JPS62109908A - Desiliconizing, dephosphorizing and desulfurizing method for molten iron - Google Patents

Desiliconizing, dephosphorizing and desulfurizing method for molten iron

Info

Publication number
JPS62109908A
JPS62109908A JP24966685A JP24966685A JPS62109908A JP S62109908 A JPS62109908 A JP S62109908A JP 24966685 A JP24966685 A JP 24966685A JP 24966685 A JP24966685 A JP 24966685A JP S62109908 A JPS62109908 A JP S62109908A
Authority
JP
Japan
Prior art keywords
flux
desiliconization
desulfurization
dephosphorization
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24966685A
Other languages
Japanese (ja)
Other versions
JPH0453923B2 (en
Inventor
Matsuhide Aoki
青木 松秀
Kiminori Haneshika
公則 羽鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24966685A priority Critical patent/JPS62109908A/en
Publication of JPS62109908A publication Critical patent/JPS62109908A/en
Publication of JPH0453923B2 publication Critical patent/JPH0453923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Abstract

PURPOSE:To simultaneously progress desulfurization and dephosphorization after desiliconization by coating a flux compounded with CaO and slag formability improving material on the surface of a molten iron from the initial period of a preliminary treatment for the molten iron and successively blowing a ferrous flux and alkaline flux thereto. CONSTITUTION:The flux essentially consisting of CaO and compounded with the slag formability improving material such as Mn ore is coated and imposed on the surface of the molten iron from the initial period of the preliminary treatment for the molten iron. The flux powder essentially consisting of iron oxide is blown by using a carrier gas simultaneously with top blowing of oxygen or addition of a solid oxygen source to execute the desiliconization treatment. The iron oxide flux is changed to the alkaline flux powder such as Na2CO3 for desulfurization and the supply of the oxygen is continued upon lapse of the desiliconization period to execute the desulfurization and dephosphorization reaction at the same instant. The entire stage of the desiliconization, desulfurization and dephosphorization is completed in a short period and the respective target values are attained with high accuracy by the above- mentioned method.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は溶銑中の珪素、燐及び硫黄を1つの容器内で短
時間の内に除去するを方法に関し、詳細には鍋処理の実
施に当たり溶銑表面に対するフラックスの被覆載置と溶
銑深部に対するフラックス粉末の吹込みを組合せて上記
3元素の除去を行なう方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing silicon, phosphorus and sulfur from hot metal in one vessel within a short time, and in particular, for carrying out ladle treatment. This invention relates to a method for removing the above three elements by combining the coating of flux on the surface of hot metal and the injection of flux powder into the deep part of hot metal.

[従来の技術] 溶銑の予備処理は、脱珪・脱燐・脱硫を主目的として行
なわれるものであり、この様な予備処理の実施によって
転炉装入前にSi、P、Sの主要不純物を除去し、転炉
では専ばら脱炭とそれに伴う溶鋼温度の上昇を行なわせ
るというシステムか完成されつつある。
[Prior Art] Pre-treatment of hot metal is carried out mainly for the purpose of desiliconization, dephosphorization, and desulfurization, and by performing such pre-treatment, major impurities such as Si, P, and S are removed before charging into a converter. A system is being perfected in which the converter is exclusively used for decarburization and the associated rise in molten steel temperature.

本出願人においても溶銑予備処理技術の基礎的研究及び
実操業化研究を重ねており、例えば特開昭58−160
06号を開示している。当該開示方法は、Cab、酸化
鉄、媒溶剤(必要により更に反応促進剤)からなるフラ
ックス粉末をキャリアガスによって溶銑深部に吹込み(
以下単にインジェクションと呼ぶ)、これに酸素上吹き
を併用する方法であり、実炉レー\ルにおいても低;=
 j8 Elを得ることに成功している。
The present applicant has also been conducting basic research and practical research on hot metal pretreatment technology, for example, in JP-A-58-160.
No. 06 is disclosed. The disclosed method involves blowing flux powder consisting of Cab, iron oxide, and a solvent (further reaction accelerator if necessary) deep into hot metal using a carrier gas (
This is a method that uses oxygen top blowing (hereinafter simply referred to as injection), and is low even in actual reactor rails.
We have succeeded in obtaining j8 El.

[発明が解決しようとする問題点] 本発明者等は上記方法について更にこれを改善する方向
で研究を行なっており、フラックス使用量を低減しても
上記と同程度またはそれ以上の脱珪・脱燐効率更には脱
硫効率が得られ、しかも操業上程々の利点を発揮するこ
とのできる予備処理法の確立をめざしている。
[Problems to be Solved by the Invention] The present inventors are conducting research to further improve the above method, and even if the amount of flux used is reduced, desiliconization and desiliconization can be achieved at the same level or greater than the above. We aim to establish a pretreatment method that can achieve high dephosphorization efficiency and desulfurization efficiency, and can also provide moderate operational advantages.

