JPH07179921A - Method for dephosphorizing molten iron - Google Patents

Method for dephosphorizing molten iron

Info

Publication number
JPH07179921A
JPH07179921A JP5329088A JP32908893A JPH07179921A JP H07179921 A JPH07179921 A JP H07179921A JP 5329088 A JP5329088 A JP 5329088A JP 32908893 A JP32908893 A JP 32908893A JP H07179921 A JPH07179921 A JP H07179921A
Authority
JP
Japan
Prior art keywords
converter
slag
dephosphorization
iron
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5329088A
Other languages
Japanese (ja)
Other versions
JP2958848B2 (en
Inventor
Hiroshi Hirata
浩 平田
Yoshiaki Kusano
祥昌 草野
Hirofumi Maede
弘文 前出
Noriyuki Masumitsu
法行 升光
Fumio Koizumi
文夫 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP32908893A priority Critical patent/JP2958848B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to BR9406985-9A priority patent/BR9406985A/en
Priority to PCT/JP1994/001070 priority patent/WO1995001458A1/en
Priority to CA002166097A priority patent/CA2166097C/en
Priority to KR1019950705930A priority patent/KR0159180B1/en
Priority to DE69423630T priority patent/DE69423630T2/en
Priority to EP94919835A priority patent/EP0714989B1/en
Priority to ES94919835T priority patent/ES2143547T3/en
Priority to AU70831/94A priority patent/AU680268B2/en
Priority to CN94192953A priority patent/CN1041843C/en
Publication of JPH07179921A publication Critical patent/JPH07179921A/en
Application granted granted Critical
Publication of JP2958848B2 publication Critical patent/JP2958848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To provide an effective dephosphorizing method for dephosphorizing and decarburizing processes by using the same converter. CONSTITUTION:At the time of producing molten steel by refining molten iron, as a first process, the molten iron is charged into a converter and, as a second process, the addition of flux and the blowing of oxygen are executed and the dephosphorize-refining is applied to reduce phosphorus content to a prescribed value. As a third process, the converter is tilted to remove the slag produced in the second process and, thereafter, as a fourth process, the decarburizing is executed in the same converter, and as a fifth process, the molten steel is tapped off in the condition of remaining the slag produced in the fourth process in this converter, and the refining process is returned back again to the first process to repeatedly execute the above processes. In the second process of the molten steel producing method, CaO/SiO2 in the slag is made to be <=2.5 and the sum of iron oxide and manganese oxide concns. (T.Fe+MnO) 15-35%. In this method, the dephosphorization reaction can be accelerated and the cost of ferro alloy can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は転炉内での溶銑の脱りん
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing hot metal in a converter.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低り
ん鋼化に関して、従来の溶銑脱りん方法として、(1)
トーピードカー内の溶銑に脱りん用フラックスをインジ
ェクションして予備脱りんを行う方法、(2)取鍋内の
溶銑に脱りん用フラックスをインジェクションもしくは
吹き付けを行い予備脱りんを行う方法、あるいは(3)
2基の転炉を用いて、一方で脱りんを行い、他方で脱炭
を行う方法(例えば、特開昭63−195210号公
報)が用いられている。
2. Description of the Related Art As a conventional hot metal dephosphorization method for reducing the total cost of steel making to a minimum and reducing phosphorus, (1)
Preliminary dephosphorization by injecting dephosphorization flux into hot metal in a torpedo car, (2) Preliminary dephosphorization by injecting or spraying dephosphorization flux into hot metal in ladle, or (3)
A method of dephosphorizing on one side and decarburizing on the other side by using two converters (for example, JP-A-63-195210) is used.

【0003】しかしながら、上記(1)、(2)、
(3)のいずれの方法も脱りん工程から脱炭工程に移る
際、溶銑の移し替えを必要とし、温度低下を余儀なくさ
れ、エネルギーロスが大きいという欠点がある。この問
題点を解決するために、特開平2−181989号公報
において、従来の多工程にわたる精錬機能を転炉に集約
し、溶銑のもつエネルギーロスを大幅に低減すると共
に、転炉前後工程の固定費(設備費、労務費)の大幅な
軽減を可能とする方法が提案されている。
However, the above (1), (2),
In any of the methods (3), when the dephosphorization step is transferred to the decarburization step, the hot metal needs to be transferred, the temperature must be lowered, and the energy loss is large. In order to solve this problem, in Japanese Patent Application Laid-Open No. 2-181989, the conventional refining function over multiple steps is integrated in a converter to significantly reduce the energy loss of the hot metal and to fix the steps before and after the converter. A method has been proposed that enables a significant reduction in costs (equipment costs, labor costs).

