conductive particle 7
Is a polymer particle plated with gold or nickel and has deformability. Furthermore, in the binder 6,
The glass fiber 8 formed in a rod shape, which is a rod material, is diffused.

【0019】互いに対向する電極2,5間には導電性粒
子7a及びガラスファイバ8aが押圧され、導電性粒子
7aは変形して両電極2,5を電気的に接続している。
一方、ガラスファイバ8aの変形はほとんど無く、この
ガラスファイバ8aの径によって両電極2,5間の距
離、及び導電性粒子7aの変形の度合いが決定される。
導電性粒子7の径は約10μmであり、ガラスファイバ
8の径は約4μmである。この導電性粒子7及びガラス
ファイバ8の径から、導電性粒子7aの変形の度合いは
ほぼ60%程度と推測できる。導電性粒子7aを接合時
に40〜60%程度変形させることにより導電の信頼性
を高めることができる。
The conductive particles 7a and the glass fiber 8a are pressed between the electrodes 2 and 5 facing each other, and the conductive particles 7a are deformed to electrically connect the electrodes 2 and 5.
On the other hand, the glass fiber 8a is hardly deformed, and the diameter of the glass fiber 8a determines the distance between the electrodes 2 and 5 and the degree of deformation of the conductive particles 7a.
The diameter of the conductive particles 7 is about 10 μm, and the diameter of the glass fiber 8 is about 4 μm. From the diameters of the conductive particles 7 and the glass fiber 8, it can be estimated that the degree of deformation of the conductive particles 7a is about 60%. The reliability of conductivity can be improved by deforming the conductive particles 7a by about 40 to 60% during bonding.

【0020】図3に示すように、導電性粒子7及びガラ
スファイバ8は、フィルム面内において絶縁を必要とす
る互いに隣接した電極間方向とは直角の方向に配向され
ている。ガラスファイバ8により、隣接する導電性粒子
7同士の絶縁及び導電性粒子7と電極2,5との絶縁が
確保されている。
As shown in FIG. 3, the conductive particles 7 and the glass fibers 8 are oriented in the film plane at a right angle to the direction between adjacent electrodes which require insulation. The glass fiber 8 ensures insulation between the adjacent conductive particles 7 and insulation between the conductive particles 7 and the electrodes 2 and 5.

【0021】次に、この導電フィルムの製造方法及び接
着方法について詳述する。図5(a)に示すように、樹
脂のバインダ6内に導電性粒子7及びガラスファイバ8
が添加拡散され、バインダ6はフィルム状に成形されて
いる。この状態では、バインダ6内の導電性粒子7及び
ガラスファイバ8は任意の方向に向いている。そして図
5(b)に示すように、このフィルムは所定の面方向
(矢印の方向)に対して200%程度延伸される。この
延伸によりバインダ6内の導電性粒子7及びガラスファ
イバ8は延伸方向に配向される。ガラスファイバ8は配
向しない状態でも、導電性粒子7同士あるいは導電性粒
子7と隣接する電極2,5とを分離して絶縁性を高める
ことができる。しかし、接着に使用されるフィルム面内
において、絶縁を必要とする互いに隣接した電極間方向
とは直角の方向に対して延伸が行われると、ガラスファ
イバ8が棒状であるため、導電性粒子7はガラスファイ
バ8により分離され、絶縁がより良好に保持されるよう
になっている。
Next, the manufacturing method and the bonding method of this conductive film will be described in detail. As shown in FIG. 5A, the conductive particles 7 and the glass fiber 8 are provided in the resin binder 6.
Is added and diffused, and the binder 6 is formed into a film shape. In this state, the conductive particles 7 and the glass fiber 8 in the binder 6 are oriented in arbitrary directions. Then, as shown in FIG. 5B, this film is stretched by about 200% in a predetermined plane direction (direction of arrow). By this stretching, the conductive particles 7 and the glass fiber 8 in the binder 6 are oriented in the stretching direction. Even if the glass fiber 8 is not oriented, the conductive particles 7 can be separated from each other or the conductive particles 7 can be separated from the adjacent electrodes 2 and 5 to enhance the insulating property. However, when stretching is performed in the plane perpendicular to the direction between adjacent electrodes that require insulation in the plane of the film used for adhesion, the glass fibers 8 are rod-shaped, and therefore the conductive particles 7 are formed. Are separated by glass fibers 8 so that the insulation is better retained.