即ち上記開示方法で用いられるフラックスは、全て粉状
のものであり、且つこれを全てインジェクション法によ
って供給している。従ってフラックスの製造コス)・自
体か高価になるばかりか、溶銑中の31が多いときはス
ラグ塩基度を調整することの必要性からかなり多くのフ
ラックスを投入しなければならず益々コスト高を招くと
いう問題か内包されている。又大量のフラックスをイン
ジェクションしようとすれば全処理時間の長大化は理論
的にも避は難いところであり、またそれに伴って溶銑中
の脱炭が予定以上に進行し、転炉操業における昇熱効果
が減少し、転炉での熱補償に苦慮しなければならないと
いう新たな問題か派生してくる。
That is, all the fluxes used in the above disclosed method are in powder form, and are all supplied by injection method. Therefore, the production cost of flux is not only expensive, but also when there is a lot of 31 in the hot metal, it is necessary to adjust the basicity of the slag, so a large amount of flux has to be input, which further increases the cost. This problem is included. Furthermore, if a large amount of flux is to be injected, it is theoretically unavoidable that the total treatment time will become longer, and as a result, decarburization in the hot metal will proceed faster than planned, resulting in a heating effect during converter operation. This will lead to a new problem of having to struggle with heat compensation in the converter.

本発明者等は上記の様な事情を憂慮し、いわゆる鋳床脱
珪を省略するか軽度に済ませた為に溶銑中のSi量が多
いままで予備処理設備に供給されてきた場合であっても
上述の如き不都合が生じず、しかも同−Sl量であれば
フラックス総使用量を減少して低コスト化に寄与し、ま
た全処理時間の短縮や脱炭の抑制等を達成することので
きる新規な予備処理法の確立をめざして種々研究を行な
ってきた。その結果CaOを主成分としスラグ滓化性改
善材を配合してなるフラックスを溶銑予備処理の初期段
階から溶銑表面に被覆載置すると共に、酸化鉄を主成分
とするフラックス粉末をキャリアガスによって上記溶銑
中へ吹込みつつ溶銑表面に酸素吹きを行なうことにより
、脱珪及び脱燐を行なうという溶銑予備処理技術を確立
し先に特許出願を済ませている(特願昭6O−4154
2)。
The inventors of the present invention were concerned about the above-mentioned situation, and the so-called casting bed desiliconization was omitted or carried out to a minor extent, so that the hot metal was supplied to the preliminary treatment equipment with a large amount of Si. However, the above-mentioned disadvantages do not occur, and if the amount of -Sl is the same, the total amount of flux used can be reduced, contributing to cost reduction, and it is possible to shorten the total processing time and suppress decarburization. Various studies have been conducted with the aim of establishing new pretreatment methods. As a result, a flux containing CaO as a main component and a slag slag-improving material is coated on the surface of the hot metal from the initial stage of hot metal pretreatment, and a flux powder containing iron oxide as a main component is applied to the surface of the hot metal using a carrier gas. We have established a hot metal pretreatment technology that removes silicon and phosphorus by blowing oxygen onto the surface of the hot metal while blowing it into the hot metal, and have already filed a patent application (Patent Application No. 6O-4154).
2).

当該出願方法によって脱珪及び脱燐が効率良く進行し、
特に高炉鋳床脱珪を実施しないか、又は軽度にしか実施
しない様な場合であっても十分な脱珪を行なうことかで
きる。これは上記CaOか脱珪能力を有するからである
。ところで溶銑中に31とP7+)共存する場合は、脱
珪と脱燐を同時的に進行させようとしても脱珪かある程
度進行しない限り実質的な脱燐か開始されないというこ
とが知られているが、上言己出願の方法であるとCaO
併用の為脱珪か比較的早く進み、又攪拌力の増強や酸素
供給速度の向上といった手段で脱珪を更に促進させるこ
ともできるので、処理開始後比較的早い時期から脱燐反
応か始まり、処理時間は決して長くはならない。
By the application method, desiliconization and dephosphorization proceed efficiently,
In particular, even in cases where blast furnace casthouse desiliconization is not carried out or only lightly carried out, sufficient desiliconization can be carried out. This is because CaO has the ability to remove silicon. By the way, it is known that when 31 and P7+) coexist in hot metal, even if desiliconization and dephosphorization are attempted to proceed simultaneously, substantial dephosphorization will not start unless desiliconization has progressed to some extent. , CaO is a self-application method.
Because they are used in combination, desiliconization progresses relatively quickly, and desiliconization can be further accelerated by increasing the stirring power or increasing the oxygen supply rate, so the dephosphorization reaction starts relatively early after the start of treatment. Processing time will never be long.

又上記CaOは脱硫能も有しているから、脱燐と同時に
脱硫反応もある程度進行する。しかしここで進行する脱
硫はそれほど顕著なものでなく、脱硫の名に値し得る様
な効果を得ようとすれは、脱燐反応の終了後に改めて本
格的な脱硫処理を付加する必要かある。即ち上記出願発
明は、脱珪・脱燐を同一容器内で早く完了させることが
できるというせっかくの効果をイイしておりながら、独
立した脱硫反応処理期間を付加しなければならない為全
処理が完了する迄の時間はかなり長いものとなる。そこ
て脱燐と脱硫を同時に行なうことができさえすれば全処
理時間を短縮することが可能であるとの期待から、脱燐
及び脱硫の両機能を有するフラックス(例えばCaO系
フラッグス)によって脱燐と脱硫を併行させるというこ
とも検別してみた。ところかこの場合はP及びSの目標
含有量を同時に連中させることが困難であり、例えばS
含有量を目標値に連中させようとすれば過剰脱燐してし
まうという問題があった。
Furthermore, since the above-mentioned CaO also has a desulfurization ability, the desulfurization reaction proceeds to some extent simultaneously with dephosphorization. However, the desulfurization that progresses here is not so remarkable, and in order to obtain an effect worthy of the name desulfurization, it is necessary to add another full-scale desulfurization treatment after the completion of the dephosphorization reaction. In other words, although the above-mentioned invention has the advantage of being able to quickly complete desiliconization and dephosphorization in the same container, it requires an independent desulfurization reaction treatment period to complete the entire process. It will take quite a long time to do so. Therefore, with the expectation that it would be possible to shorten the total processing time if dephosphorization and desulfurization could be performed simultaneously, dephosphorization was carried out using a flux that has both dephosphorization and desulfurization functions (for example, CaO-based flags). We also examined the possibility of simultaneously performing desulfurization and desulfurization. However, in this case, it is difficult to simultaneously set the target contents of P and S.
There was a problem in that if the content was tried to be adjusted to the target value, excessive dephosphorization would occur.