【0004】図2はこのフローを示しているが、第一工
程として溶銑を転炉に装入し、第二工程としてフラック
ス添加と酸素吹込みを行って脱りん精錬を施し、所定の
りん含有量まで低減させ、第三工程として前記転炉を傾
動して第二工程で生成したスラグを排出し、その後第四
工程として同一転炉にてフラックス添加と酸素吹錬によ
り、所定のC含有量まで脱炭を行い、第五工程として第
四工程で生成したスラグを該転炉内に残したまま出鋼し
て、再び第一工程へ戻り、前記第五工程までを繰り返し
実施する。
FIG. 2 shows this flow. As a first step, hot metal is charged into a converter, and as a second step, flux addition and oxygen blowing are carried out to perform dephosphorization refining to obtain a predetermined phosphorus content. To a predetermined amount, and as a third step, tilt the converter to discharge the slag generated in the second step, and then as a fourth step in the same converter by adding flux and blowing oxygen to obtain a predetermined C content. Decarburization is performed, and as the fifth step, the slag generated in the fourth step is tapped while being left in the converter, the process is returned to the first step, and the fifth step is repeated.

【0005】[0005]

【発明が解決しようとする課題】上述の同一転炉を用い
て脱りん、脱炭工程を続けて行うプロセスを用いると、
脱りん工程から脱炭工程へ移る際のエネルギーロスを少
なくすることができ、この熱裕度拡大分は、第四工程に
おいてMn鉱石の多量還元に用いることができる。
When the process of continuously performing the dephosphorization and decarburization steps using the same converter described above is used,
Energy loss at the time of shifting from the dephosphorization process to the decarburization process can be reduced, and this increased thermal allowance can be used for the large-scale reduction of Mn ore in the fourth process.

【0006】ところが、第四工程で生成したスラグを第
一工程で使用するため、第四工程で生成したスラグ中の
酸化鉄、MnO濃度が高いと、脱りん反応が阻害される
という問題点があった。本発明は脱りん工程でのスラグ
組成の適正化を図り、脱りん反応の促進を図る方法を提
供することを目的とするものである。
However, since the slag produced in the fourth step is used in the first step, if the iron oxide and MnO concentrations in the slag produced in the fourth step are high, the dephosphorization reaction is hindered. there were. It is an object of the present invention to provide a method for optimizing the slag composition in the dephosphorization step and promoting the dephosphorization reaction.

【0007】[0007]

【課題を解決するための手段】本発明は、溶銑を精錬し
て溶鋼を製造する際に、第一工程として溶銑を転炉に装
入し、第二工程としてフラックス添加と酸素吹込みを行
って脱りん精錬を施し、所定のりん含有量まで低減さ
せ、第三工程として前記転炉を傾動して第二工程で生成
したスラグを排出し、その後第四工程として同一転炉に
てフラックス添加と酸素吹錬により、所定のC含有量ま
で脱炭を行い、第五工程として第四工程で生成したスラ
グを該転炉内に残したまま出鋼して、再び第一工程へ戻
り、前記第五工程までを繰り返し実施する溶鋼製造法の
第二工程において、スラグ中のCaO/SiO2 を2.
5以下、且つ酸化鉄とマンガン酸化物濃度の和(T.F
e+MnO)を、15%≦(T.Fe+MnO)≦35
%とすることを特徴とする溶銑の脱りん方法を要旨とす
るものである。
According to the present invention, when refining molten iron to produce molten steel, the molten iron is charged into a converter as a first step, and flux addition and oxygen blowing are performed as a second step. Dephosphorization to reduce the phosphorus content to the specified level, tilt the converter as the third step to discharge the slag generated in the second step, and then add flux in the same converter as the fourth step. Decarburization to a predetermined C content by means of oxygen blowing, and slag produced in the fourth step as the fifth step is tapped while being left in the converter, and the procedure is returned to the first step again. In the second step of the molten steel manufacturing method in which the steps up to the fifth step are repeatedly performed, the CaO / SiO 2 content in the slag is set to 2.
5 or less and the sum of iron oxide and manganese oxide concentrations (TF
e + MnO), 15% ≦ (T.Fe + MnO) ≦ 35
The gist is a method for dephosphorizing hot metal, which is characterized by the percentage.