【0022】続いて、導電フィルム3の接着方法を説明
する。この接着は専用の導電フィルム熱圧着装置にて行
われる。図4に示すように、前述の如く形成された導電
フィルム3は(a)、ガラス基板1とフレキシブル基板
4との間に挟持される。この時、導電フィルム熱圧着装
置には、銅電極5が透明電極2と正確に対向して配置さ
れるように、位置決めストッパ及び微調整機構が備えら
れている(b)。そして、両基板1,4は相互に押圧さ
れる。
Next, a method of adhering the conductive film 3 will be described. This bonding is performed by a dedicated conductive film thermocompression bonding device. As shown in FIG. 4, the conductive film 3 formed as described above (a) is sandwiched between the glass substrate 1 and the flexible substrate 4. At this time, the conductive film thermocompression bonding apparatus is provided with a positioning stopper and a fine adjustment mechanism so that the copper electrode 5 is arranged to face the transparent electrode 2 accurately (b). Then, the substrates 1 and 4 are pressed against each other.

【0023】このとき、ガラスファイバ8は棒状である
ため、拡散されたときに、互いに交差することがある
が、長さが適当に短い場合には基板1,4が押圧される
ことにより滑って交差状態が解ける。また、長いガラス
ファイバ8が重なった場合には、ガラスファイバ8は破
砕されて重なりは解消される。
At this time, since the glass fibers 8 are rod-shaped, they may cross each other when they are diffused, but when the lengths are appropriately short, the substrates 1 and 4 are pressed to slip. The intersection state can be solved. Further, when the long glass fibers 8 overlap, the glass fibers 8 are crushed and the overlap is eliminated.

【0024】そして、両基板1,4の接合部は瞬間的に
加熱されて、導電性粒子7aは押圧され押しつぶされる
ようになり、両電極2,5は電気的に接続される
(c)。ガラスファイバ8aはヤング率が高く、荷重を
かけても変形がほとんどなく、さらに径のばらつきが小
さいため電極2,5間の距離を高い精度で制御すること
ができる。従って、導電性粒子7aの変形の度合いが正
確に制御され、両電極2,5の導通の信頼性が極めて向
上される。
Then, the joint portions of the two substrates 1 and 4 are momentarily heated, the conductive particles 7a are pressed and crushed, and the two electrodes 2 and 5 are electrically connected (c). The glass fiber 8a has a high Young's modulus, is hardly deformed even when a load is applied, and has a small diameter variation, so that the distance between the electrodes 2 and 5 can be controlled with high accuracy. Therefore, the degree of deformation of the conductive particles 7a is accurately controlled, and the reliability of conduction between the electrodes 2 and 5 is extremely improved.