本発明者等はこの様な事情を憂慮し、脱硫を脱燐と同時
に進行させ、しかもS及びPの目標値をいずれも正確に
連中することのできる方法を確立すべく研究を行なった
結果、前記特願昭60−41542の発明を改良するこ
とにより脱珪、脱・塙及び脱硫の全工程を短時間内に完
了し、且つ夫々目標値を高精度に連中することのできる
方法を提供することに成功した。
Concerned about these circumstances, the present inventors conducted research to establish a method that allows desulfurization to proceed at the same time as dephosphorization, while also accurately setting target values for both S and P. By improving the invention of the above-mentioned Japanese Patent Application No. 60-41542, we provide a method that can complete all steps of desiliconization, desulfurization, and desulfurization within a short time, and can set each target value with high precision. It was very successful.

[問題点を解決しようとする手段] 本発明の要点はCaOを主成分としスラグ滓化性改善材
を配合してなるフラックスを溶銑予備処理の初期段階か
ら溶銑表面に被覆載置すると共に、酸化鉄を主成分とす
るフラックス粉末をキャリアガスによって上記溶銑中へ
吹込みつつ溶銑表面に酸素吹き又は固体状酸素源の添加
を行ない、脱珪期経過後は吹込用フラックス粉末をアル
カリ系脱硫用フラックス粉末に変更し、キャリアガスに
よる溶銑中への吹込みと溶銑表面への酸素吹き又は固体
状酸素源の添加を続行して脱硫を行ない、且つ脱燐反応
を併行して行なわせる点に存在するものである。
[Means for Solving the Problems] The main point of the present invention is to coat the surface of hot metal with a flux composed of CaO as a main component and a slag slag-improving material from the initial stage of hot metal pretreatment, and to oxidize it. Flux powder whose main component is iron is blown into the hot metal using a carrier gas, while oxygen is blown onto the surface of the hot metal or a solid oxygen source is added. After the desiliconization period has passed, the blown flux powder is converted into alkaline desulfurization flux. It exists in the point that desulfurization is carried out by changing to powder, blowing into the hot metal with a carrier gas, blowing oxygen to the surface of the hot metal, or adding a solid oxygen source, and simultaneously carrying out the dephosphorization reaction. It is something.

[作用] 上記要点によって明らかにした通り、本発明ではフラッ
フススインジェクションを単独で実施するのではなくフ
ラックスの上部添加(フラックスを溶銑表面に被覆載置
する技術を言う、以下単に上部添加又はフラックス上部
添加という)を併用しつつインジェクション用フラック
スの切換えを行なう様にした点に第1の特徴が存在し、
且つインジェクション用フラックス及び上部添加用フラ
ックスについて夫々一定の条件を与え、これらの構成要
件を相乗的に作用させた結果、上述の課題が解消される
に至ったものである。
[Function] As clarified by the above points, in the present invention, the fluff soot injection is not carried out alone, but the top addition of flux (a technique in which flux is coated and placed on the surface of hot metal, hereinafter simply referred to as top addition or flux top The first feature is that the injection flux is changed while also using
In addition, the above-mentioned problem has been solved by providing certain conditions for the injection flux and the top addition flux, respectively, and allowing these constituent elements to act synergistically.

本発明で用いる上部添加用フラックスはCaOを主成分
とするものであり、該CaOとしては高純度のもの(塊
状石灰の如く98%程度のもの等)に限定されず低純度
のもの(転炉滓の如く50%前後のもの等)も使用でき
る。後者の転炉滓は1/3〜1/4の5i02を含んで
いるので使用量が若干多めになるという欠点はあるが、
低コスト化の他、温度降下並びにT−Feによる脱燐効
率の改善等という点では有利である。
The flux for addition to the upper part used in the present invention is mainly composed of CaO, and the CaO is not limited to high-purity ones (98% like lump lime) but also low-purity ones (such as those in converter furnaces). It is also possible to use slag, which has a concentration of around 50%. The latter converter slag contains 1/3 to 1/4 5i02, so it has the disadvantage that the amount used is slightly higher,
In addition to cost reduction, this method is advantageous in terms of temperature reduction and improvement in dephosphorization efficiency due to T-Fe.

主成分として選択されたCaOは脱燐材として有用な成
分であり、本発明では上部添加フラックスによる脱燐作
用の強化を狙っている。尚前述した様にCaOによる脱
珪効果及び脱硫効果も平行的に発揮されるので、上部添
加用フラックスを使用することによって処理中の全期間
を通し脱珪、脱硫、脱燐が進行する。しかし本格的な脱
珪は後述の酸化鉄を主体とする脱珪用インジェクション
フラックスの作用に期待し、又本格的な脱硫は後述のア
ルカリ系脱硫用インジェクションフラックスに期待すべ
きである。
CaO selected as the main component is a useful component as a dephosphorizing agent, and the present invention aims to strengthen the dephosphorizing effect by the flux added at the top. As mentioned above, the desiliconization effect and the desulfurization effect by CaO are exerted in parallel, so by using the flux added at the top, desiliconization, desulfurization, and dephosphorization proceed throughout the entire treatment period. However, for full-scale desiliconization, we should rely on the action of the desiliconization injection flux that mainly contains iron oxide, which will be described later, and for full-scale desulfurization, we should rely on the alkaline-based desulfurization injection flux that will be described later.