【0008】[0008]

【作用】以下本発明を詳述する。本発明は溶銑予備処理
と脱炭とを集約して同一転炉によって操業される。即
ち、例えば図2に示すように炉底に脱りん、脱炭用フラ
ックスを吹込むための1個ないし複数個の底吹き羽口
と、出鋼孔と対面炉腹にスラグフォーミング用ガス吹込
み羽口を備えた上底吹き転炉に溶銑を装入し、前述の底
吹き羽口より生石灰粉をベースとしたフラックスを窒素
等の不活性ガスを搬送ガスとして吹込み脱りん処理を行
う。
The present invention will be described in detail below. The present invention integrates the hot metal pretreatment and decarburization and operates in the same converter. That is, for example, as shown in FIG. 2, one or a plurality of bottom blowing tuyere for blowing dephosphorization and decarburizing flux into the furnace bottom, and a gas blowing tuyere for slag forming in the tapping hole and the facing furnace side. The molten iron is charged into an upper-bottom blowing converter equipped with, and a dephosphorization treatment is performed by blowing a flux based on quicklime powder from the bottom-blowing tuyere using an inert gas such as nitrogen as a carrier gas.

【0009】この時、酸化鉄粉を生石灰粉に混合する
か、あるいは羽口を3重管構造とし、酸素ガスを同一羽
口を通して吹込むことにより、脱りん反応速度を高める
ことができる。もしくは、上吹きランスから酸素ガスを
吹付け、上方よりフラックスを投入、吹込み、吹付け等
の方法で添加して、生成スラグの酸化鉄濃度をコントロ
ールすることによっても、脱りんを促進することができ
る。
At this time, the dephosphorization reaction rate can be increased by mixing the iron oxide powder with the quicklime powder or by forming the tuyere with a triple tube structure and blowing oxygen gas through the same tuyere. Alternatively, promote dephosphorization by controlling the iron oxide concentration in the produced slag by spraying oxygen gas from the top-blown lance and adding flux from above to add, blow, or spray. You can

【0010】所定のりん含有量まで低下した時点で炉を
反出鋼側(排滓側)に傾動しスラグのみを排出させる。
排滓終了と共に直ちに炉を正立させ、副原料(耐火物保
護、復りん防止用生石灰、ドロマイト、鉄鉱石、Mn鉱
石等)を投入して通常の上底吹き脱炭精錬を行う。吹止
後、溶鋼は出鋼するが、スラグはそのまま炉内に残し、
次のチャージの脱りん用フラックスとして活用する。
When the phosphorus content is reduced to a predetermined level, the furnace is tilted to the side of the unextruded steel (slag side) to discharge only the slag.
Immediately after the slag is exhausted, the furnace is erected upright and auxiliary materials (refractory protection, quick lime for preventing re-phosphorus, dolomite, iron ore, Mn ore, etc.) are put in to perform normal upper-bottom blowing decarburization refining. After blowing off, the molten steel is tapped, but the slag is left in the furnace as it is,
It is used as the flux for dephosphorization of the next charge.

【0011】ところで、同一転炉で脱りん、脱炭工程を
続けて行うと、脱りん工程から脱炭工程へ移る際のエネ
ルギーロスを少なくすることができ、脱炭工程において
多量のMn鉱石を添加して還元を行い、合金鉄コストの
削減が可能となる。しかしながら、特に多量のMn鉱石
を使用した場合には、生成したスラグ中のマンガン酸化
物濃度が高くなり、そのスラグを脱りん工程でリサイク
ルするために、脱りん反応が阻害されるという問題点が
生じ、Mn鉱石の添加量を低減せざるを得ないという問
題が発生した。
By the way, if the dephosphorization and decarburization steps are continuously carried out in the same converter, the energy loss at the time of shifting from the dephosphorization step to the decarburization step can be reduced, and a large amount of Mn ore is produced in the decarburization step. By adding and reducing, alloy iron cost can be reduced. However, particularly when a large amount of Mn ore is used, the concentration of manganese oxide in the produced slag becomes high, and the slag is recycled in the dephosphorization step, so that the dephosphorization reaction is hindered. This caused a problem that the amount of Mn ore added had to be reduced.

