JPH03120307A - Steelmaking method - Google Patents

Steelmaking method

Info

Publication number
JPH03120307A
JPH03120307A JP25501189A JP25501189A JPH03120307A JP H03120307 A JPH03120307 A JP H03120307A JP 25501189 A JP25501189 A JP 25501189A JP 25501189 A JP25501189 A JP 25501189A JP H03120307 A JPH03120307 A JP H03120307A
Authority
JP
Japan
Prior art keywords
blowing
slag
furnace
dephosphorization
dephosphorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25501189A
Other languages
Japanese (ja)
Inventor
Katsuhiko Arai
克彦 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25501189A priority Critical patent/JPH03120307A/en
Publication of JPH03120307A publication Critical patent/JPH03120307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To efficiently execute dephosphorizing and decarbonizing reactions in molten steel with common use of small quantity of slag making agent by suitably controlling oxygen top blowing refining in a converter for dephosphorizing at the time of refining the molten steel with two sets of the oxygen top and bottom combined blowing converters for dephosphorizing and decarbonizing. CONSTITUTION:At the time or producing the molten steel from molten iron by using two sets of the oxygen top and bottom combined blowing converters, oxidizing molten slag 4 from the converter 2 for decarbonizing is charged into the converter 1 for dephosphorizing, and by blowing CO2 gas from a bottom blowing nozzle 5, the molten iron 3 is stirred, and by blowing O2 gas from a top blowing lance 6, P in the molten iron 3 is oxidized into P2O5 to make this the stable molten slag with CaO in the slag making agent, and the dephosphorization is executed. By making O2 charged energy expressed in equation I from the top blowing lance in the dephosphorizing furnace 1 1500-2000W/m<3> molten iron, the dephosphorization is executed while allowing C to remain in the molten iron. This dephosphorized molten iron is charged into the converter 2 for decarbonizing and the new slag making agent is added and C in the dephosphorized molten iron is oxidized and decarbonized with the gas stirring from the bottom nozzle 5 and oxygen blowing from the top blowing lance 6 to refine the molten iron into the molten steel, and the oxidizing molten slag at this time is supplied and used into the dephosphorizing furnace 1. The dephosphorizing and decarbonizing reactions are executed with a small quantity of slag making agent.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、少ない造滓剤(生石灰等)使用量でもって
品質の優れた鋼を安定して溶製するための製鋼方法に関
するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention relates to a steel manufacturing method for stably producing high-quality steel with a small amount of slag-forming agent (quicklime, etc.) used. .

〈従来技術とその課題〉 近年、各種鋼材に対する高度な品質要求と低価格要求に
対応するため、例えば低燐鋼をより一層低いコストで安
定溶製する手段等の開発に多大な努力が払われているが
、このような状況下において、本出願人は先に、全製鋼
工程を通じて造滓剤(生石灰等)の使用量を極力抑えつ
つ高能率脱燐が行えるところの、[溶銑の精錬に当って
、第1図に示した如く、上下両吹き機能を有した2基の
転炉形式の炉を使用し、かつその一方を脱燐炉1、他方
を脱炭炉2として5前記脱燐炉1内へ注入した溶銑3に
前記脱炭炉2で発生した転炉滓4を主成分とする精錬剤
4′(転炉滓は溶融状態又は固化状態の何れで用いても
良い)を添加すると共に、攪拌ガス吹込みノズル5を用
いた底吹きガス攪拌を行いつつランス6にて酸素ガスを
上吹きすることで所要溶銑温度を保ちなから溶銑脱燐を
行い、次いで得られた脱燐溶銑を脱炭炉2にて脱炭並び
に仕上脱燐することから成る“脱燐スラグ−メタルの向
流的2段階接触精錬を伴う製鋼方法”」 を提案しく特
開昭62−290815号)、P含有量の低い高品質鋼
を少ない造滓剤使用量の下で安価に提供し得る道を開い
た。
<Prior art and its challenges> In recent years, in order to meet the high quality requirements and low price requirements for various steel materials, great efforts have been made to develop, for example, means to stably melt low-phosphorus steel at even lower costs. However, under these circumstances, the applicant has previously proposed a method for refining hot metal that can achieve highly efficient dephosphorization while minimizing the amount of slag-forming agents (quicklime, etc.) used throughout the entire steelmaking process. As shown in Fig. 1, two converter type furnaces having both upper and lower blowing functions were used, and one of them was used as dephosphorization furnace 1 and the other as decarburization furnace 2. A refining agent 4' whose main component is the converter slag 4 generated in the decarburization furnace 2 (the converter slag may be used in either a molten state or a solidified state) is added to the hot metal 3 injected into the furnace 1. At the same time, the hot metal is dephosphorized while maintaining the required hot metal temperature by top-blowing oxygen gas with the lance 6 while bottom blowing gas is stirred using the stirring gas injection nozzle 5. JP-A No. 62-290815) proposes a "steel manufacturing method involving two-stage countercurrent catalytic refining of dephosphorized slag-metal," which consists of decarburizing and final dephosphorizing hot metal in a decarburizing furnace 2. This opens the door to providing high-quality steel with a low P content at a low cost while using a small amount of slag forming agent.