ところでCaOは高融点であり滓化性に欠けるという欠
点かあるので、本発明ではスラグ滓化性改善材を配合す
るという構成を採用している。滓化性改善材としてはM
n鉱石や弗化カルシウム等の低融点成分が使用される。
By the way, CaO has a drawback of having a high melting point and lacking in slag forming property, so the present invention adopts a configuration in which a slag slag forming property improving material is blended. M as a sludge-improving material
Low melting point components such as n-ore and calcium fluoride are used.

即ち本発明の上部添加フラックスは、CaO及びスラグ
滓化性改善材が必須成分となり、これらの協同作用によ
って流動性の良いスラグが形成されスラグ−メタル界面
における脱燐反応が促進される。尚脱燐反応の促進とい
う観点から判断すると、上記界面温度が低いものほど良
い結果が得られるのでミルスケールや鉄鉱石を冷却材と
して上記フラックス中に配合することも有効であり、ス
ラグの融点降下によるスラグ−メタル間反応の促進やス
ラグ中の酸素ポテンシャル向上等による脱燐への寄与も
期待することができる。
That is, the top-added flux of the present invention has CaO and a slag slag property improving agent as essential components, and the cooperative action of these forms a highly fluid slag and promotes the dephosphorization reaction at the slag-metal interface. Judging from the viewpoint of promoting the dephosphorization reaction, the lower the interfacial temperature mentioned above, the better the results, so it is also effective to mix mill scale or iron ore into the above flux as a coolant, which lowers the melting point of the slag. It can also be expected to contribute to dephosphorization by promoting the slag-metal reaction and improving the oxygen potential in the slag.

上記の様な上部添加フラックスは、溶銑予備処理におけ
る脱燐反応が処理の最初から進行することに鑑み、溶銑
予備処理の初期段階から溶銑表面上に配置しておくこと
が望ましい。ここに言う初期段階とは、最初の3分〜5
分以内を一応の目安と考えれば良い。尚処理工程の全期
間を通じて脱燐反応が進行すると述べたが処理開始後し
ばらくの間は、脱珪反応の進行が顕著であり、この期間
中の脱燐反応はゆるやかな進行しか見せないから、当該
部分は脱珪期と位置付けることができる。そしてこの脱
珪反応が進行することによって脱燐反応に適した環境が
形成されることになり、脱珪がかなりのレベルまで進行
(例えは0.10%以下)してから本格的な脱燐反応が
始まる。
In view of the fact that the dephosphorization reaction in the hot metal pretreatment proceeds from the beginning of the hot metal pretreatment, it is desirable to place the above-mentioned top-added flux on the surface of the hot metal from the initial stage of the hot metal pretreatment. The initial stage here refers to the first 3 to 5 minutes.
It is best to consider the time limit to be within minutes. Although it has been stated that the dephosphorization reaction progresses throughout the treatment process, the progress of the desiliconization reaction is remarkable for a while after the start of the treatment, and during this period the dephosphorization reaction only progresses slowly. This part can be positioned as the desiliconization stage. As this desiliconization reaction progresses, an environment suitable for the dephosphorization reaction is formed, and after the desiliconization has progressed to a considerable level (for example, below 0.10%), full-scale dephosphorization begins. The reaction begins.

次にインジェクション用フラックスであるが、前述の如
く脱燐反応は上部添加フラックスの作用によってその主
目的をほぼ達成するという構成を採用している。従って
本発明に用いるインジェクション用フラックスは、専ば
ら脱珪に寄与するもの及び専ばら脱硫に寄与するものが
夫々使用される。
Next, regarding the injection flux, as mentioned above, the main purpose of the dephosphorization reaction is almost achieved by the action of the flux added at the top. Therefore, the injection flux used in the present invention is one that exclusively contributes to desiliconization and one that exclusively contributes to desulfurization.

まず脱珪用のインジェクションフラックスとしては、酸
化鉄(ミルスケールや鉄鉱石を含む、以下同じ)を主成
分とするものが使用される。尚酸化鉄は低融点であり十
分な滓化性を発揮するから、CaF2の様な滓化性改善
材を配合する必要はないか、該インジェクション用フラ
ックスにも脱燐反応への寄与を期待する場合は該フラッ
クス中に若干のCaOを配合してもよい。従ってこの様
なときには若干の滓化性促進材を配合することが推奨さ
れる。
First, as the injection flux for desiliconization, one whose main component is iron oxide (including mill scale and iron ore, hereinafter the same) is used. Since iron oxide has a low melting point and exhibits sufficient slag-forming properties, there is no need to include a sludge-improving agent such as CaF2, and the injection flux is also expected to contribute to the dephosphorization reaction. In this case, some amount of CaO may be added to the flux. Therefore, in such cases, it is recommended to add some sludge-promoting material.