【0012】そこで本発明者らは、脱りん反応に及ぼす
スラグ組成の影響を詳細に調査した結果、Mn鉱石を多
量添加して脱りん反応が低下する場合は、酸化鉄濃度が
高く、酸化鉄濃度とマンガン酸化物濃度の和が35%を
超える場合であることを見出した。また(T.Fe+M
nO)が15%より少ない場合にも脱りん反応が進行し
ないことがわかり、脱りん反応を効率よく促進するに
は、スラグ中のCaO/SiO2 が2.5以下の条件で
は、酸化鉄とマンガン酸化物濃度の和(T.Fe+Mn
O)を、15%≦(T.Fe+MnO)≦35%になる
ように制御することが必要であることを見出した。これ
は、酸化鉄およびマンガン酸化物はともに溶銑中のりん
を酸化し、溶銑からスラグ中に除去する作用があるた
め、脱りん反応を促進するにはスラグ中の酸化鉄とマン
ガン酸化物濃度の和を少なくとも15%以上にする必要
があり、またスラグ中の酸化鉄とマンガン酸化物濃度の
和が35%を超えると、スラグ中に移行したりんを安定
化するのに必要なCaO濃度が減少し、脱りん反応が阻
害されるためである。
Therefore, as a result of detailed investigation of the influence of the slag composition on the dephosphorization reaction, the present inventors have found that when the dephosphorization reaction is decreased by adding a large amount of Mn ore, the iron oxide concentration is high and the iron oxide content is high. It was found that the sum of the concentration and the manganese oxide concentration exceeds 35%. Also (T.Fe + M
It can be seen that the dephosphorization reaction does not proceed even when nO) is less than 15%, and in order to efficiently promote the dephosphorization reaction, iron oxide and iron oxide should be formed under the condition that CaO / SiO 2 in the slag is 2.5 or less. Sum of manganese oxide concentrations (T.Fe + Mn
It has been found that it is necessary to control O) so that 15% ≦ (T.Fe + MnO) ≦ 35%. This is because both iron oxide and manganese oxide have the action of oxidizing phosphorus in the hot metal and removing it from the hot metal into the slag. If the sum of the iron oxide and manganese oxide concentrations in the slag exceeds 35%, the CaO concentration necessary to stabilize the phosphorus transferred to the slag decreases. However, the dephosphorization reaction is inhibited.

【0013】すなわち、スラグ中酸化鉄濃度が低い場合
には、マンガン酸化物は酸化鉄の代替として溶銑中のり
んを酸化する作用を有するため、脱りん反応を阻害せ
ず、(T.Fe+MnO)≦35%の範囲では、逆に脱
りん反応を促進する作用があるため、マンガン酸化物濃
度が高くても良い。しかし、スラグ中酸化鉄濃度が高い
場合には、マンガン酸化物濃度が低くても(T.Fe+
MnO)>35%となってしまい、脱りん反応が阻害さ
れてしまう。
That is, when the iron oxide concentration in the slag is low, manganese oxide does not interfere with the dephosphorization reaction because it has a function of oxidizing phosphorus in the hot metal as a substitute for iron oxide, and (T.Fe + MnO) In the range of ≦ 35%, on the contrary, the manganese oxide concentration may be high because it has the effect of promoting the dephosphorization reaction. However, when the iron oxide concentration in the slag is high, even if the manganese oxide concentration is low (T.Fe +
MnO)> 35%, and the dephosphorization reaction is hindered.

【0014】以上のことからスラグ中のマンガン酸化物
濃度にあわせてスラグ中酸化物濃度を制御することによ
り、脱りん反応を効率よく進行させることが可能となる
ことが分かる。脱りん工程でのスラグ中の酸化鉄とマン
ガン酸化物濃度の制御は、具体的には例えば以下に示す
方法により行う。脱炭工程でのMn鉱石使用量および吹
止め時の溶鋼の炭素濃度および温度をもとに、脱炭スラ
グ中に残存したMn酸化物量を算出し、脱りん工程にて
酸化鉄等を含むフラックス量および上吹きランスからの
酸素ガス供給速度を調整することによりスラグ中の酸化
鉄濃度を制御し、酸化鉄とマンガン酸化物濃度の和
(T.Fe+MnO)を、15%≦(T.Fe+Mn
O)≦35%とする。
From the above, it is understood that by controlling the oxide concentration in the slag according to the manganese oxide concentration in the slag, the dephosphorization reaction can be efficiently advanced. The iron oxide and manganese oxide concentration in the slag in the dephosphorization step is specifically controlled by, for example, the method described below. The amount of Mn oxide remaining in the decarburizing slag was calculated based on the amount of Mn ore used in the decarburization process and the carbon concentration and temperature of the molten steel at the time of blowing, and the flux containing iron oxide, etc. in the dephosphorization process The iron oxide concentration in the slag is controlled by adjusting the amount and the oxygen gas supply rate from the top blowing lance, and the sum of the iron oxide and manganese oxide concentrations (T.Fe + MnO) is 15% ≦ (T.Fe + MnO).
O) ≦ 35%.