ところが、その後の数多くの操業実績を通して、本発明
者等は、「前記“脱燐スラグ−メタルの向流的2段階接
触精錬を伴う製鋼法”を実施していると、時たま脱炭炉
精錬時の所望溶銑温度確保が困難となったり、或いは脱
燐炉精錬での脱燐不足が生じる場合がある」との事実を
認識するに至った。
However, through numerous operational results since then, the present inventors have found that when carrying out the above-mentioned "steel manufacturing method involving countercurrent two-stage catalytic refining of dephosphorized slag and metal," sometimes during decarburization furnace refining, We have come to recognize the fact that it may be difficult to secure the desired hot metal temperature, or there may be insufficient dephosphorization in the dephosphorization furnace refining.

そこで、本発明者は、上述した溶銑温度の確保や脱燐率
が不安定化する要因を取り除き、造滓剤使用量が少なく
てコ、スト的に極めて有利な“脱燐スラグ−メタルの向
流的2段階接触精錬を伴う製鋼法”の操業をより一層安
定化することを目的とした新たな研究を開始した。
Therefore, the inventors of the present invention have removed the factors that cause the hot metal temperature to be maintained and the dephosphorization rate to become unstable as described above, and have developed a "dephosphorization slag-metal solution" that uses only a small amount of slag and is extremely advantageous in terms of cost. We have begun new research aimed at further stabilizing the operation of the ``steelmaking process that involves two-stage catalytic refining.''

く課題を解決するための手段〉 そして、上記目的を達成すべくなされた本発明者の研究
により、「脱炭炉精錬において時たま所望溶銑温度の確
保が困難となる原因は、脱燐炉精錬での上吹酸素強度が
大き過ぎて溶銑の脱炭量が増加するために脱炭炉側の熱
エネルギーが減少することにあり、一方、脱燐炉精錬に
おいて時たま脱燐不足が生じる原因は脱燐炉精錬での上
吹酸素強度が小さ過ぎてスラグ又は溶銑に供給すべき酸
素ポテンシャルが不足するためである」ことが明らかと
なったのである。
Means for Solving the Problem> The inventor's research conducted to achieve the above object revealed that ``The reason why it is sometimes difficult to secure the desired hot metal temperature in decarburization furnace refining is that When the top blowing oxygen intensity is too high, the amount of decarburization of the hot metal increases, and the thermal energy on the decarburization furnace side decreases.On the other hand, the reason why dephosphorization is sometimes insufficient in dephosphorization furnace refining is due to dephosphorization. It has become clear that this is because the top-blowing oxygen intensity in furnace refining is too low, resulting in insufficient oxygen potential to be supplied to the slag or hot metal.