この様にして脱珪用フラックスをインジェクションする
と、該フラックスが滓化しつつmtc中を浮上し、この
浮上過程で脱珪反応を行ない、且つ上部添加フラックス
によるスラグ−メタル界面ての脱燐反応の促進を行なう
が、脱珪期はインジェクションフラックスと上部添加フ
ラックスを併用することになるので溶銑予備処理の初期
段階からかなり多くのスラグが存在することになる。こ
の様な状況下で脱燐反応を進行せしめる必要があるので
、上記スラグは十分な流動性を発揮するものてなけれは
ならない。即ち該スラグの流動性が低いとスラグ−メタ
ル界面反応の進行を阻害するだけでなく、インジェクシ
ョンによって吹込まれたキャリアガス泡の上昇に伴うフ
ォーミングの発生(特に脱珪期において顕著である)が
見られ、操業の安全性にとって有害である。この様な観
点からCaOの添加量を多くし、塩基度(CaO/Si
O2)を1.0以上、好ましくは1.5以上にすること
が推奨される。又塩基度を1.5以上にするという条件
の下では脱燐能力の発揮も保障される。一方塩基度が4
5を超えると融点の上昇に伴う滓化不良、スラグ量の増
大に伴うスロッピングの危険或はCa○原単位の増加に
伴うコスト高といった問題がある。尚脱珪用フラックス
のインジェクションを3〜5分も継続とする渦中の珪素
量もかなり減少し、脱珪反応が酸素律速から珪素量律速
に移るのでこの時点で脱珪用フラックスのインジェクシ
ョンを打ち切る。しかじ脱燐用フラックスによる脱珪作
用や酸素の上吹きにより引続き脱珪反応は進行していく
。即ち本発明の脱珪・脱填期は上記の様なフラックス条
件(インジェクション用フラックスを含む)において酸
素の上吹き(特に上部フラックスの全表面への広域吹き
(1け)を併用するものとし、上吹き酸素による酸素の
ポテンシャルの向上は脱珪・脱燐反応の進行にとって必
須不可欠の要件と考えられる。尚酸素の上吹きにかえて
固体酸素源(例えばスケールやマンガン鉱石等)の散布
を行なっても良いか、本明細書の説明では便宜上酸素ガ
スの上吹きを代表的にとりあげている。尚酸素の上吹き
てあれ、固体酸素源の散布であれ、溶銑の全表面へまん
べんなく供給するのか良いことは言うまでもない。
When the flux for desiliconization is injected in this way, the flux becomes slag and floats in the mtc, and in this floating process, the desiliconization reaction is carried out, and the flux added at the top promotes the dephosphorization reaction at the slag-metal interface. However, during the desiliconization stage, injection flux and top addition flux are used together, so a considerable amount of slag is present from the initial stage of hot metal pretreatment. Since it is necessary to allow the dephosphorization reaction to proceed under such conditions, the slag must exhibit sufficient fluidity. In other words, if the fluidity of the slag is low, it not only inhibits the progress of the slag-metal interface reaction, but also causes formation (especially noticeable during the desiliconization stage) due to the rise of carrier gas bubbles blown into the slag. is harmful to operational safety. From this point of view, the amount of CaO added is increased and the basicity (CaO/Si
O2) is recommended to be at least 1.0, preferably at least 1.5. Further, under the condition that the basicity is 1.5 or more, the dephosphorization ability is guaranteed. On the other hand, basicity is 4
If it exceeds 5, there are problems such as poor slag formation due to an increase in the melting point, a risk of slopping due to an increase in the amount of slag, or high costs due to an increase in Ca₂ consumption. Incidentally, the amount of silicon in the vortex is considerably reduced even though the injection of the desiliconizing flux is continued for 3 to 5 minutes, and the desiliconizing reaction shifts from oxygen rate-limiting to silicon amount-limiting, so the injection of the desiliconizing flux is stopped at this point. However, the desiliconization reaction continues to progress due to the desiliconization effect of the dephosphorization flux and the top blowing of oxygen. That is, in the desiliconization/deloading stage of the present invention, under the above-mentioned flux conditions (including flux for injection), upper blowing of oxygen (particularly wide-area blowing (one shot) to the entire surface of the upper flux is used), Improving the oxygen potential by top-blowing oxygen is considered to be an essential requirement for the progress of the desiliconization and dephosphorization reactions.Instead of top-blowing oxygen, a solid oxygen source (such as scale or manganese ore) may be sprinkled. For convenience, the explanation in this specification takes up top blowing of oxygen gas as a representative example.Whether top blowing oxygen or dispersing a solid oxygen source, is it possible to supply it evenly to the entire surface of the hot metal? Needless to say, it's a good thing.