【0025】その後冷却エアにより接合部分は冷却され
接合を終了する。両基板1,4は樹脂バインダ6の基板
を引きつける力により接合が維持される。以上詳述した
ように、バインダ6内に導電性粒子7とともに絶縁用の
ガラスファイバ8が添加されているため、互いに隣接す
る電極5間の絶縁性が高められる。従って、導電性粒子
7に絶縁膜を施す必要がなく、対向する電極2,5間に
おいて高い導電性が得られる。さらに、ガラスファイバ
8は棒状であるため、両電極2,5を線で支持でき、電
極2,5間の距離をより高い精度で制御することができ
る。このため、導電性粒子7の変形率が一定し、電極
2,5間の導電の信頼性を向上することができる。
After that, the joining portion is cooled by the cooling air and the joining is completed. The two substrates 1 and 4 are kept joined by the force of the resin binder 6 that attracts the substrates. As described above in detail, since the glass fiber 8 for insulation is added to the binder 6 together with the conductive particles 7, the insulation between the electrodes 5 adjacent to each other is enhanced. Therefore, it is not necessary to apply an insulating film to the conductive particles 7, and high conductivity can be obtained between the opposing electrodes 2 and 5. Further, since the glass fiber 8 is rod-shaped, both electrodes 2, 5 can be supported by wires, and the distance between the electrodes 2, 5 can be controlled with higher accuracy. Therefore, the deformation rate of the conductive particles 7 is constant, and the reliability of the conductivity between the electrodes 2 and 5 can be improved.

【0026】また、ガラスファイバ8により絶縁性が高
められるため、隣接する電極5間の距離が小さくなった
場合においても、混合濃度が高く、かつ、サイズの大き
い導電粒子が使用可能であり、対向する電極2,5間の
導電性をより高めることができる。従って、電流容量が
増大され、電源ライン等、従来2本の配線を並列にして
使用していたものを1本に減らすことも可能になってき
ている。
Further, since the glass fiber 8 enhances the insulating property, even if the distance between the adjacent electrodes 5 becomes small, the conductive particles having a high mixing concentration and a large size can be used, and the opposing particles can face each other. The conductivity between the electrodes 2 and 5 can be further increased. Therefore, the current capacity is increased, and it has become possible to reduce the number of wires, such as a power supply line, which conventionally used two wires in parallel to one wire.

【0027】また、ガラスファイバ8は一般的によく使
用されており、バインダ6内に混合させるだけで良いの
で、導電粒子に絶縁膜を施すことに比べコストを低減す
ることができる。
Further, since the glass fiber 8 is generally often used and only needs to be mixed in the binder 6, the cost can be reduced as compared with the case where the insulating film is applied to the conductive particles.

【0028】なお、この発明は前記実施例に限定される
ものではなく、発明の趣旨を逸脱しない範囲で構成の一
部を適宜に変更して次のように実施することもできる。 (1)前記実施例では、導電性粒子には、金あるいはニ
ッケルメッキされたポリマー粒子を使用したが、金、ニ
ッケル、ハンダ等の金属粒子、又はカーボン等の導電性
粒子を使用してもよい。
The present invention is not limited to the above-described embodiments, but may be implemented as follows with a part of the configuration appropriately changed without departing from the spirit of the invention. (1) In the above embodiment, the conductive particles are polymer particles plated with gold or nickel. However, metal particles such as gold, nickel, or solder, or conductive particles such as carbon may be used. .

【0029】(2)前記実施例では、非導電性の棒材と
して円柱状のガラスファイバを利用したが、セラミック
ス等へ材質を変更したり、あるいは角柱状のものを使用
したりしても良い。
(2) In the above embodiment, the cylindrical glass fiber is used as the non-conductive rod material, but the material may be changed to ceramics or the like, or the prismatic material may be used. .

【0030】[0030]

【発明の効果】以上詳述したように、この発明によれ
ば、接合する電極間の導電性が高く、しかも、隣接する
電極間の絶縁性が高い低コストの導電フィルム及びその
製造方法を提供できるという優れた効果を奏する。
As described above in detail, according to the present invention, a low-cost conductive film having a high conductivity between the electrodes to be joined and a high insulation property between the adjacent electrodes and a method for manufacturing the same are provided. It has an excellent effect that it can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を具体化した一実施例における導電フィ
ルムによる基板の接合状態を模式的に示す断面図であ
る。
FIG. 1 is a cross-sectional view schematically showing a joined state of substrates by a conductive film in one example embodying the present invention.