このようなことから、本発明者は、前記脱燐不良や溶銑
温度不足を安定して防止し得る脱燐炉精錬条件の存否を
究明すべく、更に数多くの実験を繰り返しながら研究を
重ねたところ、「“脱燐スラグ−メタルの向流的2段階
接触精錬を伴う製鋼法”において、特に脱燐炉精錬時の
上吹ランスからの酸素上吹きによる投入エネルギーを特
定範囲に調整すれば、脱燐炉精錬にて溶銑の脱炭を極力
抑えつつ十分な脱燐を行うことが可能となり、その結果
、[P] レベルが所望の低い値でかつ十分な熱エネル
ギーを発揮し得る高[C]溶銑を安定して脱炭炉へ供給
できるようになる」との知見を得ることができた。
For this reason, the present inventor conducted further research by repeating numerous experiments in order to find out whether or not there are dephosphorization furnace refining conditions that can stably prevent the defective dephosphorization and insufficient hot metal temperature. , ``In the steelmaking process involving countercurrent two-step catalytic refining of dephosphorized slag-metal,'' dephosphorization can be achieved by adjusting the energy input by top-blowing oxygen from the top-blowing lance during dephosphorization furnace refining to a specific range. In phosphor furnace refining, it is possible to perform sufficient dephosphorization while suppressing decarburization of hot metal as much as possible, and as a result, the [P] level is a desired low value and a high [C] that can exert sufficient thermal energy. We were able to obtain the knowledge that it will be possible to stably supply hot metal to the decarburization furnace."

本発明は、上記知見等に基づいてなされたものであり、 「上下両吹き機能を有した2基の転炉形式の炉のうちの
一方を脱燐炉、他方を脱炭炉とし、前記脱燐炉内へ注入
した溶銑に脱炭炉で発生した転炉滓を主成分とする精錬
剤を添加して脱燐スラグ−メタルの向流的2段階接触精
錬を行う製鋼法において、脱燐炉精錬時に第2図で示さ
れる如き上部酸素ランスから溶銑浴表面へ投入する酸素
ガスの投入エネルギーを、式 %式%( で算出される溶銑容積当りの値にて 1500〜220
0W/rdに調整することにより溶銑中の炭素損失を抑
えると共に脱燐を安定化させ、安定した品質の低燐鋼を
安価にかつ操業性良く製造し得るようにした点」を特徴
としている。
The present invention has been made based on the above-mentioned knowledge, etc., and it is based on the above-mentioned findings. In a steelmaking process in which a refining agent mainly composed of converter slag generated in a decarburization furnace is added to hot metal injected into the phosphorization furnace to carry out countercurrent two-step contact refining of dephosphorization slag and metal, the dephosphorization furnace During refining, the input energy of oxygen gas introduced from the upper oxygen lance to the surface of the hot metal bath as shown in Fig. 2 is calculated by the formula % formula % (value per volume of hot metal calculated from 1500 to 220
By adjusting to 0 W/rd, carbon loss in the hot metal is suppressed and dephosphorization is stabilized, making it possible to produce low-phosphorus steel of stable quality at low cost and with good operability.

ここで、脱燐炉へ添加する精錬剤は“脱炭炉で発生した
転炉滓を主成分としたもの”であるが、上記転炉滓以外
に酸化鉄や蛍石等を基本の副成分として配合するのが良
く、更に、これらの他に生石灰、ドロマイト或いは石灰
石等を付加的に配合しても良い。
Here, the refining agent added to the dephosphorization furnace is "mainly composed of converter slag generated in the decarburization furnace," but in addition to the above-mentioned converter slag, it also contains iron oxide, fluorite, etc. as basic subcomponents. In addition to these, quicklime, dolomite, limestone, etc. may be additionally blended.

また、炉底ノズルから吹き込む攪拌ガスとしてはCO2
,Ar、CO+ Nz、Oz或いは空気等が使用できる
In addition, the stirring gas blown from the furnace bottom nozzle is CO2.
, Ar, CO+ Nz, Oz or air can be used.

なお、本発明において、脱燐炉精錬時に上部酸素ランス
から溶銑浴表面へ投入する酸素ガスの投入エネルギーを
前記の如くに限定したのは、酸素上吹きによる溶銑容積
当りの投入エネルギーε、。
In the present invention, the input energy of the oxygen gas input from the upper oxygen lance to the surface of the hot metal bath during dephosphorization furnace refining is limited as described above because the input energy per volume of hot metal due to oxygen top blowing is ε.