上記の様にして脱珪を中心とする初期の脱燐を行なうか
、前述の先願発明では脱珪期が完了した頃合いを見て脱
珪用フラックスのインジェクションを完了し、しかる後
は、ガスバブリングによる溶銑の攪拌(容器深部の溶銑
をスラグ−メタル界面にf3動させて脱燐機会を高める
操作)及び酸素上吹き(酸素ポテンシャルの向上による
脱燐反応の促進)に専念し、専ばら脱燐(前述の如く若
干の脱珪を含む)を行ない、脱燐が終ってから脱硫に移
行するという考え方を採っていた。このやり方の欠点は
既に述へた通りであり、本発明では脱珪期が一応完了し
た時点でインジェクションフラックスをアルカリ系脱硫
フラックスに切り換え、この脱硫フラックスをインジェ
クションガス(一般に窒素等の不活性ガス)に乗せて溶
銑内に吹込む。そしてこのフラックスも溶銑中で滓化さ
れて浮上し、この浮上過程において脱硫反応が進行する
。尚脱珪フラックスの場合も同様であったが脱珪・脱硫
はフラックスの浮上過程で進行するものであるから、こ
れらのフラックスは多孔ノズルを経てなるべく広範囲に
拡散される様にインジェクションすべきである。即ち脱
珪と脱燐では脱珪反応が先行する傾向にあったが、脱燐
と脱硫では両反応か同時的に且つ異なった部位で進行す
ることになる。本発明で用いる脱硫用フラックスとして
はNa2 CO3、に2 CO3、Li2 CO3。
Either the initial dephosphorization centering on desiliconization is performed as described above, or in the prior invention mentioned above, the injection of the desiliconizing flux is completed when the desiliconization stage is completed, and after that, We focus exclusively on stirring hot metal by gas bubbling (an operation that increases the opportunity for dephosphorization by moving the hot metal deep in the vessel to the slag-metal interface) and top-blowing oxygen (promoting the dephosphorization reaction by improving the oxygen potential). The idea was to perform dephosphorization (including some desiliconization as mentioned above) and then move on to desulfurization after the dephosphorization was completed. The disadvantages of this method are as described above, and in the present invention, once the desiliconization period has been completed, the injection flux is switched to an alkaline desulfurization flux, and this desulfurization flux is injected into the injection gas (generally an inert gas such as nitrogen). and blow into the hot metal. This flux is also turned into slag and floats in the hot metal, and the desulfurization reaction progresses during this floating process. The same was true for desiliconization fluxes, but since desiliconization and desulfurization proceed during the flux floating process, these fluxes should be injected through a porous nozzle so that they are spread as widely as possible. . That is, in desiliconization and dephosphorization, the desiliconization reaction tends to take precedence, but in dephosphorization and desulfurization, both reactions proceed simultaneously and at different sites. Desulfurization fluxes used in the present invention include Na2 CO3, Ni2 CO3, and Li2 CO3.

CaCO3、Ca (OH)2 、CaO等のアルカリ
性フラックスが使用される。これらのうち特にNa2C
O3は脱燐剤としても有用であり、又復硫が少ないとい
う利点を有しているので、もっとも広く利用できる。尚
復硫に関しては別の配慮も必要であり、前に述べたイン
ジェクションフラックスの溶銑中への広域拡散及び上吹
き酸素の広域吹き付けを順守しない場合、即ちインジェ
クションされた脱硫フラックスが拡散されないで特定位
置に向けて浮上し、且つ当該浮上位置に向けて集中的な
酸素吹きが行なわれると、脱硫スラグに対する酸素の過
剰供給となり、硫化物の再酸化によって復硫を生じると
いう危険がある。
Alkaline fluxes such as CaCO3, Ca(OH)2, CaO, etc. are used. Among these, especially Na2C
O3 is also useful as a dephosphorizing agent and has the advantage of low resulfurization, making it the most widely used. Regarding resulfurization, another consideration is required.If the previously mentioned wide-area diffusion of the injection flux into the hot metal and wide-area spraying of top-blown oxygen are not observed, in other words, the injected desulfurization flux is not diffused and may be dispersed at a specific location. If the desulfurization slag floats to the surface and intensively blows oxygen toward the floating position, there is a danger that oxygen will be supplied excessively to the desulfurization slag and resulfurization will occur due to reoxidation of sulfides.

この様な同時脱燐・脱硫を行なうには、次の様な相反す
る要求を克服しなければならない。
In order to perform such simultaneous dephosphorization and desulfurization, the following conflicting demands must be overcome.

(イ)脱燐にとっては酸素活量が犬きく温度が低いほど
良い。
(b) For dephosphorization, the lower the temperature at which the oxygen activity increases, the better.

(ロ)脱硫にとっては酸素活量が小さく温度が高いほど
良い。
(b) For desulfurization, the lower the oxygen activity and the higher the temperature, the better.

その点CaO系上部添加フラックスとNa2 (:’0
3系インジェクションフラックスを併用する様な環境下
では脱燐率と脱硫率を同時に満足することのできる酸素
ポテンシャル領域(次式)が存在しこの領域内にコント
ロールすれば脱燐と脱硫を同時に且つ効率良く進行させ
ることか可能となる。
At that point, the flux added to the upper part of the CaO system and Na2 (:'0
In an environment where 3-system injection flux is used in combination, there is an oxygen potential region (the following formula) that can satisfy the dephosphorization rate and desulfurization rate at the same time, and if controlled within this region, dephosphorization and desulfurization can be performed simultaneously and efficiently. It is possible to make good progress.