【0015】これにより、脱りん工程では脱りん反応を
促進しつつ、かつ脱炭工程では多量のMn鉱石を添加し
て還元を行うことができ、合金鉄コストの削減が可能と
なる。
As a result, the dephosphorization process can be promoted in the dephosphorization process, and in the decarburization process, a large amount of Mn ore can be added to carry out the reduction, and the alloy iron cost can be reduced.

【0016】[0016]

【実施例】4.5%のC、0.1%のP、0.3%のS
iを含む1350℃の溶銑を300t転炉に装入し、底
吹攪拌を行いながら、スラグのCaO/SiO2 が1.
5になるように生石灰をまた脱りん剤として鉄鉱石を添
加し、上吹き吹酸を行い脱りん処理を行った。その後、
生成スラグの70%を排出し、生石灰とMn鉱石を添加
し脱炭処理を行い、脱炭スラグを転炉内に残したまま出
鋼した。その後、再び上記成分の溶銑を転炉に装入し、
繰り返し脱りん処理と脱炭処理を行った。
EXAMPLE 4.5% C, 0.1% P, 0.3% S
1300 ° C. hot metal containing i was charged into a 300 t converter, and CaO / SiO 2 of slag was 1.
Iron ore was added as a dephosphorizing agent so as to obtain 5, and dephosphorizing treatment was carried out by top blowing acid. afterwards,
70% of the generated slag was discharged, quicklime and Mn ore were added to perform decarburization treatment, and steel was tapped while the decarburized slag was left in the converter. After that, the hot metal of the above components is charged again into the converter,
Repeated dephosphorization and decarburization treatments were performed.

【0017】脱炭工程で添加するMn鉱石量は、製造す
る鋼種により5〜30kg/tの範囲で添加した。そし
て脱炭工程でのMn鉱石使用量および吹止め時の溶鋼の
炭素濃度および温度をもとに、脱炭スラグ中に残存した
Mn酸化物量を算出し、脱りん工程にて鉄鉱石を含むフ
ラックス量および上吹きランスからの酸素ガス供給速度
および上吹きランス高さを調整することによりスラグ中
の酸化鉄濃度を制御し、酸化鉄とマンガン酸化物濃度の
和(T.Fe+MnO)を、15%≦(T.Fe+Mn
O)≦35%とした。また、比較として上記範囲から外
れる条件での操業も実施した。
The amount of Mn ore added in the decarburization step was in the range of 5 to 30 kg / t depending on the type of steel to be manufactured. Then, the amount of Mn oxide remaining in the decarburizing slag was calculated based on the amount of Mn ore used in the decarburization process and the carbon concentration and temperature of the molten steel at the time of blowing, and the flux containing iron ore in the dephosphorization process The iron oxide concentration in the slag is controlled by adjusting the amount and the oxygen gas supply rate from the top blowing lance and the height of the top blowing lance, and the sum of the iron oxide and manganese oxide concentrations (T.Fe + MnO) is 15%. ≦ (T.Fe + Mn
O) ≦ 35%. Further, as a comparison, the operation was carried out under the condition out of the above range.