が1500W/%を下回ると上吹酸素により支えられる
スラグ中の酸素ポテンシャルが不足して脱燐不良を招き
、一方、ε9.が2200W/rrrを上回っても源側
物質移動律速で脱燐速度が規定されてしまうために更な
る脱燐率の向上が望めないばかりか、溶銑の脱炭量が増
して次の脱炭炉精錬時に熱エネルギー不足を引き起こす
からである。ただ、−層の操業安定性を望む場合には、
出来れば上記ε9.を1600〜2100W/n(に調
整するのが好ましい。
When ε9. Even if the current exceeds 2200 W/rrr, the dephosphorization rate is determined by the mass transfer rate on the source side, so further improvement in the dephosphorization rate cannot be expected. This is because it causes a lack of thermal energy during refining. However, if you want operational stability in the − layer,
If possible, use the above ε9. is preferably adjusted to 1,600 to 2,100 W/n.

続いて、本発明を実施例により更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 重量割合でCH4,6%、 St : 0.10%、 
Mn : 0.33%、  P :0.105%、  
S :o、oos%を含有量し、残部がFe及び不可避
的不純物から成る成分組成の溶銑(1300℃)を脱燐
炉としての上下両吹き複合吹錬転炉に注銑し、これに同
様形式の脱炭炉で発生した転炉滓を冷却・凝固して30
n以下の粒径に破砕したもの20 kg/T、同様粒径
の生石灰14kgパ並びに蛍石10kg/Tから成る精
錬剤を添加して、CO□による底吹きガス攪拌と種々吹
込み強度での上吹きランスからの0□吹込みを行いなが
ら12分間の脱燐処理を実施した。
<Example> Weight percentage: CH4.6%, St: 0.10%,
Mn: 0.33%, P: 0.105%,
Hot metal (1300°C) having a composition of S: o, oos% and the balance consisting of Fe and unavoidable impurities was poured into a top and bottom double blowing combined blowing converter as a dephosphorization furnace, and in the same manner as above. The converter slag generated in the decarburization furnace is cooled and solidified.
A refining agent consisting of 20 kg/T crushed to a particle size of n or less, 14 kg of quicklime of the same particle size, and 10 kg/T of fluorite was added, and the mixture was mixed with bottom-blown gas using CO□ and at various blowing intensities. Dephosphorization was carried out for 12 minutes while blowing 0□ from the top blowing lance.

この脱燐処理による溶銑の脱燐率と脱炭量とを調査し、
その結果をそれぞれ第3図及び第4図に示した。
We investigated the dephosphorization rate and amount of decarburization of hot metal by this dephosphorization treatment,
The results are shown in FIGS. 3 and 4, respectively.

まず、第3図は「溶銑脱燐率と上吹酸素強度との調査結
果」を示したグラフであるが、この第3からも前記ε9
.の値が1600W/%を下回ると上吹酸素によって支
えられるスラグ中の酸素ポテンシャルが不足する傾向が
出始め、その値がεVア<1500W/n(の領域にな
るとこの傾向が著しくなって脱燐不良を招くようになる
ことが明らかである。一方、εVア≧1600W/rr
rの領域では源側物質移動律速で脱燐速度が規定されて
しまう結果となっており、従って上吹酸素強度はいたす
らに大きくする必要のないことが分かる。
First, Fig. 3 is a graph showing the results of investigation of hot metal dephosphorization rate and top blowing oxygen intensity.
.. When the value of is less than 1,600 W/%, the oxygen potential in the slag supported by the top-blown oxygen begins to become insufficient, and when the value falls into the region of εV<1,500 W/n, this tendency becomes significant and dephosphorization becomes difficult. It is clear that this will lead to defects.On the other hand, if εVa≧1600W/rr
In the region of r, the dephosphorization rate is determined by the rate of mass transfer on the source side, and it is therefore clear that there is no need to increase the top-blowing oxygen intensity.