10−13≦酸素ポテンシャル≦l0−8[実施例コ 実施例1及び比較例1 高炉鋳床において予備的に脱珪した溶銑を対象とし、塊
状生石灰(to、2bg/T) 、スケール(2,8k
g/T)及びMn鉱石(s、akg/T)からなる上部
フラックスを溶銑表面に散布すると共に5.6Nrn’
/Tの酸素上吹台とスケール(7,8kg/T)のイン
ジェクション(キャリアガスは窒素)を同時にスタート
させた。実施例1及び比較例1共にフラックスインジェ
クションは3分で停止したが、実施例1ては引続き酸素
上吹きとN a 2 CO3(5,1kg/T)のイン
ジェクションを6分間行ない(総処理時間:9分)、比
較例1では酸素上吹きと窒素ガス単独吹込みによるバブ
リングを6分間実施した後、酸素上吹きを停止すると共
にN a 2 CO3(5,1kg/T)のインジェク
ションを4.5分間実施した(総処理時間: 13.5
分)。溶銑成分及び温度は第1表に示す通りであり、脱
珪、脱燐、脱硫の効果は同じであって、実施例1は処理
時間を4.5分(33%)も短縮でき、その結果温度降
下量も少なく又脱炭量も少ない。
10-13≦Oxygen potential≦l0-8 [Example Example 1 and Comparative Example 1 The target was hot metal that had been preliminarily desiliconized in a blast furnace casthouse, and lump quicklime (to, 2bg/T), scale (2, 8k
An upper flux consisting of Mn ore (s, akg/T) and Mn ore (s, akg/T) is sprinkled on the surface of the hot metal and 5.6Nrn'
/T oxygen top blower and scale (7,8 kg/T) injection (carrier gas is nitrogen) were started at the same time. In both Example 1 and Comparative Example 1, flux injection was stopped after 3 minutes, but in Example 1, oxygen top blowing and Na 2 CO 3 (5.1 kg/T) injection were continued for 6 minutes (total processing time: In Comparative Example 1, after 6 minutes of bubbling with oxygen top blowing and nitrogen gas alone, the oxygen top blow was stopped and Na 2 CO3 (5.1 kg/T) was injected at 4.5 minutes. (total processing time: 13.5 minutes)
minutes). The hot metal components and temperature are as shown in Table 1, and the effects of desiliconization, dephosphorization, and desulfurization are the same, and Example 1 can shorten the treatment time by as much as 4.5 minutes (33%). The amount of temperature drop is small and the amount of decarburization is also small.

実施例2及び比較例2   ゛ 高炉鋳床における脱珪を軽度に済ませた溶銑の表面に塊
状生石灰(17,2kg/T) 、スケール(5,8k
g/T)及びMn鉱石/6.7kg/T )からなる上
部フラックスを載置すると共に6.2 Nm’/Tの酸
素上吹きとスケール(9,7kg/T)のインジェクシ
ョン(キャリアガスは窒素)を同時にスタートさせた。
Example 2 and Comparative Example 2 ``Lump quicklime (17.2 kg/T) and scale (5.8 kg
g/T) and Mn ore/6.7 kg/T), and at the same time, 6.2 Nm'/T of oxygen was blown over and scale (9.7 kg/T) was injected (the carrier gas was nitrogen). ) were started at the same time.

実施例2は実施例1と同様3分後にNa2 CO3(5
,1kg/T)のインジェクション(7分間)に切り換
え(酸素上吹きは併用)合計10分間処理した。比較例
2は比較例1と同様3分後に酸素上吹きとガスバブリン
グに切り換え、更に7分後(始めから計算すると10分
後)には酸素上吹きを停止すると共にN a 2 CO
3(5,1kg/T)のインジェクション(4,5分)
に切り換えた(総処理時間+ 14.5分)。結果は第
1表に併記する通りであり、実本例2はm理時間を4.
5分(31%)も短縮でき、その結果温度降下量も少な
く又脱炭量も少なかった。尚脱珪、脱燐、脱硫効果につ
いては全く見劣−4?、−ごy [発明の効果] 本発明は上記の如く高炉鋳床脱珪をする必要がないのて
FeやMn等の有価成分損失か抑制され、又熱損失(脱
珪スラグや耐火物による奪熱)も少ない。そしてCaO
源としては安価な塊状石灰や転炉滓等を利用することか
できるのでフラックス原単位も低く、脱珪、脱燐の両反
応が速やかに進行する。又フリーボードの高い専用炉を
使用することかできるので、スロッピングも防止され操
業の安全性も確保される。
In Example 2, Na2 CO3 (5
, 1 kg/T) injection (for 7 minutes) (oxygen top blowing was also used) and the treatment was carried out for a total of 10 minutes. Comparative Example 2, like Comparative Example 1, switched to oxygen top blowing and gas bubbling after 3 minutes, and after another 7 minutes (10 minutes if calculated from the beginning), oxygen top blowing was stopped and N a 2 CO
3 (5,1kg/T) injection (4,5 minutes)
(total processing time + 14.5 minutes). The results are shown in Table 1, and the practical example 2 has a machining time of 4.
The time was reduced by 5 minutes (31%), and as a result, the amount of temperature drop was small and the amount of decarburization was also small. Furthermore, the desiliconization, dephosphorization, and desulfurization effects are completely inferior -4? [Effects of the Invention] As described above, the present invention eliminates the need to desiliconize the blast furnace cast bed, so loss of valuable components such as Fe and Mn is suppressed, and heat loss (due to desiliconization slag and refractories) is suppressed. heat loss) is also low. and CaO
Since inexpensive lump lime or converter slag can be used as a source, the flux consumption rate is low, and both the desiliconization and dephosphorization reactions proceed quickly. Furthermore, since a dedicated furnace with a high freeboard can be used, slopping is prevented and operational safety is ensured.

昭和61年 1月30日 特許庁長官 宇 質 道 部 殿 1 ″g件の表示 昭和E年特許願第249666号          
  7″−゛を−− 2、発明の名称 溶銑の脱珪脱燐脱硫方法 3、補正をする者 事件との関係  特許出願人 4、代理人 住 所 大阪市北区営島2丁目3池7号乃コーヒ・・ル
4075、補正命令の日付 昭和 年 月 日  (発送日) 6、補正の対象
January 30, 1986 Director-General of the Patent Office Tomo Utsumi Michibe 1 ``g Display Showa E Patent Application No. 249666
7''-゛-- 2. Name of the invention Method for desiliconization, dephosphorization, and desulfurization of hot metal 3. Relationship with the case of the person making the amendment Patent applicant 4. Address of the agent: 7-3 Ikejima, 2-chome, Kita-ku, Osaka. No coffee 4075, date of amendment order Showa month, day (shipment date) 6, subject of amendment