【0018】図1に脱りん期の脱りん率とその時のスラ
グ中の酸化鉄とマンガン酸化物濃度の和との関係を示
す。スラグ中酸化鉄とマンガン酸化物濃度の和を15%
≦(T.Fe+MnO)≦35%に制御する操業を行っ
た場合には、安定して脱りん率が80%以上であるのに
対し、(T.Fe+MnO)<15%の場合および
(T.Fe+MnO)>35%の場合には、脱りん率が
極端に悪くなっていることがわかる。また酸化鉄とマン
ガン酸化物濃度の和(T.Fe+MnO)が15%≦
(T.Fe+MnO)≦35%から外れる操業を行った
場合、製品の所定のりん濃度を達成するために生石灰量
を増加する必要があり、生石灰原単位は5〜10kg/
t増加し、コスト増につながった。
FIG. 1 shows the relationship between the dephosphorization rate during the dephosphorization period and the sum of the iron oxide and manganese oxide concentrations in the slag at that time. 15% of the sum of iron oxide and manganese oxide concentration in slag
The dephosphorization rate is stable at 80% or more when the operation is performed to control ≦ (T.Fe + MnO) ≦ 35%, whereas the case where (T.Fe + MnO) <15% and (T.Fe + MnO) <15%. In the case of Fe + MnO)> 35%, it can be seen that the dephosphorization rate is extremely poor. Further, the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 15% ≦.
(T.Fe + MnO) ≦ 35%, it is necessary to increase the amount of quick lime in order to achieve the specified phosphorus concentration in the product, and the quick lime basic unit is 5-10 kg /
t increased, leading to higher costs.

【0019】また、酸化鉄とマンガン酸化物濃度の和
(T.Fe+MnO)を、15%≦(T.Fe+Mn
O)≦35%とする操業を行うことにより、安定した脱
炭期のマンガン鉱石の多量添加が可能となり、合金鉄の
コスト削減が可能となった。
Further, the sum of the iron oxide and manganese oxide concentrations (T.Fe + MnO) is 15% ≦ (T.Fe + MnO).
O) ≦ 35% by the operation, it became possible to add a large amount of manganese ore in a stable decarburization period, and it became possible to reduce the cost of ferroalloy.

【0020】[0020]

【発明の効果】スラグ中のCaO/SiO2 を2.5以
下、且つ酸化鉄とマンガン酸化物濃度の和(T.Fe+
MnO)を、15%≦(T.Fe+MnO)≦35%に
なるように制御することにより、脱りん工程では脱りん
反応を促進しつつ、かつ脱炭工程では多量のMn鉱石を
添加して還元を行うことができ、合金鉄コストの削減が
可能となった。
EFFECT OF THE INVENTION CaO / SiO 2 in the slag is 2.5 or less, and the sum of iron oxide and manganese oxide concentrations (T.Fe +
(MnO) is controlled to be 15% ≦ (T.Fe + MnO) ≦ 35% to accelerate the dephosphorization reaction in the dephosphorization step and reduce a large amount of Mn ore in the decarburization step. It is possible to reduce the alloy iron cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱りん処理後の脱りん率とスラグ中の酸化鉄と
マンガン酸化物濃度の和との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the dephosphorization rate after dephosphorization treatment and the sum of iron oxide and manganese oxide concentrations in slag.

【図2】同一転炉による精錬プロセスの模式的説明図で
ある。
FIG. 2 is a schematic explanatory diagram of a refining process using the same converter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 升光 法行 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 (72)発明者 小泉 文夫 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriyuki Mitsuko, 12 Nakamachi, Muroran-shi, Hokkaido Stock of Nippon Steel Corporation (72) Inventor Fumio Koizumi 12 Nakamachi, Muroran-shi, Hokkaido Stock of Nippon Steel Muroran Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶銑を精錬して溶鋼を製造する際に、第
一工程として溶銑を転炉に装入し、第二工程としてフラ
ックス添加と酸素吹込みを行って脱りん精錬を施し所定
のりん含有量まで低減させ、第三工程として前記転炉を
傾動して第二工程で生成したスラグを排出し、その後第
四工程として同一転炉にて脱炭を行い、第五工程として
第四工程で生成したスラグを該転炉内に残したまま出鋼
して、再び第一工程へ戻り、繰り返し上記工程を行う溶
鋼製造法の第二工程において、スラグ中のCaO/Si
2 を2.5以下、且つ酸化鉄とマンガン酸化物濃度の
和(T.Fe+MnO)を、15%≦(T.Fe+Mn
O)≦35%とすることを特徴とする溶銑の脱りん方
法。
1. When refining molten iron to produce molten steel, the molten iron is charged into a converter as a first step, and flux addition and oxygen blowing are performed as a second step to perform dephosphorization refining to a predetermined temperature. The phosphorus content is reduced, the converter is tilted as the third step to discharge the slag produced in the second step, and then the fourth step is decarburization in the same converter, and the fifth step is the fourth step. In the second step of the molten steel manufacturing method, in which the slag generated in the step is tapped while being left in the converter, the step is returned to the first step, and the above steps are repeatedly performed, CaO / Si in the slag
O 2 is 2.5 or less, and the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 15% ≦ (T.Fe + Mn
O) ≦ 35%, a method for dephosphorizing hot metal.
JP32908893A 1993-06-30 1993-12-24 Hot metal dephosphorization method Expired - Lifetime JP2958848B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP32908893A JP2958848B2 (en) 1993-12-24 1993-12-24 Hot metal dephosphorization method
AU70831/94A AU680268B2 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter
CA002166097A CA2166097C (en) 1993-06-30 1994-06-30 Process for producing steel by converter
KR1019950705930A KR0159180B1 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter
DE69423630T DE69423630T2 (en) 1993-06-30 1994-06-30 STEEL MANUFACTURING IN CONVERTER WITH DEPHOSPHORUS LEVEL
EP94919835A EP0714989B1 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter dephosphorisation
BR9406985-9A BR9406985A (en) 1993-06-30 1994-06-30 Process to produce steel in converter
PCT/JP1994/001070 WO1995001458A1 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter
CN94192953A CN1041843C (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter
ES94919835T ES2143547T3 (en) 1993-06-30 1994-06-30 STEEL MANUFACTURING METHOD USING DEPHOSPHORIZATION IN CONVERTER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32908893A JP2958848B2 (en) 1993-12-24 1993-12-24 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JPH07179921A true JPH07179921A (en) 1995-07-18
JP2958848B2 JP2958848B2 (en) 1999-10-06