また、第4図は「溶銑脱炭量と上吹酸素強度との調査結
果」を示したグラフであり、溶銑浴へ投入されるエネル
ギーが増加するに従い脱炭量が増加する結果が示されて
いる。これは、酸素上吹きによる投入エネルギーが強く
なると、スラグを押し退けて溶鉄表面に直接到達し脱炭
反応を選択的に生せしめる酸素の割合が増加することに
よるものである。従って、脱炭炉精錬での熱エネルギー
源となる炭素を確保するためにも、上吹酸素強度を余り
大きくしない配慮を要することが分かる。
In addition, Figure 4 is a graph showing the results of an investigation of the amount of hot metal decarburized and the top blowing oxygen intensity, and the result shows that the amount of decarburized increases as the energy input into the hot metal bath increases. There is. This is because as the energy input by oxygen top blowing increases, the proportion of oxygen that displaces the slag and directly reaches the molten iron surface to selectively cause the decarburization reaction increases. Therefore, it can be seen that in order to secure carbon as a source of thermal energy in decarburization furnace refining, consideration must be given not to increase the top blowing oxygen intensity too much.

(効果の総括〉 以上に説明した如く、この発明によれば少ない造滓剤使
用量の下で高品位の低燐鋼をコスト安く安定して製造す
ることが可能となる上、この発明に係る操業条件は、上
吹酸素を併用するその他の炉外精錬(溶銑鍋等の処理容
器を使用するもの)に通用した場合にも安定操業確保に
大きく寄与することを期待させるなど、産業上極めて有
用な効果がもたらされる。
(Summary of Effects) As explained above, according to the present invention, it is possible to stably produce high-grade low-phosphorus steel at low cost with a small amount of slag-forming agent used, and The operating conditions are extremely useful industrially, as they are expected to greatly contribute to ensuring stable operation when applied to other types of outside-furnace refining (using processing vessels such as hot metal pots) that also use top-blown oxygen. effect is brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、“2基の上下両吹き複合吹錬転炉を使用した
脱燐スラグ−メタルの向流的2段階接触精錬を伴う製鋼
方法”の説明図である。 第2図は、上吹ランスの使用状況を説明した概略模式図
である。 第3図は、溶銑脱燐率と上吹酸素強度との関係を示した
グラフである。 第4図は、溶銑脱炭量と上吹酸素強度との関係を示した
グラフである。 図面において、 1・・・脱燐炉、     2・・・脱炭炉。 3・・・溶銑、      4・・・転炉滓。 4′・・・転炉滓を主成分とする脱燐スラグ。 5・・・攪拌ガス吹込みノズル、  6・・・ランス。
FIG. 1 is an explanatory diagram of a "steel manufacturing method involving countercurrent two-stage catalytic refining of dephosphorized slag-metal using two upper and lower double-blown combined blowing converters." FIG. 2 is a schematic diagram illustrating how the top blowing lance is used. FIG. 3 is a graph showing the relationship between hot metal dephosphorization rate and top blowing oxygen intensity. FIG. 4 is a graph showing the relationship between hot metal decarburization amount and top blowing oxygen intensity. In the drawings: 1... Dephosphorization furnace, 2... Decarburization furnace. 3... Hot metal, 4... Converter slag. 4'...Dephosphorization slag whose main component is converter slag. 5... Stirring gas blowing nozzle, 6... Lance.