Claims (1)

【特許請求の範囲】[Claims] CaOを主成分としスラグ滓化性改善材を配合してなる
フラックスを溶銑予備処理の初期段階から溶銑表面に被
覆載置すると共に、酸化鉄を主成分とするフラックス粉
末をキャリアガスによって上記溶銑中へ吹込みつつ溶銑
表面に酸素吹き又は固体状酸素源の添加を行ない、脱珪
期経過後は吹込用フラックス粉末をアルカリ系脱硫用フ
ラックス粉末に変更し、キャリアガスによる溶銑中への
吹込みと溶銑表面への酸素吹き又は固体状酸素源の添加
を続行して脱硫を行ない、且つ脱燐反応を併行して行な
わせることを特徴とする溶銑の脱珪脱燐脱硫方法。
A flux containing CaO as a main component and a slag slag-improving material is coated on the surface of the hot metal from the initial stage of hot metal pretreatment, and a flux powder containing iron oxide as a main component is added to the hot metal using a carrier gas. Oxygen is blown or a solid oxygen source is added to the surface of the hot metal while blowing into the hot metal, and after the desiliconization period, the blowing flux powder is changed to an alkaline desulfurization flux powder, and the hot metal is blown into the hot metal using a carrier gas. 1. A method for desiliconization, dephosphorization, and desulfurization of hot metal, characterized in that desulfurization is carried out by continuing oxygen blowing or addition of a solid oxygen source to the surface of the hot metal, and a dephosphorization reaction is simultaneously carried out.
JP24966685A 1985-11-06 1985-11-06 Desiliconizing, dephosphorizing and desulfurizing method for molten iron Granted JPS62109908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24966685A JPS62109908A (en) 1985-11-06 1985-11-06 Desiliconizing, dephosphorizing and desulfurizing method for molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24966685A JPS62109908A (en) 1985-11-06 1985-11-06 Desiliconizing, dephosphorizing and desulfurizing method for molten iron

Publications (2)

Publication Number Publication Date
JPS62109908A true JPS62109908A (en) 1987-05-21
JPH0453923B2 JPH0453923B2 (en) 1992-08-28

Family

ID=17196406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24966685A Granted JPS62109908A (en) 1985-11-06 1985-11-06 Desiliconizing, dephosphorizing and desulfurizing method for molten iron

Country Status (1)

Country Link
JP (1) JPS62109908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868817A (en) * 1994-06-30 1999-02-09 Nippon Steel Corporation Process for producing steel by converter
JP2011038176A (en) * 2009-08-18 2011-02-24 Jfe Steel Corp Steel-making method with converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210909A (en) * 1981-06-18 1982-12-24 Kobe Steel Ltd Pretreatment for molten iron
JPS5816006A (en) * 1981-06-17 1983-01-29 Kobe Steel Ltd Dephosphorizing method for molten iron
JPS5950105A (en) * 1982-09-13 1984-03-23 Nisshin Steel Co Ltd Dephosphorization and desulfurization treatment of molten iron
JPS60249665A (en) * 1984-05-25 1985-12-10 Mitsubishi Motors Corp Fuel injection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816006A (en) * 1981-06-17 1983-01-29 Kobe Steel Ltd Dephosphorizing method for molten iron
JPS57210909A (en) * 1981-06-18 1982-12-24 Kobe Steel Ltd Pretreatment for molten iron
JPS5950105A (en) * 1982-09-13 1984-03-23 Nisshin Steel Co Ltd Dephosphorization and desulfurization treatment of molten iron
JPS60249665A (en) * 1984-05-25 1985-12-10 Mitsubishi Motors Corp Fuel injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868817A (en) * 1994-06-30 1999-02-09 Nippon Steel Corporation Process for producing steel by converter
JP2011038176A (en) * 2009-08-18 2011-02-24 Jfe Steel Corp Steel-making method with converter

Also Published As

Publication number Publication date
JPH0453923B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JPH09217110A (en) Method for melting extra-low sulfur steel
JPS62109908A (en) Desiliconizing, dephosphorizing and desulfurizing method for molten iron
JP3525766B2 (en) Hot metal dephosphorization method
JP2001288507A (en) Method for producing low phosphorus molten iron
GB2141739A (en) Process for producing low P chromium-containing steel
JP3344863B2 (en) Pre-refining method
JP3505791B2 (en) Dephosphorization and desulfurization of hot metal
JP4882171B2 (en) Hot phosphorus dephosphorization method
JPS62109911A (en) Desiliconizing and dephosphorizing method for molten iron
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JPS61201712A (en) Pretreatment of molten pig iron
JPS62109910A (en) Desiliconizing and dephosphorizing method for molten iron
JP3697960B2 (en) Hot metal pretreatment method
JPH07109507A (en) Method for pretreating molten iron
JP2002275520A (en) Method for refining molten high carbon steel
JPH03120307A (en) Steelmaking method
JP2000282124A (en) Method for deforming converter slag and method for dephosphorizing molten iron using reformed slag
JPH0353014A (en) Smelting method for extremely low-sulfur steel
JPH111714A (en) Steelmaking method
JPH10102120A (en) Steelmaking method
JPS59182907A (en) Desiliconizing treatment of molten iron
JP4026447B2 (en) Method for producing low phosphorus hot metal
JP2758056B2 (en) Melting method of high chromium low P steel
JPH04221007A (en) Method for dephosphorizing molten iron