Family

ID=18217484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32908893A Expired - Lifetime JP2958848B2 (en) 1993-06-30 1993-12-24 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP2958848B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749023B1 (en) * 2006-05-26 2007-08-14 주식회사 포스코 Method for refining extra low phosphorous steel in converter
KR100887132B1 (en) * 2002-08-20 2009-03-04 주식회사 포스코 Method for Tapping Molten Steel in Converter
JP2009249723A (en) * 2008-04-10 2009-10-29 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2011225934A (en) * 2010-04-20 2011-11-10 Jfe Steel Corp Refining method in converter
JP2019194350A (en) * 2018-04-27 2019-11-07 日本製鉄株式会社 Recycling method of converter slag

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695312B2 (en) * 2001-09-27 2011-06-08 新日本製鐵株式会社 Hot metal pretreatment method
KR102065059B1 (en) * 2017-12-26 2020-01-10 주식회사 포스코 Method for refining molten steel in cinverter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887132B1 (en) * 2002-08-20 2009-03-04 주식회사 포스코 Method for Tapping Molten Steel in Converter
KR100749023B1 (en) * 2006-05-26 2007-08-14 주식회사 포스코 Method for refining extra low phosphorous steel in converter
JP2009249723A (en) * 2008-04-10 2009-10-29 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2011225934A (en) * 2010-04-20 2011-11-10 Jfe Steel Corp Refining method in converter
JP2019194350A (en) * 2018-04-27 2019-11-07 日本製鉄株式会社 Recycling method of converter slag

Also Published As

Publication number Publication date
JP2958848B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4456477A (en) Production of ultra-low phosphorus steel
US4543125A (en) Process of making steel in converter using a great amount of iron-bearing cold material
JP2958848B2 (en) Hot metal dephosphorization method
JP2896839B2 (en) Molten steel manufacturing method
JPH0136525B2 (en)
EP1457574B1 (en) Method for pretreatment of molten iron and method for refining
JP2607329B2 (en) Hot metal dephosphorization method
JP2607328B2 (en) Hot metal dephosphorization method
JPS6358203B2 (en)
JPH08311519A (en) Steelmaking method using converter
JPS6138248B2 (en)
JP3486889B2 (en) Steelmaking method using two or more converters
JPH11323420A (en) Pretreating method for molten iron
JP2000087125A (en) Method for dephosphorize-refining molten iron
JP2002309310A (en) Method for producing low-phosphorous molten iron
JPH11193414A (en) Steel manufacturing method using a plurality of converters
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH0718318A (en) Converter refining method
JP3486890B2 (en) Converter steelmaking method using dephosphorized hot metal
KR20040013225A (en) Method for Refining Molten Steel Using Converter
JPH0472007A (en) Production of molten steel
JP2000096117A (en) Steelmaking method in converter
JPH0347908A (en) Method for blowing high manganese steel in converter
JPH1150125A (en) Decarburize-refining using manganese ore
JPH03120307A (en) Steelmaking method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term