Claims (1)

【特許請求の範囲】 上下両吹き機能を有した2基の転炉形式の炉のうちの一
方を脱燐炉、他方を脱炭炉とし、前記脱燐炉内へ注入し
た溶銑に脱炭炉で発生した転炉滓を主成分とする精錬剤
を添加して脱燐スラグ−メタルの向流的2段階接触精錬
を行う製鋼法において、脱燐炉精錬時に上部酸素ランス
から溶銑浴表面へ投入する酸素ガスの投入エネルギーを
下記式で算出される溶銑容積当りの値にて1500〜2
200W/m^3に調整し、溶銑中の炭素損失を抑える
と共に脱燐を安定化させることを特徴とする製綱方法。 ε_v_r=6.32×10^−^7×cosξ×Qo
_2^3×M/V_L×n^2×d_e^3×H [但し、ξ:ランス開き角度(rad)、 d_e:ランス先端出口径(mm)、 n:ランス孔数、 H:ランス高さ(mm)、 V_L:溶鋼容積(m^2)、 Qo_2:上吹酸素流量(Nm^2/min)、M:酸
素分子量]
[Scope of Claims] One of the two converter type furnaces having upper and lower blowing functions is a dephosphorization furnace and the other is a decarburization furnace, and the hot metal injected into the dephosphorization furnace is heated to a decarburization furnace. In the steelmaking process, which involves countercurrent two-step contact refining of dephosphorized slag and metal by adding a refining agent mainly composed of converter slag generated in the converter, the slag is injected into the surface of the hot metal bath from the upper oxygen lance during dephosphorizing furnace refining. The input energy of oxygen gas is 1500~2 as the value per volume of hot metal calculated by the following formula.
A rope making method characterized by adjusting the power to 200 W/m^3 to suppress carbon loss in hot metal and stabilize dephosphorization. ε_v_r=6.32×10^-^7×cosξ×Qo
_2^3×M/V_L×n^2×d_e^3×H [However, ξ: Lance opening angle (rad), d_e: Lance tip exit diameter (mm), n: Number of lance holes, H: Lance height (mm), V_L: Molten steel volume (m^2), Qo_2: Top blowing oxygen flow rate (Nm^2/min), M: oxygen molecular weight]
JP25501189A 1989-09-29 1989-09-29 Steelmaking method Pending JPH03120307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25501189A JPH03120307A (en) 1989-09-29 1989-09-29 Steelmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25501189A JPH03120307A (en) 1989-09-29 1989-09-29 Steelmaking method

Publications (1)

Publication Number Publication Date
JPH03120307A true JPH03120307A (en) 1991-05-22

Family

ID=17272958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25501189A Pending JPH03120307A (en) 1989-09-29 1989-09-29 Steelmaking method

Country Status (1)

Country Link
JP (1) JPH03120307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231477A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk Method for dephosphorizing molten iron
CN112981045A (en) * 2021-02-09 2021-06-18 东北大学 Method for dephosphorizing and preserving vanadium of molten iron containing vanadium and phosphorus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231477A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk Method for dephosphorizing molten iron
CN112981045A (en) * 2021-02-09 2021-06-18 东北大学 Method for dephosphorizing and preserving vanadium of molten iron containing vanadium and phosphorus
CN112981045B (en) * 2021-02-09 2022-03-22 东北大学 Method for dephosphorizing and preserving vanadium of molten iron containing vanadium and phosphorus

Similar Documents

Publication Publication Date Title
JPS63195209A (en) Steel making method
JPH0243803B2 (en)
JP3345677B2 (en) Hot metal dephosphorization method
JP2958848B2 (en) Hot metal dephosphorization method
JPH0136525B2 (en)
JPH03120307A (en) Steelmaking method
JPH09165615A (en) Denitrifying method for molten metal
JPH0477046B2 (en)
JPH03111511A (en) Method for producing low manganese steel
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JP2587286B2 (en) Steelmaking method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH01147011A (en) Steelmaking method
JPS63195211A (en) Production of low phosphorus and low carbon steel with little mn loss
JPH0860221A (en) Converter steelmaking method
JP3511685B2 (en) Bottom blow converter steelmaking
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JPH024938A (en) Manufacture of medium-carbon and low-carbon ferromanganese
JPH10102120A (en) Steelmaking method
JPH04224612A (en) Method for refining in converter
JP2000282124A (en) Method for deforming converter slag and method for dephosphorizing molten iron using reformed slag
JP2002275520A (en) Method for refining molten high carbon steel
JPS6214603B2 (en)
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JPS62109908A (en) Desiliconizing, dephosphorizing and desulfurizing method for molten iron