【図2】ガラス基板とフレキシブル基板との接合状態を
示す平面図である。
FIG. 2 is a plan view showing a bonded state of a glass substrate and a flexible substrate.

【図3】導電フィルム内の導電性粒子及びガラスファイ
バの配向状態を模式的に示す平面図である。
FIG. 3 is a plan view schematically showing the orientation of conductive particles and glass fibers in a conductive film.

【図4】(a)延伸後の導電フィルムを模式的に示す断
面図である。 (b)ガラス基板とフレキシブル基板との間に挟持され
る導電フィルムを模式的に示す断面図である。 (c)導電フィルム熱圧着装置により圧縮加熱後の導電
フィルムを模式的に示す断面図である。
FIG. 4 (a) is a cross-sectional view schematically showing the conductive film after stretching. (B) It is sectional drawing which shows typically the electrically conductive film pinched | interposed between the glass substrate and the flexible substrate. (C) It is sectional drawing which shows typically the conductive film after compression heating by the conductive film thermocompression-bonding apparatus.

【図5】(a)導電フィルムの延伸前の状態を模式的に
示す平面図である。 (b)導電フィルムが、延伸された後の配向状態を模式
的に示す平面図である。
FIG. 5 (a) is a plan view schematically showing a state before stretching of the conductive film. (B) It is a top view which shows typically the orientation state after a conductive film is stretched.

【図6】従来例の導電フィルムによる基板の接合状態を
模式的に示す断面図である。
FIG. 6 is a cross-sectional view schematically showing a joined state of substrates by a conductive film of a conventional example.

【図7】別の従来例の導電フィルムによる基板の接合状
態を模式的に示す断面図である。
FIG. 7 is a cross-sectional view schematically showing a joined state of substrates by another conventional conductive film.

【符号の説明】[Explanation of symbols]

3…導電フィルム、6…(接着剤である)バインダ、
7,7a…導電性粒子、8,8a…(棒材である)ガラ
スファイバ。
3 ... Conductive film, 6 ... (adhesive) binder,
7, 7a ... Conductive particles, 8, 8a ... (fiber bar) glass fiber.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フィルムを挟んで互いに対向する電極を
接着するともに、当該電極間を電気的に接続する導電フ
ィルムの製造方法であって、 前記導電フィルムの接着剤に対して、導電性の粒子及び
非導電性の棒材を添加拡散することを特徴とする導電フ
ィルムの製造方法。
1. A method of manufacturing a conductive film, comprising bonding electrodes facing each other with a film interposed therebetween and electrically connecting the electrodes, wherein conductive particles are used for the adhesive of the conductive film. And a method for producing a conductive film, which comprises adding and diffusing a non-conductive rod.
【請求項2】 導電性の粒子及び非導電性の棒材を添加
拡散した後、導電フィルムを面方向に延伸することを特
徴とする請求項1に記載の導電フィルムの製造方法。
2. The method for producing a conductive film according to claim 1, wherein the conductive film and the non-conductive rod are added and diffused, and then the conductive film is stretched in a plane direction.
【請求項3】 フィルム面内において絶縁を必要とする
互いに隣接した電極間方向とは直角の方向に延伸を行う
ことを特徴とする請求項2に記載の導電フィルムの製造
方法。
3. The method for producing a conductive film according to claim 2, wherein the film is stretched in a direction at a right angle to a direction between adjacent electrodes which require insulation in a film plane.
【請求項4】 フィルムを挟んで互いに対向する電極を
接着するともに、当該電極間を電気的に接続する導電フ
ィルムであって、 前記両電極を接着する接着剤と、 前記接着剤に混入され、前記両電極を電気的に接続する
導電性の粒子と、 前記接着剤に混入され、前記導電性粒子を前記導電フィ
ルムの面方向に分離する非導電性の棒材とを含むことを
特徴とする導電フィルム。
4. A conductive film for adhering electrodes facing each other with a film sandwiched therebetween and electrically connecting the electrodes, wherein an adhesive for adhering the both electrodes is mixed with the adhesive, Conductive particles for electrically connecting the both electrodes, and a non-conductive rod material mixed in the adhesive to separate the conductive particles in the surface direction of the conductive film. Conductive film.
【請求項5】 前記棒材は導電フィルムの面方向に配向
されていることを特徴とする請求項4に記載の導電フィ
ルム。
5. The conductive film according to claim 4, wherein the bar member is oriented in the plane direction of the conductive film.
【請求項6】 前記棒材はフィルムの面内において絶縁
を必要とする互いに隣接した電極間方向とは直角方向に
配向されていることを特徴とする請求項5に記載の導電
フィルム。
6. The conductive film according to claim 5, wherein the rod member is oriented in a plane at right angles to a direction between adjacent electrodes which require insulation in a plane of the film.
JP33007293A 1993-12-27 1993-12-27 Conductive film and manufacturing method thereof Expired - Fee Related JP3156477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33007293A JP3156477B2 (en) 1993-12-27 1993-12-27 Conductive film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33007293A JP3156477B2 (en) 1993-12-27 1993-12-27 Conductive film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07192537A true JPH07192537A (en) 1995-07-28
JP3156477B2 JP3156477B2 (en) 2001-04-16

Family

ID=18228473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33007293A Expired - Fee Related JP3156477B2 (en) 1993-12-27 1993-12-27 Conductive film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3156477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327152B1 (en) * 1999-10-14 2002-03-13 박호군 Method for Making Conductive Polymer Composite Films
WO2015174447A1 (en) * 2014-05-15 2015-11-19 デクセリアルズ株式会社 Anisotropic conductive film
CN107431294A (en) * 2015-03-20 2017-12-01 迪睿合株式会社 Anisotropic conductive film and connecting structure body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327152B1 (en) * 1999-10-14 2002-03-13 박호군 Method for Making Conductive Polymer Composite Films
WO2015174447A1 (en) * 2014-05-15 2015-11-19 デクセリアルズ株式会社 Anisotropic conductive film
JP2016173982A (en) * 2014-05-15 2016-09-29 デクセリアルズ株式会社 Anisotropic conductive film
CN107431294A (en) * 2015-03-20 2017-12-01 迪睿合株式会社 Anisotropic conductive film and connecting structure body

Also Published As

Publication number Publication date
JP3156477B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
TWI486106B (en) Pin structure and pin connection structure
CN1112297A (en) Electrically connecting structure
TW200411256A (en) Liquid crystal display
JPH0454931B2 (en)
JPH07199209A (en) Liquid crystal display device
JPS63184781A (en) Liquid crystal display device
JPH07192537A (en) Conductive film and manufacture thereof
JPH0529386A (en) Connection structure of connecting terminal part of element to be adhered
JPS60170176A (en) Connecting structure with transparent conductive film
TW200529248A (en) Anisotropic conductive film pad
JPH10199930A (en) Connection structure of electronic components and connecting method therefor
JP3596572B2 (en) Board connection method
JPH05174890A (en) Joining structure
TWI299502B (en) Conductive material with a laminated structure
JP3256659B2 (en) Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film
JP4322605B2 (en) Optical element
JPH112830A (en) Liquid crystal device and its manufacture
JPH06152112A (en) Connection of circuit
JP2003273163A (en) Substrate for mounting semiconductor element, semiconductor element and liquid crystal display panel using the substrate for mounting semiconductor element or semiconductor element
US20220100019A1 (en) Method for attaching electrode to liquid crystal element
TWI248633B (en) A composite bump and method of fabricating the same
WO2005097494A1 (en) A laminated electrically conductive polymer structure
JP2979151B2 (en) How to connect electronic components
JPH05191008A (en) Anisotropic conductor film connection terminals
JP2805948B2 (en) Connection structure of IC chip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees