JP4026447B2 - Method for producing low phosphorus hot metal - Google Patents
Method for producing low phosphorus hot metal Download PDFInfo
- Publication number
- JP4026447B2 JP4026447B2 JP2002245979A JP2002245979A JP4026447B2 JP 4026447 B2 JP4026447 B2 JP 4026447B2 JP 2002245979 A JP2002245979 A JP 2002245979A JP 2002245979 A JP2002245979 A JP 2002245979A JP 4026447 B2 JP4026447 B2 JP 4026447B2
- Authority
- JP
- Japan
- Prior art keywords
- hot metal
- lime
- dephosphorization
- refining agent
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、溶銑予備処理として行われる脱燐処理により低燐溶銑を効率的に製造するための方法に関する。
【0002】
【従来の技術】
従来の転炉法に代わって溶銑段階で脱燐処理を行なう溶銑予備処理法が広く用いられるようになった。これは、脱燐反応が精錬温度が低いほど熱力学的に進行しやすく、より少ない量の精錬剤で脱燐処理を行うことができるためである。
一般に溶銑予備処理では、まず、酸化鉄等の固体酸素源を溶銑に添加して脱珪処理を行ない、この脱珪処理で発生したスラグを除去した後、精錬剤を添加して脱燐処理を行う。通常、脱燐処理の精錬剤としては石灰などのCaO系精錬剤を用い、酸素源としては固体酸素源(酸化鉄等)や気体酸素を用いる。また、処理容器としては、トーピードカー、取鍋(装入鍋)、転炉型容器などが用いられる。また、CaO系精錬剤の滓化促進のためにCaF2(ホタル石)を添加することが広く行われている。
【0003】
脱燐処理条件については、例えば特開平7−70626号に、スラグの塩基度0.6以上2.5以下、処理終了温度1250℃以上1400℃以下、底吹き攪拌動力1.0kg/溶銑ton以上、送酸速度2.5Nm3/溶銑ton以上という条件が示されている。この技術では、スラグ塩基度を2.5以下とする理由について、それ以上の塩基度ではスラグの流動性が悪化するので、脱燐には不利な高温での処理が必要になるためであるとしている。また、2.5以下であればスラグ塩基度は高いほうが脱燐が進むとしている。
【0004】
【発明が解決しようとする課題】
従来の溶銑の脱燐処理技術は、脱燐平衡式を用いて議論していることからも判るとおり、スラグが均一に溶融していて、スラグ−メタルが平衡に近いことを前提としている。しかしながら、上吹きランスから気体酸素を吹き付けて脱燐を行なう方法では、脱燐精錬容器内は気体酸素のエネルギーによってスラグが押しやられて湯面(溶銑浴面)が露出している部分と、それ以外の、湯面がスラグで覆われている部分とに分かれており、炉内を均一な状態に保つことは難しい。このため従来技術では、▲1▼スラグ塩基度を低位に保つ、▲2▼CaF2(ホタル石)などのような滓化促進材を添加する、などの方策をもってスラグの均一溶融化を図っている。
【0005】
しかしながら、上記▲1▼のようにスラグ塩基度を低くすると、スラグの燐分配Lpが低くなるため、高い脱燐効率を得ようとすると精錬剤などの添加量を増やしてスラグボリュームを大きくしなければならず、精錬コストの上昇とスラグ発生量の増大を招いてしまう。
以下、これについて説明すると、図8に示すように脱燐スラグの燐分配Lpはスラグ塩基度に依存し、また、図9に示すように燐分配Lpから、所定の目標P濃度に到達するために必要なスラグ量、すなわち石灰原単位が決定される。また、図10に処理前の溶銑中Si濃度とスラグを所定の塩基度にするための必要石灰原単位を示す。図9、図10から明らかなように、溶銑中Si濃度が低い場合はスラグ塩基度の調整に必要な石灰量よりも、脱燐に必要なスラグボリュームを得るために必要な石灰量が多くなる。この場合、塩基度調整を行うためにSiO2源(例えば珪砂などの添加)の添加が必要となる。最終的に、脱燐に必要な石灰量は溶銑中Si濃度には関係なく、燐分配Lp(=mass%(P)/mass%[P],mass%(P):スラグ中のP濃度,mass%[P]:メタル中のP濃度)によってのみ決定されてしまう。図11に溶銑中Si濃度と必要石灰量との関係を示す。スラグ塩基度を高くすると、燐分配Lpが上昇するため必要なスラグ量は減少するが、スラグの流動性が著しく悪化するため、却って脱燐効率が悪化してしまうのは前述の通りである。
【0006】
近年、環境保護などの観点から脱燐工程をはじめとする精錬工程において発生するスラグ量を極力低減することが求められており、したがって、低位のスラグ塩基度で高い脱燐率を得ようとする操業は、スラグ発生量の低減化という要請に十分対応することができない。
また、上記▲2▼のCaF2の添加については、近年、Fが環境に及ぼす影響を考慮し、鋼の精錬においてもCaF2の使用量を極力削減することが求められている。
したがって本発明の目的は、多量のCaF2を添加することなく且つ少ない精錬剤添加量で効率的な脱燐処理を行うことができ、これによりスラグ発生量も極力低減することができる低燐溶銑の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、脱燐精錬容器内でスラグを均一な溶融状態に保つという従来の考え方に把われることなく、少ない精錬剤添加量で脱燐効率を高位に安定させることができる方法について検討を行った。その結果、スラグを均一溶融させるという従来の考え方とは逆に、スラグの不均一な溶融状態を利用することにより、脱燐効率を高位に安定させつつ、従来に較べて精錬剤添加量を大幅に削減し、これによりスラグ発生量を効果的に低減できることを見い出した。
【0008】
本発明は、このような知見に基づきなされたもので、その特徴は以下の通りである。
[1] 溶銑を保持した容器内に石灰を主体とする精錬剤と酸素源を添加して、溶銑予備処理である脱燐処理を行うことにより低燐溶銑を製造する方法において、
Si濃度が0.15mass%以下の溶銑に対して、上吹きランスを通じて気体酸素と少なくとも一部の精錬剤を溶銑浴面に吹き付けて脱燐処理を行うとともに、該脱燐処理においては、精錬剤として、下記(1)式で求められる石灰量Wcao_P(kg/溶銑ton)と下記(2)式で求められる石灰量Wcao_Si(kg/溶銑ton)を合計した量の石灰を添加することを特徴とする低燐溶銑の製造方法。
Wcao_P=(溶銑[P]−目標[P])×(10/62)×56×3/ηcao … (1)
但し 溶銑[P]:脱燐処理前の溶銑中P濃度(mass%)
目標[P]:目標とする脱燐処理後の溶銑中P濃度(mass%)
ηcao(石灰効率)=0.5〜1
Wcao_Si=溶銑[Si] ×(10/28)×56×2 … (2)
但し 溶銑[Si]:脱燐処理前の溶銑中Si濃度(mass%)
【0009】
[2] 上記[1]の製造方法において、石灰量Wcao_P(但し、ηcao=1で求められるWcao_P)の80mass%以上の石灰を上吹きランスを通じて溶銑浴面に吹き付けることを特徴とする低燐溶銑の製造方法。
[3] 上記[1]又は[2]の製造方法において、石灰量Wcao_Siに相当する精錬剤として、石灰粉、塊焼石灰、塊石灰石、未反応CaOを含む製鉄スラグの中から選ばれる1種以上を用いることを特徴とする低燐溶銑の製造方法。
【0010】
[ 4 ]上記[1]〜[ 3 ]のいずれかの製造方法において、精錬剤がCaF2を実質的に含まないか若しくは精錬剤中に含まれるCaF2量が1kg/溶銑ton以下であることを特徴とする低燐溶銑の製造方法。
【0011】
[ 5 ]上記[1]〜[ 4 ]のいずれかの製造方法において、上吹きランスから供給される精錬剤のうちの少なくとも一部が、気体酸素が吹き付けられる溶銑浴面領域に吹き付けられることを特徴とする低燐溶銑の製造方法。
[ 6 ]上記[ 5 ]の製造方法において、上吹きランスから供給される精錬剤のうちの少なくとも一部が、気体酸素の吹き付けにより溶銑浴面に生じる火点に吹き付けられることを特徴とする低燐溶銑の製造方法。
[ 7 ]上記[ 5 ]又は[ 6 ]の製造方法において、精錬剤の少なくとも一部を、気体酸素をキャリアガスとして溶銑浴面に吹き付けることを特徴とする低燐溶銑の製造方法。
【0012】
【発明の実施の形態】
本発明法では、溶銑を保持した容器内に酸素源と石灰(CaO)を主体とする精錬剤を添加して、溶銑予備処理である脱燐処理を行うことにより低燐溶銑を製造するに際し、上吹きランスを通じて気体酸素と少なくとも一部の精錬剤を溶銑浴面に吹き付けて脱燐処理を行う。
上吹きランスを通じて気体酸素を溶銑浴面に吹き付けると、浴面に衝突した気体酸素により大量のFeOが生成するため、精錬剤の滓化促進に非常に有利な条件となり、このFeOが大量に生成した領域に、上吹きランスを通じて精錬剤を直接供給することにより、精錬剤(CaO)の滓化を効果的に促進することができる。
【0013】
また、上吹きランスによる気体酸素と精錬剤の溶銑浴面への吹き付けでは、精錬剤を気体酸素以外のキャリアガス(例えば、N2、Arなどの不活性ガス)を用いて溶銑浴面に吹き付けてもよいが、その場合でも、精錬剤の一部又は全部を気体酸素が供給(吹き付け)されている溶銑浴面領域に吹き付けることが好ましい。これは、気体酸素が供給される溶銑浴面領域は酸素供給によってFeOが生成する場所であり、このような浴面領域に直接CaOを添加することにより、CaOの滓化が効果的に促進されるとともにCaOとFeOの接触効率が高まり、これによって脱燐反応効率を顕著に促進できるからである。また、精錬剤は気体酸素が供給された溶銑浴面領域の中でも、特に気体酸素の上吹きにより生じる“火点”と呼ばれる領域に供給することが最も好ましい。この火点は気体酸素ガスジェットが衝突することにより最も高温となる溶銑浴面領域であり、気体酸素による酸素反応が集中し且つ気体酸素ガスジェットにより強攪拌されている領域であるため、CaOの供給による効果が最も顕著に得られる領域であると言える。また、この意味で精錬剤を溶銑浴面に吹き付けるためのキャリアガスとしては気体酸素を用いることが好ましく、この場合には、気体酸素が精錬剤とともに溶銑浴面に吹き付けられることにより、精錬剤が火点に直接供給されることになり、この結果、溶銑浴面でのCaOとFeOの接触効率が最も高まり、脱燐反応を特に顕著に促進することができる。
【0014】
本発明法は、このような気体酸素と精錬剤の添加形態において、以下のような基本的な機構により必要最低限の精錬剤添加量で効率的な脱燐反応を生じさせるものである。
すなわち、気体酸素が最適状態で供給されている溶銑浴面領域(好ましくは火点)に対して、上吹きランスを通じて精錬剤(CaO)を吹き付けると、このCaOは火点で発生するFeOと迅速に反応し、溶融(滓化)して、CaO−FeO系の融体を形成する。発生したCaO−FeO系融体は、気体酸素の運動エネルギーによって、火点を中心とする気体酸素が供給されている溶銑浴面領域から、その周囲の酸素ポテンシャルの低い領域に押し出されながら、まず溶銑中のSiと反応し、FeOは還元されて、処理前Si濃度に応じて2CaO・SiO 2 等の安定な固相を形成する。また、上記反応によって溶銑中のSi濃度がある程度低くなると、CaO−FeO系融体は、次に燐と反応し始めて3CaO・P2O5という同じく安定な固相を形成する。この結果、脱燐処理の進行にしたがって生成され、火点を中心とする気体酸素が供給されている溶銑浴面領域からその外側の領域に順次押し出されたスラグの相当量(若しくは大部分)が、2CaO・SiO2、3CaO・P2O5といった安定な固相として存在することになる。そして、このようにして固相となったスラグは非常に安定であるため、スラグ塩基度が低くても再び溶融することはない。そして、このように火点を中心した領域において直接的な脱燐反応が生じることと、その外側に押し出されたスラグが固相主体の状態で存在することにより、少ない精錬剤添加量とスラグ量で効率的な脱燐を行うことができる。
【0015】
従来の脱燐処理技術では、スラグを均一な液相状態に維持することを前提として、燐分配Lpに応じてスラグボリュームが決定されており、このため実際にP、Siを固定するのに必要な精錬量以上の量の精錬剤が必要であった。これに対して本発明では、火点を中心とする溶銑浴面領域における直接的な脱燐反応と、その外側領域での固相主体のスラグによるPの固定という機構を利用することより、以下のような必要最低限の精錬剤量で脱燐反応を効率的に生じさせることができる。
実際に溶銑中のPとSiを固定するために消費される石灰量は、下記の式で計算できる。下式において、Wcao_Poは、溶銑中のPを固定するために消費される石灰量(kg/溶銑ton)、Wcao_Sioは、溶銑中のSiを固定するために消費される石灰量(kg/溶銑ton)である。
Wcao_Po=(溶銑[P]−目標[P])×(10/62)×56×3
但し 溶銑[P]:脱燐処理前の溶銑中P濃度(mass%)
目標[P]:目標とする脱燐処理後の溶銑中P濃度(mass%)
Wcao_Sio=溶銑[Si] ×(10/28)×56×2
但し 溶銑[Si]:脱燐処理前の溶銑中Si濃度(mass%)
【0016】
ここで、石灰の全添加量をTotal CaO(kg/溶銑ton)とすると、脱燐に寄与した石灰の効率ηcaoは、下式のように計算できる。
ηcao=Wcao_Po/(Total CaO−Wcao_Sio)
本発明では、まず、この石灰効率ηcaoを0.5〜1と規定した。このηcaoの下限は、無用な石灰添加を行わず且つ本発明が狙いとする脱燐反応を適切に生じさせるという観点から規定されたものである。すなわち、ηcaoが0.5未満になると、実質的に無用な石灰添加を行うことになり、少ない精錬剤添加量で効率的な脱燐処理を行うという本発明の効果が失われるだけでなく、所定の酸素原単位の下で生成するFeOに対して石灰添加量が過剰になるため、滓化できないCaOが多量に存在することになり、このような滓化できないCaOが上述した脱燐反応の進行を阻害してしまう。
【0017】
したがって本発明では、下記(1)式で求められる石灰量Wcao_P(kg/溶銑ton)と下記(2)式で求められる石灰量Wcao_Si(kg/溶銑ton)を合計した量の石灰を添加して脱燐処理を行う。
Wcao_P=(溶銑[P]−目標[P])×(10/62)×56×3/ηcao … (1)
但し 溶銑[P]:脱燐処理前の溶銑中P濃度(mass%)
目標[P]:目標とする脱燐処理後の溶銑中P濃度(mass%)
ηcao(石灰効率)=0.5〜1
Wcao_Si=溶銑[Si] ×(10/28)×56×2 … (2)
但し 溶銑[Si]:脱燐処理前の溶銑中Si濃度(mass%)
上記Wcao_Pは、ηcao=0.5〜1とした場合において溶銑中のPを3CaO・P2O5として固定するのに必要な石灰量であり、また、上記Wcao_Siは、溶銑中のSiを2CaO・SiO2として固定するのに必要な石灰量である。
【0018】
図1は、一例として、P濃度が0.11mass%の溶銑をP濃度:0.015mass%まで脱燐処理する場合について、本発明法において処理前の溶銑中Si濃度に応じて添加される石灰量を、従来法の脱燐処理においてスラグ塩基度(mass%CaO/mass%SiO2)=2とする場合に添加される石灰量と比較して示したもので、Wcao_SiはSiの固定用として必要な石灰量、Wcao_P1はηcao=1の場合にPの固定用(脱P用)として必要な石灰量、Wcao_P0.5はηcao=0.5の場合にPの固定用として必要な石灰量であり、Wは従来法において添加される石灰量である。同図に示されるように、従来法において必要とされる石灰量は、燐分配Lpとこれに応じた必要スラグ量によって決定されてしまうため、溶銑中Si濃度に関係なくWの石灰量が必要であったのに対し、本発明法において添加する石灰量は[Wcao_Si+Wcao_P1]〜[Wcao_Si+Wcao_P0.5]で足りることになり、従来法に較べて石灰添加量を大幅に削減することができる。
また、図2は、本発明法と従来法における脱P用の必要石灰量と石灰効率ηcaoを、脱燐処理後の溶銑中P濃度との関係で示したもので、従来法における脱P用の必要石灰量とは図1の[W-Wcao_Si]を指している。図2によれば、本発明法は、従来法に較べて非常に少ない脱P用石灰を用いて高い石灰効率で脱燐処理がなされることが判る。
【0019】
また、本発明法では、石灰量Wcao_P(ηcao=1で求められるWcao_P,以下同様)の80mass%以上の石灰を上吹きランスを通じて溶銑浴面に吹き付けることが好ましい。図3は、本発明者らが行った試験結果に基づく、上吹きランスから溶銑浴面に吹き付けられる石灰量Xと石灰量Wcao_Pとの比X/Wcao_Pと脱燐処理後の溶銑中P濃度との関係を示したもので、この試験では、転炉型容器(340ton)に保持されたP濃度:0.095〜0.135mass%、Si濃度:0.03〜0.20mass%の溶銑(溶銑温度:1250〜1360℃)に対して、気体酸素(10〜15Nm3/溶銑ton)をキャリアガスとして石灰粉(4〜10kg/溶銑ton)を上吹きランスから溶銑浴面に吹き付けることにより脱燐処理(処理時間:10〜14分間)を行った後、溶銑を脱炭用転炉に装入して脱炭吹錬を行ったものである。なお、脱燐処理では、CaF2添加量は1kg/溶銑ton以下とし、気体酸素をキャリアガスとする石灰粉の吹き付けにより溶銑浴面に生じる凹みの深さLを200〜500mmの範囲に制御した。
図3によれば、石灰量Wcao_P中に占める上記石灰量Xの割合が80mass%未満になると、脱燐率が若干低下する傾向にある。これは、反応サイトである火点若しくはその近傍の気体酸素供給領域に精錬剤を直接投入することによる、上述したような高い反応効率が相対的に得られにくくなるためであると考えられる。
【0020】
SiはCやFeよりも燃焼しやすいため、吹錬中は溶銑中でSiO2として安定に存在でき、このため必ずしも火点において石灰と反応させる必要がない。したがって、発生したSiO2を固定する石灰量Wcao_Siに相当する石灰源は、焼石灰に限られることはなく、未反応の石灰(Free Lime)を含む物質であればよい。このため石灰量Wcao_Siに相当する精錬剤としては、石灰粉、塊焼石灰、塊石灰石、未反応CaOを含む製鉄スラグの中から選ばれる1種以上を用いることができる。製鉄スラグとしては、例えば、脱炭工程で発生する転炉スラグ(塩基度3〜4程度)や取鍋スラグなども使用可能である。
【0021】
本発明法では、少ない精錬剤添加量で高い脱燐効率が得られるようにし且つ発生するスラグ量も少なくするために、脱燐処理される溶銑のSi濃度を0.15mass%以下、好ましくは0.10mass%以下とする。溶銑のSi濃度が0.15mass%を超えると、本発明による精錬剤添加量及びスラグ発生量の低減化効果が薄れる。また、脱燐効率を高めるためにも、溶銑中のSi濃度は低い方が好ましい。一般に、脱燐処理前の溶銑中Si濃度が低いとスラグ中のSiO2濃度が低下するためCaOの溶融性がさらに悪化し、脱燐効率が低下してしまう。しかし、それにも拘らず本発明法の場合には、脱燐処理前の溶銑中Si濃度が低い方(0.15mass%以下、より好ましくは0.10mass%以下)が脱燐効率が向上する。これは、本発明法では気体酸素とCaO源である精錬剤の粉体を浴面に吹き付けるため、SiO2が多く存在しなくてもFeOによってCaOの溶融化が促進され、この結果、CaOの脱燐に寄与する効率が向上するためであると考えられる。
【0022】
溶銑は高炉などの溶銑製造設備から供給されるが、製造される溶銑のSi濃度を低める方法としては、溶銑製造用の原料の予備処理などで珪酸分の全装入量を低減したり、高炉などの炉内での珪酸還元反応を抑制するための低温操業やコークスの偏在装入などの方法が有効である。したがって、高炉などで製造された溶銑のSi濃度が0.15mass%以下、好ましくは0.10mass%以下の場合には、これら溶銑に対して下記のような脱珪処理を施すことなく、脱燐処理してもよい。
一方、高炉などで製造された溶銑のSi濃度が上記Si濃度のレベルよりも高い場合には、脱燐処理に先立ち高炉鋳床や溶銑鍋などで脱珪処理を実施し、脱燐処理前の溶銑中Si濃度を0.15mass%以下、好ましくは0.10mass%以下とした上で脱燐処理を行う。
通常、溶銑の脱珪処理は固体酸素源や気体酸素を溶銑に添加することにより行われ、例えば、焼結粉やミルスケールなどの固体酸素源を溶銑浴面への上置き装入や浴中への吹き込みにより添加し、或いは気体酸素を溶銑浴面への吹き付けや浴中への吹き込みにより添加する方法が採られる。
【0023】
また、溶銑の脱珪処理は高炉鋳床や溶銑鍋以外に、例えば高炉鋳床から溶銑鍋などの搬送容器への溶銑流に対して酸素源を添加することにより行うこともできる。また、脱珪効率を高めるために容器内の溶銑中に撹拌ガスを吹き込んだり、焼石灰などのCaO源を添加してスラグの塩基度を調整することにより脱珪スラグ中の酸化鉄を極力低減させ、還元効率を高めるようにすることもできる。
溶銑の脱珪処理を経て脱燐処理を行う場合には、事前に脱硅スラグなどのスラグを排滓し、珪酸分の混入を極力抑制することが、効率的な脱燐処理を行う上で好ましい。このため脱燐処理前に機械式排滓装置や手作業により、溶銑からスラグを分離した後、脱燐処理を行う。
【0024】
上述したような機構により、少ない精錬剤添加量とスラグ量で高い脱燐効率を得るには、特に反応サイトである火点への気体酸素の供給方法を適正化すること、具体的には、気体酸素又は気体酸素と精錬剤の吹き付けにより溶銑浴面に生じる凹みの深さ(気体酸素供給速度と上吹ランスの構成及び使用条件から計算される理論上の凹み深さ)を最適範囲に制御することが好ましいことが判った。
ここで、気体酸素又は気体酸素と精錬剤の吹き付けにより溶銑浴面に生じる凹みの深さが小さすぎる、すなわち気体酸素又は気体酸素と精錬剤の吹き付けが弱すぎると、火点外でスラグのフォーミングが発生し、このフォーミングしたスラグが気体酸素ジェットの流れを妨げるため、気体酸素の火点への供給が低下し、脱燐効率の向上には不利な条件となる。また、火点への酸素の供給が不安定になるため、脱燐に必要な酸素が安定的に供給されなくなり、脱燐効率のばらつきが大きくなるとともに、3CaO・P2O5が分解し、復燐が生じてしまう。
【0025】
一方、気体酸素又は気体酸素と精錬剤の吹き付けにより溶銑浴面に生じる凹みの深さが大きすぎる、すなわち気体酸素又は気体酸素と精錬剤の吹き付けが強すぎると、火点内での酸素密度が高くなりすぎ、発生するFeOに対応するPがメタルから十分に供給されなくなる。この結果、余剰分のFeOにより脱炭が進行してしまい、この場合も脱燐効率の向上には不利な条件となる。
気体酸素の吹き付け又は気体酸素をキャリアガスとする精錬剤の吹き付けにより溶銑浴面に生じる凹みの深さL(気体酸素供給速度と上吹ランスの構成及び使用条件から計算される理論上の凹み深さ)は、下記(1)式により定義することができる。
L=LO×exp{(−0.78×LH)/LO} … (1)
LO=63×{(FO 2/n)/dt}2 / 3
但し LH:上吹きランスのランス高さ(mm)
FO 2:上吹きランスからの気体酸素供給速度(Nm3/hr)
n:上吹きランスのノズル孔数
dt:上吹きランスのノズル孔径(mm)(但し、複数のノズル孔のノズル径が異なる場合は、全ノズル孔の平均孔径)
【0026】
本発明法では、溶銑浴面での上記凹みの深さLを200〜500mmに制御して脱燐処理を行うことが好ましい。図4は、本発明者らが行った試験結果に基づく、溶銑浴面の凹み深さLと脱燐効率及び脱燐処理後の溶銑中P濃度との関係を示したもので、この試験では、転炉型容器(340ton)に保持されたP濃度:0.095〜0.135mass%、Si濃度:0.03〜0.20mass%の溶銑(溶銑温度:1250〜1360℃)に対して、気体酸素(10〜15Nm3/溶銑ton)をキャリアガスとして精錬剤である石灰粉(4〜10kg/溶銑ton)を上吹きランスから溶銑浴面に吹き付けることにより脱燐処理(処理時間:10〜14分間)を行った後、溶銑を脱炭用転炉に装入して脱炭吹錬を行ったものである。なお、脱燐処理では、CaF2添加量は1kg/溶銑ton以下とした。
図4(a),(b)によると、凹み深さLが200〜500mmの範囲に較べ、200mm未満、500mm超の範囲では、上述した理由により脱燐効率が低くなり、処理後の溶銑中P濃度が高くなる傾向がある。
【0027】
本発明では、CaF2を実質的に添加しない若しくは少量のCaF2を添加するだけで高い脱燐効率が得られる。このため本発明では、CaF2の添加量を1kg/溶銑ton以下とし、若しくはCaF2を実質的に添加しない(すなわち、精錬剤中に不可避的不純物として含まれる以外のCaF2を添加しない)条件で脱燐処理を行うことが好ましい。
従来の脱燐処理では、精錬剤(CaO)の滓化を促進させるためにCaF2を添加することが事実上必須であったが、近年Fが環境に及ぼす影響を考慮し、鋼の精錬においてもCaF2の添加量を抑えることが要請されつつある。したがって、本発明法はこのような要請に合致した製造方法であると言える。また、後述するように、本発明では従来法に較べて処理後のスラグ流失量を大幅に減少させることができる効果が得られるが、CaF2を添加しない若しくはその添加量を極く少量とすることによりスラグの流動性をより低くすることができるので、上記効果をより高めることができる。
【0028】
本発明法において、上吹きランスを用いて気体酸素と精錬剤を溶銑浴面に吹き付ける方法に特別な制限はなく、例えば、上吹きランスの複数のランス孔のうち、一部のランス孔から気体酸素のみを、また、他のランス孔から気体酸素又は気体酸素以外のガス(例えば、窒素やArなどの不活性ガス)をキャリアガスとして精錬剤を、それぞれ溶銑浴面に供給することもできる。また、この場合には、ランス先端の中央に主ランス孔を、その周囲に複数の副ランス孔を有する上吹きランスを用い、副ランス孔から気体酸素を、主ランス孔から気体酸素又は上述した気体酸素以外のガスをキャリアガスとして精錬剤を、それぞれ溶銑浴面に供給することが特に好ましい。また、気体酸素の吹き付けと、気体酸素又は上述した気体酸素以外のガスをキャリアガスとする精錬剤の吹き付けを、異なる上吹きランスを用いて行ってもよい。但し、いずれの場合にも、上述したように精錬剤を最も効率的に滓化させるには、精錬剤のキャリアガスは気体酸素であることが特に望ましい。
【0029】
本発明において使用する気体酸素は、純酸素ガス、酸素含有ガスのいずれでもよい。また、溶銑保持容器内に添加される酸素源としては、気体酸素以外に酸化鉄(例えば、焼結粉、ミルスケール)等の固体酸素源を用いることができ、これらを上置き装入や浴中へのインジェクション等の任意の方法で添加することができる。但し、上述したような溶銑浴面への気体酸素の供給(吹き付け)による効率的な溶銑脱燐を行うためには、溶銑保持容器内に添加される酸素源の50%以上、好ましくは70%以上(気体酸素換算量)が上吹きランスを通じて溶銑浴面に供給される気体酸素であることが望ましい。
なお、気体酸素の一部は溶銑浴面への吹き付け以外の方法、例えば溶銑浴中へのインジェクションや底吹き等の方法で浴中に供給してもよい。
【0030】
本発明法では、石灰を主体とした精錬剤を用いる。また、上吹きランスを通じて溶銑浴面に吹き付ける精錬剤は粉体を用いる。
また、精錬剤は、上吹きランスによる溶銑浴面への吹き付け以外に、一部を上置き装入や浴中へのインジョクションなどにより添加してもよい。
【0031】
また、脱燐効率を向上させるためには溶銑をガス撹拌することが好ましい。このガス撹拌は、例えばインジェクションランスや底吹きノズルなどを通じて窒素やArなどの不活性ガスを溶銑中に吹き込むことにより行われる。このような撹拌ガスの供給量としては、十分な浴撹拌性を得るために0.02Nm3/min/溶銑ton以上とし、また、浴の撹拌が強すぎると生成したFeOを溶銑中のCが還元する速度が大きくなり過ぎるためのため0.3Nm3/min/溶銑ton以下とすることが好ましい。
脱燐処理を行うための溶銑保持容器としては、フリーボードが十分に確保できるという点から転炉型容器が最も好ましいが、例えば、溶銑鍋やトーピードカーなどの任意の容器を用いることができる。
【0032】
図5に、溶銑の脱珪工程及び本発明法による脱燐工程の実施状況の一例を示す。この例では、まず、溶銑2(高炉溶銑)をトーピードカー1に入れ、脱珪用ランス3から酸化鉄、気体酸素などを吹き込んで脱珪処理を行なう。排滓後、転炉型脱燐炉4に溶銑2を移し、上吹きランス5から気体酸素をキャリアガスとして石灰などの精錬剤を、溶銑浴面に生じる凹みの深さLが200〜500mmとなるよう溶銑浴面に吹き付ける。このとき添加する石灰の量は、溶銑中Si濃度、P濃度に応じて、それらを固相主体のスラグとして固定する量だけで十分である。また、CaF2は添加しないか、添加するとしても、その添加量は1kg/溶銑ton以下とすることが好ましい。
【0033】
溶銑浴面に気体酸素とともに吹き付けられた精錬剤は、CaO−FeO系融体を形成して速やかに滓化するとともに、気体酸素の運動エネルギーで火点の外側に押し出されながら、Si及びPを吸収して安定な固相を形成する。そして、このような固相主体のスラグは非常に安定であるため、周辺の塩基度が低くても再び溶融することはない。このため少ない精錬剤添加量とスラグ量で効率的な脱燐処理を行うことができる。脱燐処理終了後は、出湯口7から溶銑2を取鍋などに出湯し、残ったスラグ6は炉口から排滓する。
【0034】
以上述べたように、本発明法によれば最小限の精錬剤添加量とスラグ発生量で効率的な脱燐処理を行うことができるが、さらなる効果として、生成するスラグの性状が固相主体のものとなるため、処理後の出湯時におけるスラグ流失を適切に防止できるという大きな利点がある。
脱燐処理において脱燐反応効率が向上すると、スラグ中の燐濃度が上昇するため、脱燐処理後の出湯時(特に、転炉型容器のような出湯口を有する精錬容器からの出湯時)にメタルとともにスラグが流出しないようにすることが重要である。すなわち、燐分配Lp=200程度の脱燐処理を実施し、処理後の溶銑中燐濃度が0.015mass%(規格値:0.020mass%)の場合、5kg/溶銑ton程度のスラグが流出すると、燐が0.015mass%分も脱炭吹錬用転炉に持ち込まれてしまうため、脱炭吹錬用転炉内でも脱燐のための石灰が必要となる。しかし、これでは溶銑予備処理本来の目的が達成できない。したがって、脱燐スラグの次工程へのスラグ流出防止が重要となる。
【0035】
従来、転炉型容器を用いた脱燐処理後、次工程へのスラグ流出を極少化するための方法としては、(1)転炉型容器からの出湯中におけるスラグカット技術、(2)処理後にスラグ組成を制御することによりスラグの流動性を低下させる方法、(3)出湯後の取鍋からスラグを除去(除滓)する方法、などがある。
しかし、これら従来の方法は、スラグ流失を安定的に防止することができない、消耗品を使用するためコストが高い、作業に時間がかかるため溶銑温度が低下する、スラグ除去に伴い鉄歩留りが低下する、などの問題がある。
【0036】
これに対して本発明法によれば、先に述べたように、火点を中心とする溶銑浴面領域で生成し、その外側に順次押し出されるスラグは安定な固相主体のものとなり、このため脱燐処理終了時におけるスラグは、従来の脱燐処理法で生成したスラグに較べて流動性が非常に小さく、この結果、脱燐処理終了後の出湯時(特に、転炉型容器のような出湯口を有する精錬容器からの出湯時)におけるスラグ流出を効果的に防止できる。また、先に述べたように、この効果はCaF2を添加しないか若しくはCaF2の添加量を1kg/溶銑ton以下とし、スラグの流動性の増加を抑えることで、より高めることができる。
【0037】
以下、本発明法によって生成されるスラグについて、出湯時にスラグ流出が防止されるメカニズムを、従来法によって生成されるスラグと比較して説明する。図6に、転炉型脱燐精錬炉における出湯開始時のスラグ/メタルの状態を示す。図6(a)に示す従来法の場合には、スラグ塩基度を低くしたり或いはCaF2を多量に添加することによりスラグを積極的に溶融させるため、スラグはフォーミングしており、スラグ厚みが増している。このため出湯時に炉を傾動していくと、初めにスラグが出湯口を通過するため、スラグ流出が不可避的に発生する。これに対して図6(b)に示す本発明法の場合には、スラグは固相主体の状態で存在しているためスラグ厚みは極めて薄く、出湯開始時に起こるスラグ流出は無視できるレベルである。
【0038】
図7に、出湯末期の出湯口近傍でのスラグ/メタルの状態を示す。出湯終了直前では、メタル深さが浅くなってメタルの渦流が発生するが、図7(a)に示す従来法では、この渦流にメタル上の溶融スラグが巻き込まれて流出する。これに対して図7(b)に示す本発明法の場合には、スラグは固相主体のものであるため、メタルの渦流上でスラグどうしが干渉・合体し、このためスラグがメタルの渦流に巻き込まれることはほとんどない。
【0039】
【実施例】
高炉から出銑された溶銑を鋳床で脱珪処理した後、これを溶銑鍋に受銑してこの溶銑鍋内で脱珪処理し、排滓した後、脱燐処理用の300トン転炉に溶銑を装入した。
脱燐処理では、上吹きランスを用いて気体酸素をキャリアガスとして石灰粉(精錬剤)を溶銑浴面に吹き付けるとともに、一部の実施例では塊状石灰の上置き装入を併せて行った。また、比較例の一部では、上吹きランスを通じた石灰粉の吹き付けを行わず、塊状石灰を上置き装入で添加した。各実施例とも転炉の炉底から窒素ガスを0.07〜0.12Nm3/min/溶銑tonの供給量で吹き込み、8〜14分間の脱燐処理を行った。
各実施例の結果を、脱燐処理条件とともに表1〜表6に示す。
【0040】
【表1】
【0041】
【表2】
【0042】
【表3】
【0043】
【表4】
【0044】
【表5】
【0045】
【表6】
【0046】
【発明の効果】
以上述べたように本発明の低燐溶銑の製造方法によれば、少ない精錬剤添加量とスラグ発生量で効率的な脱燐処理を行うことができる。また、CaF2の添加量を従来に較べて大幅に削減し或いはCaF2を添加することなく脱燐処理を行うことができるとともに、処理後の出湯時におけるスラグ流出も効果的に防止することができる。
【図面の簡単な説明】
【図1】本発明法及び従来法について、溶銑中Si濃度と必要石灰量との関係を示すグラフ
【図2】本発明法と従来法について、脱燐用の必要石灰量及び石灰効率ηcaoと脱燐処理後の溶銑中P濃度との関係を示すグラフ
【図3】上吹きランスから溶銑浴面に吹き付けられる石灰量Xと脱P用の石灰量Wcao_Pとの比X/Wcao_Pと脱燐処理後の溶銑中P濃度との関係を示すグラフ
【図4】気体酸素又は気体酸素をキャリアガスとする精錬剤の吹き付けにより溶銑浴面に生じる凹みの深さLと脱燐効率及び脱燐処理後の溶銑中P濃度との関係を示すグラフ
【図5】脱珪工程及び本発明法による脱燐工程の一例を示す説明図
【図6】転炉型脱燐精錬炉を用いた従来法と本発明法において、出湯開始時のスラグ/メタルの状態を模式的に示す説明図
【図7】転炉型脱燐精錬炉を用いた従来法と本発明法において、出湯末期の出湯口近傍でのスラグ/メタルの状態を模式的に示す説明図
【図8】スラグ塩基度とスラグの燐分配Lpとの関係を示すグラフ
【図9】従来法における、燐分配Lp毎の必要石灰量と処理後の到達P濃度との関係を示すグラフ
【図10】従来法における、溶銑中Si濃度と塩基度調整のために必要な石灰量との関係を示すグラフ
【図11】従来法における、溶銑中Si濃度と必要石灰量との関係を示すグラフ
【符号の説明】
1…トーピードカー、2…溶銑、3…脱珪用ランス、4…転炉型脱燐炉、5…上吹きランス、6…スラグ、7…出湯口[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for efficiently producing low phosphorus hot metal by a dephosphorization process performed as a hot metal pretreatment.
[0002]
[Prior art]
Instead of the conventional converter method, the hot metal pretreatment method in which dephosphorization treatment is performed at the hot metal stage has come to be widely used. This is because the dephosphorization reaction proceeds more thermodynamically as the refining temperature is lower, and the dephosphorization treatment can be performed with a smaller amount of the refining agent.
In general, in the hot metal preliminary treatment, first, a solid oxygen source such as iron oxide is added to the hot metal for desiliconization treatment. After removing the slag generated by this desiliconization treatment, a refining agent is added for dephosphorization treatment. Do. Usually, a CaO-based refining agent such as lime is used as the dephosphorizing refining agent, and a solid oxygen source (iron oxide or the like) or gaseous oxygen is used as the oxygen source. Moreover, as a processing container, a torpedo car, a ladle (charging pot), a converter type container, etc. are used. Moreover, it is widely performed to add CaF 2 (fluorite) to promote hatching of the CaO-based refining agent.
[0003]
Regarding dephosphorization treatment conditions, for example, in JP-A-7-70626, the basicity of slag is 0.6 or more and 2.5 or less, the treatment end temperature is 1250 ° C. or more and 1400 ° C. or less, the bottom blowing stirring power is 1.0 kg / molten metal ton or more In addition, the condition that the acid feed rate is 2.5 Nm 3 / molten ton or more is shown. In this technique, the reason for setting the slag basicity to 2.5 or less is that the fluidity of the slag deteriorates at a basicity higher than that, and it is necessary to perform processing at a high temperature unfavorable for dephosphorization. Yes. If the slag basicity is higher than 2.5, dephosphorization proceeds.
[0004]
[Problems to be solved by the invention]
The conventional hot metal dephosphorization processing technology is based on the premise that the slag is uniformly melted and the slag-metal is close to equilibrium, as can be understood from the discussion using the dephosphorization equilibrium formula. However, in the method of dephosphorization by blowing gaseous oxygen from the top blowing lance, the portion in which the slag is pushed by the energy of gaseous oxygen in the dephosphorization smelting vessel and the molten metal surface (hot metal bath surface) is exposed, It is difficult to keep the inside of the furnace in a uniform state. For this reason, in the prior art, (1) keep slag basicity low, and ( 2 ) add hatching promoters such as CaF 2 (fluorite) to achieve uniform melting of slag. Yes.
[0005]
However, if the slag basicity is lowered as in the above (1), the phosphorus distribution Lp of the slag is lowered. Therefore, in order to obtain a high dephosphorization efficiency, the addition amount of a refining agent or the like must be increased to increase the slag volume. In other words, refining costs will increase and slag generation will increase.
Hereinafter, this will be described. The phosphorus distribution Lp of the dephosphorized slag depends on the slag basicity as shown in FIG. 8, and the predetermined target P concentration is reached from the phosphorus distribution Lp as shown in FIG. The amount of slag required for the lime, that is, the basic unit of lime is determined. In addition, FIG. 10 shows the basic unit of lime required for making the Si concentration in the hot metal before the treatment and the slag have a predetermined basicity. As is apparent from FIGS. 9 and 10, when the Si concentration in the hot metal is low, the amount of lime necessary for obtaining the slag volume necessary for dephosphorization is larger than the amount of lime necessary for adjusting the slag basicity. . In this case, it is necessary to add a SiO 2 source (for example, addition of silica sand, etc.) in order to adjust the basicity. Finally, the amount of lime necessary for dephosphorization is not related to the Si concentration in the hot metal, but the phosphorus distribution Lp (= mass% (P) / mass% [P], mass% (P): P concentration in the slag, mass% [P]: P concentration in metal). FIG. 11 shows the relationship between the Si concentration in the hot metal and the required amount of lime. When the slag basicity is increased, the amount of slag required is decreased because the phosphorus distribution Lp is increased, but the fluidity of the slag is remarkably deteriorated, so that the dephosphorization efficiency is deteriorated as described above.
[0006]
In recent years, from the viewpoint of environmental protection and the like, it has been required to reduce the amount of slag generated in refining processes including the dephosphorization process as much as possible. Therefore, it is intended to obtain a high dephosphorization rate with low slag basicity. Operation cannot fully meet the demand for reducing slag generation.
In addition, regarding the addition of CaF 2 in the above (2), in recent years, considering the influence of F on the environment, it has been required to reduce the amount of CaF 2 used in steel refining as much as possible.
Therefore, an object of the present invention is to perform an efficient dephosphorization process without adding a large amount of CaF 2 and with a small amount of a refining agent, thereby reducing the amount of slag generated as much as possible. It is in providing the manufacturing method of.
[0007]
[Means for Solving the Problems]
The present inventors have studied a method that can stabilize dephosphorization efficiency at a high level with a small amount of a refining agent without being grasped by the conventional idea of keeping slag in a uniform molten state in a dephosphorization refining vessel. Went. As a result, contrary to the conventional idea of uniformly melting slag, the amount of refining agent added can be greatly increased compared to the conventional method while stabilizing the dephosphorization efficiency at a high level by utilizing the non-uniform molten state of slag. It has been found that this can effectively reduce the amount of slag generated.
[0008]
The present invention has been made based on such findings, and the features thereof are as follows.
[1] In a method for producing low phosphorus hot metal by adding a refining agent mainly composed of lime and an oxygen source in a container holding hot metal, and performing dephosphorization treatment as hot metal pretreatment,
The hot metal having a Si concentration of 0.15 mass% or less is subjected to dephosphorization treatment by blowing gaseous oxygen and at least a part of the refining agent onto the hot metal bath surface through an upper blowing lance. In the dephosphorization treatment, The lime amount Wcao_P (kg / molten ton) obtained by the following equation (1) and the lime amount Wcao_Si (kg / molten ton) obtained by the following equation (2) are added, A method for producing low phosphorus hot metal.
Wcao_P = (Hot metal [P]-Target [P]) x (10/62) x 56 x 3 / ηcao (1)
However, hot metal [P]: P concentration in hot metal before dephosphorization (mass%)
Target [P]: P concentration (mass%) in hot metal after the target dephosphorization treatment
ηcao (lime efficiency) = 0.5-1
Wcao_Si = Hot metal [Si] x (10/28) x 56 x 2… (2)
However, hot metal [Si]: Si concentration in hot metal before dephosphorization (mass%)
[0009]
[2] In the manufacturing method of the above [1], low phosphorus molten iron characterized by spraying lime of 80 mass% or more of the lime amount Wcao_P (Wcao_P calculated by ηcao = 1) onto the hot metal bath surface through an upper blowing lance Manufacturing method.
[3] In the production method of [1] or [2] above, as a refining agent corresponding to the lime amount Wcao_Si, one kind selected from lime powder, lump lime, lump limestone, and iron slag containing unreacted CaO A method for producing a low phosphorus hot metal characterized by using the above.
[0010]
[4] In any of the production method of the above-mentioned [1] to [3], it CaF 2 weight refining agent is included in either or refining agent does not contain CaF 2 substantially is less than 1 kg / molten pig iron ton A process for producing low phosphorus hot metal characterized by the above.
[0011]
[ 5 ] In the production method according to any one of [1] to [ 4 ] , at least a part of the refining agent supplied from the top blowing lance is sprayed onto a hot metal bath surface region to which gaseous oxygen is sprayed. A method for producing a low phosphorus hot metal as a feature.
[ 6 ] In the manufacturing method of [ 5 ] , at least a part of the refining agent supplied from the top blowing lance is sprayed to a hot spot generated on the hot metal bath surface by spraying gaseous oxygen. A method for producing phosphorous iron.
[ 7 ] A method for producing low phosphorus hot metal in the method of [ 5 ] or [ 6 ] , wherein at least a part of the refining agent is sprayed on the hot metal bath surface using gaseous oxygen as a carrier gas.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, when adding a refining agent mainly composed of an oxygen source and lime (CaO) in a container holding hot metal, when producing low phosphorus hot metal by performing dephosphorization treatment as hot metal pretreatment, Dephosphorization treatment is performed by blowing gaseous oxygen and at least a part of the refining agent onto the hot metal bath surface through an upper blowing lance.
When gaseous oxygen is sprayed onto the hot metal bath surface through the top blowing lance, a large amount of FeO is generated by the gaseous oxygen colliding with the bath surface, which is a very advantageous condition for promoting the hatching of the refining agent. The refining agent (CaO) can be effectively promoted to hatch by supplying the refining agent directly through the top blowing lance to the area.
[0013]
In addition, in the spraying of gaseous oxygen and a refining agent onto the hot metal bath surface by the top blowing lance, the refining agent is sprayed onto the hot metal bath surface using a carrier gas other than gaseous oxygen (for example, an inert gas such as N 2 or Ar). However, even in that case, it is preferable to spray part or all of the refining agent to the hot metal bath surface region to which gaseous oxygen is supplied (sprayed). This is where the hot metal bath surface region to which gaseous oxygen is supplied is a place where FeO is generated by supplying oxygen, and by adding CaO directly to such bath surface region, the hatching of CaO is effectively promoted. This is because the contact efficiency between CaO and FeO is increased and the dephosphorization reaction efficiency can be significantly promoted. Further, it is most preferable that the refining agent is supplied to a region called “fire point” generated by the top blowing of the gaseous oxygen, among the hot metal bath surface region to which the gaseous oxygen is supplied. This hot spot is the hot metal bath surface region that becomes the highest temperature when the gaseous oxygen gas jet collides, and is the region where the oxygen reaction due to gaseous oxygen is concentrated and strongly stirred by the gaseous oxygen gas jet. It can be said that this is the region where the effect of supply is most prominent. In this sense, it is preferable to use gaseous oxygen as a carrier gas for spraying the refining agent on the hot metal bath surface. In this case, the refining agent is blown onto the hot metal bath surface together with the refining agent. As a result, the contact efficiency between CaO and FeO on the hot metal bath surface is the highest, and the dephosphorization reaction can be promoted particularly remarkably.
[0014]
In the method of the present invention, an efficient dephosphorization reaction is caused in such a form of addition of gaseous oxygen and a refining agent with a minimum refining agent addition amount by the following basic mechanism.
That is, when a refining agent (CaO) is sprayed through an upper blowing lance against a hot metal bath surface area (preferably a hot spot) to which gaseous oxygen is supplied in an optimum state, this CaO is rapidly brought into contact with FeO generated at the hot spot. And melts (incubates) to form a CaO-FeO-based melt. The generated CaO—FeO-based melt is first pushed out of the hot metal bath surface area, which is supplied with gaseous oxygen centered on the fire point, into the low oxygen potential area around it by the kinetic energy of gaseous oxygen. It reacts with Si in the hot metal and FeO is reduced to form a stable solid phase such as 2CaO · SiO 2 depending on the Si concentration before treatment. Further, when the Si concentration in the hot metal is lowered to some extent by the above reaction, the CaO—FeO melt starts to react with phosphorus next to form a stable solid phase of 3CaO · P 2 O 5 . As a result, a considerable amount (or most) of the slag that is generated as the dephosphorization process proceeds and is sequentially pushed out from the hot metal bath surface area to which gaseous oxygen centered at the fire point is supplied to the outer area. It exists as a stable solid phase such as 2CaO · SiO 2 and 3CaO · P 2 O 5 . And since the slag which became the solid phase in this way is very stable, even if slag basicity is low, it does not melt again. And, since the direct dephosphorization reaction occurs in the region centered on the fire point in this way, and the slag pushed out to the outside exists in a state mainly composed of a solid phase, a small amount of the refining agent is added and the slag amount. And efficient dephosphorization can be performed.
[0015]
In the conventional dephosphorization processing technology, the slag volume is determined according to the phosphorus distribution Lp on the premise that the slag is maintained in a uniform liquid phase state. Therefore, it is necessary to actually fix P and Si. A refining agent in an amount larger than the refining amount was required. On the other hand, in the present invention, by utilizing a mechanism of direct dephosphorization reaction in the hot metal bath surface region centered on the fire point and fixation of P by solid phase-dominant slag in the outer region, The dephosphorization reaction can be efficiently caused with the minimum amount of the refining agent as described above.
The amount of lime consumed to actually fix P and Si in the hot metal can be calculated by the following formula. In the following equation, Wcao_Po is the amount of lime consumed to fix P in hot metal (kg / molten ton), and Wcao_Sio is the amount of lime consumed to fix Si in molten iron (kg / molten ton ).
Wcao_Po = (Hot iron [P]-Target [P]) x (10/62) x 56 x 3
However, hot metal [P]: P concentration in hot metal before dephosphorization (mass%)
Target [P]: P concentration (mass%) in hot metal after the target dephosphorization treatment
Wcao_Sio = Hot metal [Si] x (10/28) x 56 x 2
However, hot metal [Si]: Si concentration in hot metal before dephosphorization (mass%)
[0016]
Here, when the total amount of lime added is Total CaO (kg / molten ton), the efficiency of lime contributing to dephosphorization ηcao can be calculated by the following equation.
ηcao = Wcao_Po / (Total CaO−Wcao_Sio)
In the present invention, the lime efficiency ηcao is first defined as 0.5 to 1. The lower limit of ηcao is defined from the viewpoint of not causing unnecessary addition of lime and appropriately causing the dephosphorization reaction aimed by the present invention. That is, when ηcao is less than 0.5, substantially unnecessary lime addition will be performed, not only the effect of the present invention of performing an efficient dephosphorization treatment with a small amount of refining agent is lost, Since the amount of lime added is excessive with respect to FeO produced under a predetermined oxygen intensity, there will be a large amount of CaO that cannot be hatched. It will impede progress.
[0017]
Therefore, in the present invention, the lime amount Wcao_P (kg / molten ton) obtained by the following equation (1) and the lime amount Wcao_Si (kg / molten ton) obtained by the following equation (2) are added. Dephosphorization is performed.
Wcao_P = (Hot metal [P]-Target [P]) x (10/62) x 56 x 3 / ηcao (1)
However, hot metal [P]: P concentration in hot metal before dephosphorization (mass%)
Target [P]: P concentration (mass%) in hot metal after the target dephosphorization treatment
ηcao (lime efficiency) = 0.5-1
Wcao_Si = Hot metal [Si] x (10/28) x 56 x 2… (2)
However, hot metal [Si]: Si concentration in hot metal before dephosphorization (mass%)
Wcao_P is the amount of lime necessary to fix P in hot metal as 3CaO · P 2 O 5 when ηcao = 0.5 to 1, and Wcao_Si is used to convert Si in hot metal to 2CaO. a lime amount necessary to secure as · SiO 2.
[0018]
FIG. 1 shows, as an example, lime added in accordance with the Si concentration in hot metal before treatment in the method of the present invention in the case of dephosphorizing a hot metal having a P concentration of 0.11 mass% to a P concentration of 0.015 mass%. The amount is shown in comparison with the amount of lime added when the slag basicity (mass% CaO / mass% SiO 2 ) = 2 in the dephosphorization treatment of the conventional method. Wcao_Si is used for fixing Si The amount of lime required, Wcao_P 1 is the amount of lime required for fixing P (for P removal) when ηcao = 1, and Wcao_P 0.5 is the amount of lime required for fixing P when ηcao = 0.5 Yes, W is the amount of lime added in the conventional method. As shown in the figure, the amount of lime required in the conventional method is determined by the phosphorus distribution Lp and the required amount of slag corresponding to this, so the amount of W lime is required regardless of the Si concentration in the hot metal. On the other hand, the amount of lime added in the method of the present invention is sufficient from [Wcao_Si + Wcao_P 1 ] to [Wcao_Si + Wcao_P 0.5 ], and the amount of lime added can be greatly reduced as compared with the conventional method.
FIG. 2 shows the amount of lime required for de-P in the method of the present invention and the conventional method and the lime efficiency ηcao in relation to the P concentration in the hot metal after the dephosphorization treatment. The required amount of lime indicates [W-Wcao_Si] in FIG. According to FIG. 2, it can be seen that the method of the present invention can be dephosphorized with a high lime efficiency by using very little dephosphorizing P as compared with the conventional method.
[0019]
Further, in the method of the present invention, it is preferable to spray 80 mass% or more of lime of the lime amount Wcao_P (Wcao_P obtained by ηcao = 1, the same applies hereinafter) onto the hot metal bath surface through the top blowing lance. FIG. 3 shows the ratio X / Wcao_P between the amount of lime X and the amount of lime Wcao_P sprayed from the top blowing lance to the hot metal bath surface based on the test results conducted by the present inventors, and the P concentration in the hot metal after dephosphorization. In this test, the hot metal (molten metal) having a P concentration of 0.095 to 0.135 mass% and an Si concentration of 0.03 to 0.20 mass% held in the converter type vessel (340 ton). Dephosphorization by spraying lime powder (4-10 kg / molten ton) onto the molten metal bath surface from the top blowing lance using gaseous oxygen (10-15 Nm 3 / molten ton) as carrier gas for temperature: 1250 to 1360 ° C. After performing the treatment (treatment time: 10 to 14 minutes), the molten iron was charged into a decarburization converter and decarburized and blown. In addition, in the dephosphorization treatment, the CaF 2 addition amount was 1 kg / molten ton or less, and the depth L of the dent generated on the molten iron bath surface was controlled in the range of 200 to 500 mm by spraying lime powder using gaseous oxygen as a carrier gas. .
According to FIG. 3, when the proportion of the lime amount X in the lime amount Wcao_P is less than 80 mass%, the dephosphorization rate tends to slightly decrease. This is considered to be because the high reaction efficiency as described above becomes relatively difficult to obtain by directly introducing the refining agent into the gas oxygen supply region in the vicinity of the fire point which is the reaction site.
[0020]
Since Si is easier to burn than C and Fe, it can exist stably as SiO 2 in the hot metal during blowing, and therefore it is not always necessary to react with lime at the fire point. Therefore, the lime source corresponding to the lime amount Wcao_Si for fixing the generated SiO 2 is not limited to burned lime, and any substance containing unreacted lime (Free Lime) may be used. Therefore, as the refining agent corresponding to the lime amount Wcao_Si, one or more selected from lime powder, lump calcined lime, lump limestone, and iron slag containing unreacted CaO can be used. As the iron slag, for example, converter slag (basicity of about 3 to 4) generated in the decarburization process, ladle slag, and the like can be used.
[0021]
In the method of the present invention, the Si concentration of the hot metal to be dephosphorized is 0.15 mass% or less, preferably 0 in order to obtain high dephosphorization efficiency with a small amount of refining agent and to reduce the amount of slag generated. .10 mass% or less. When the Si concentration of the hot metal exceeds 0.15 mass%, the effect of reducing the amount of the refining agent added and the amount of slag generated according to the present invention is reduced. In order to increase the dephosphorization efficiency, it is preferable that the Si concentration in the hot metal is low. Generally, when the Si concentration in the hot metal before the dephosphorization treatment is low, the SiO 2 concentration in the slag is lowered, so that the meltability of CaO is further deteriorated and the dephosphorization efficiency is lowered. However, in the case of the method of the present invention, the phosphorus removal efficiency is improved when the Si concentration in the hot metal before the dephosphorization treatment is lower (0.15 mass% or less, more preferably 0.10 mass% or less). This is because, in the method of the present invention, the powder of the refining agent, which is gaseous oxygen and the source of CaO, is sprayed on the bath surface, so that melting of CaO is promoted by FeO even if a large amount of SiO 2 does not exist. This is considered to be because the efficiency contributing to dephosphorization is improved.
[0022]
Hot metal is supplied from hot metal production equipment such as a blast furnace. To reduce the Si concentration of the hot metal produced, the total amount of silicic acid can be reduced by pretreatment of the raw material for hot metal production, Methods such as low temperature operation and uneven distribution of coke are effective for suppressing silicic acid reduction reaction in the furnace. Therefore, when the Si concentration of the hot metal produced in a blast furnace or the like is 0.15 mass% or less, preferably 0.10 mass% or less, dephosphorization is performed without performing the following desiliconization treatment on the hot metal. It may be processed.
On the other hand, when the Si concentration of the hot metal produced in a blast furnace or the like is higher than the Si concentration level, desiliconization treatment is performed in a blast furnace casting bed or hot metal pan before dephosphorization treatment, and the hot metal before dephosphorization treatment is performed. The phosphorus removal treatment is performed after the medium Si concentration is set to 0.15 mass% or less, preferably 0.10 mass% or less.
Normally, hot metal desiliconization is performed by adding a solid oxygen source or gaseous oxygen to the hot metal. For example, a solid oxygen source such as sintered powder or mill scale is placed on the hot metal bath surface or in the bath. A method is adopted in which gas oxygen is added by blowing into the hot metal bath, or gaseous oxygen is added by spraying onto the hot metal bath surface or blowing into the bath.
[0023]
In addition to the blast furnace casting floor and hot metal ladle, the hot metal desiliconization treatment can also be performed by adding an oxygen source to the molten iron flow from the blast furnace casting floor to a conveying container such as a hot metal ladle. Moreover, in order to increase the desiliconization efficiency, iron oxide in the desiliconization slag is reduced as much as possible by blowing a stirring gas into the hot metal in the vessel or adding a CaO source such as calcined lime to adjust the basicity of the slag. It is also possible to increase the reduction efficiency.
When performing dephosphorization treatment after hot metal desiliconization treatment, it is necessary to eliminate slag such as degassing slag in advance and to suppress the mixing of silicic acid as much as possible in order to perform efficient dephosphorization treatment. preferable. Therefore, the dephosphorization process is performed after the slag is separated from the molten iron by a mechanical waste apparatus or manual work before the dephosphorization process.
[0024]
In order to obtain high dephosphorization efficiency with a small refining agent addition amount and slag amount by the mechanism as described above, it is particularly necessary to optimize the method of supplying gaseous oxygen to the fire point which is the reaction site, specifically, Control of the depth of the dent (theoretical dent depth calculated from the composition of the gas oxygen supply speed and the top blowing lance and the operating conditions) generated in the hot metal bath surface by spraying gaseous oxygen or gaseous oxygen and a refining agent within the optimum range It turned out to be preferable.
Here, if the depth of the dent generated on the hot metal bath surface due to the spraying of gaseous oxygen or gaseous oxygen and the refining agent is too small, that is, if the blowing of gaseous oxygen or gaseous oxygen and the refining agent is too weak, slag forming outside the fire point Since this formed slag hinders the flow of the gaseous oxygen jet, the supply of gaseous oxygen to the fire point is lowered, which is a disadvantageous condition for improving the dephosphorization efficiency. Further, since the supply of oxygen to the fire point becomes unstable, oxygen necessary for dephosphorization is not stably supplied, and the dispersion of dephosphorization efficiency increases, and 3CaO · P 2 O 5 decomposes, Recovery will occur.
[0025]
On the other hand, if the depth of the dent generated on the hot metal bath surface due to the blowing of gaseous oxygen or gaseous oxygen and the refining agent is too large, that is, if the blowing of gaseous oxygen or gaseous oxygen and the refining agent is too strong, the oxygen density in the hot spot will be reduced. It becomes too high and P corresponding to the generated FeO is not sufficiently supplied from the metal. As a result, decarburization proceeds due to the excess FeO, which is also a disadvantageous condition for improving the dephosphorization efficiency.
Depth of dent L generated on the hot metal bath surface by spraying gaseous oxygen or a refining agent with gaseous oxygen as carrier gas (theoretical dent depth calculated from the composition and conditions of use of the gas oxygen supply rate and the upper spray lance) Can be defined by the following equation (1).
L = L O × exp {(− 0.78 × L H ) / L O } (1)
L O = 63 × {(F
However, L H : Lance height (mm) of top blowing lance
F O 2 : Gaseous oxygen supply rate from the top blowing lance (Nm 3 / hr)
n: Number of nozzle holes of upper blowing lance d t : Nozzle hole diameter (mm) of upper blowing lance (however, when the nozzle diameters of a plurality of nozzle holes are different), the average hole diameter of all nozzle holes)
[0026]
In the method of the present invention, it is preferable to perform the dephosphorization treatment by controlling the depth L of the dent on the hot metal bath surface to 200 to 500 mm. FIG. 4 shows the relationship between the depth L of the hot metal bath surface, the dephosphorization efficiency, and the P concentration in the hot metal after the dephosphorization treatment based on the test results conducted by the present inventors. , P concentration: 0.095 to 0.135 mass%, Si concentration: 0.03 to 0.20 mass% hot metal (hot metal temperature: 1250 to 1360 ° C.) held in the converter type vessel (340 ton), By using gaseous oxygen (10-15 Nm 3 / molten metal ton) as a carrier gas, lime powder (4-10 kg / molten metal ton) as a refining agent is sprayed from the top blowing lance onto the molten iron bath surface (treatment time: 10 to 10 minutes). 14 minutes), the hot metal was charged into a decarburizing converter and decarburized and blown. In the dephosphorization treatment, the amount of CaF 2 added was 1 kg / molten iron or less.
According to FIGS. 4 (a) and 4 (b), in the range where the dent depth L is less than 200 mm and more than 500 mm as compared with the range of 200 to 500 mm, the dephosphorization efficiency is lowered for the reasons described above, and the hot metal after treatment P concentration tends to increase.
[0027]
In the present invention, a high dephosphorization efficiency in the CaF 2 only the addition does not substantially added or a small amount of CaF 2 is obtained. For this reason, in the present invention, the amount of CaF 2 added is 1 kg / molten ton or less, or CaF 2 is not substantially added (that is, CaF 2 other than that contained as an inevitable impurity in the refining agent is not added). It is preferable to carry out a dephosphorization treatment.
In the conventional dephosphorization treatment, it was practically essential to add CaF 2 in order to promote the hatching of the refining agent (CaO). However, in recent years, considering the influence of F on the environment, However, it is being requested to suppress the amount of CaF 2 added. Therefore, it can be said that the method of the present invention is a production method meeting such a requirement. Further, as will be described later, in the present invention, the effect of greatly reducing the slag loss after the treatment can be obtained as compared with the conventional method, but CaF 2 is not added or the addition amount is extremely small. Since the fluidity | liquidity of slag can be made lower by this, the said effect can be heightened more.
[0028]
In the method of the present invention, there is no particular limitation on the method of spraying gaseous oxygen and the refining agent on the hot metal bath surface using the top blowing lance. For example, the gas from some lance holes among the plurality of lance holes of the top blowing lance. A refining agent can also be supplied to the hot metal bath surface using oxygen alone or gas oxygen or a gas other than gaseous oxygen (for example, an inert gas such as nitrogen or Ar) as a carrier gas from other lance holes. Further, in this case, a top lance hole having a main lance hole at the center of the lance tip and a plurality of auxiliary lance holes around the lance tip is used, gaseous oxygen from the auxiliary lance hole, gaseous oxygen from the main lance hole or the above-mentioned It is particularly preferable to supply a refining agent to the hot metal bath surface using a gas other than gaseous oxygen as a carrier gas. Moreover, you may perform the spraying of gaseous oxygen and the spraying of the refining agent which uses gas other than gaseous oxygen or gas oxygen mentioned above as carrier gas using a different top blowing lance. However, in any case, it is particularly desirable that the carrier gas of the refining agent is gaseous oxygen in order to hatch the refining agent most efficiently as described above.
[0029]
The gaseous oxygen used in the present invention may be either pure oxygen gas or oxygen-containing gas. In addition to gaseous oxygen, a solid oxygen source such as iron oxide (e.g., sintered powder, mill scale) can be used as the oxygen source added to the hot metal holding container. It can be added by any method such as injection into the inside. However, in order to perform efficient hot metal dephosphorization by supplying (spraying) gaseous oxygen to the hot metal bath surface as described above, 50% or more, preferably 70%, of the oxygen source added to the hot metal holding container. The above (amount in terms of gaseous oxygen) is desirably gaseous oxygen supplied to the hot metal bath surface through the top blowing lance.
Part of the gaseous oxygen may be supplied into the bath by a method other than spraying on the hot metal bath surface, for example, injection into the hot metal bath or bottom spraying.
[0030]
In the method of the present invention, a refining agent mainly composed of lime is used. Moreover, powder is used for the refining agent sprayed on the hot metal bath surface through the top blowing lance.
Further, the refining agent may be added in part by placing it on top of the hot metal bath or by injecting it into the bath in addition to spraying the hot metal bath surface with an upper blowing lance.
[0031]
In order to improve the dephosphorization efficiency, it is preferable to gas stir the hot metal. This gas agitation is performed, for example, by blowing an inert gas such as nitrogen or Ar into the hot metal through an injection lance or a bottom blowing nozzle. The amount of stirring gas supplied is 0.02 Nm 3 / min / molten ton or more in order to obtain sufficient bath agitation, and if the agitation of the bath is too strong, the generated FeO is converted to C in the molten iron. Since the rate of reduction becomes too high, it is preferable to set it to 0.3 Nm 3 / min / molten ton or less.
The hot metal holding container for performing the dephosphorization treatment is most preferably a converter type container from the viewpoint that a freeboard can be sufficiently secured, but for example, an arbitrary container such as a hot metal ladle or a torpedo car can be used.
[0032]
In FIG. 5, an example of the implementation situation of the desiliconization process of hot metal and the dephosphorization process by this invention method is shown. In this example, first, the hot metal 2 (blast furnace hot metal) is put into the
[0033]
The refining agent sprayed along with gaseous oxygen on the hot metal bath surface rapidly forms a CaO-FeO melt and is pushed out of the fire point by the kinetic energy of gaseous oxygen. Absorbs to form a stable solid phase. And since the solid phase-based slag is very stable, it does not melt again even if the surrounding basicity is low. For this reason, efficient dephosphorization processing can be performed with a small refining agent addition amount and slag amount. After completion of the dephosphorization process, the
[0034]
As described above, according to the method of the present invention, efficient dephosphorization treatment can be performed with the minimum amount of smelting agent and the amount of slag generated. Therefore, there is a great advantage that it is possible to appropriately prevent slag loss at the time of tapping after treatment.
When the dephosphorization reaction efficiency is improved in the dephosphorization process, the phosphorus concentration in the slag increases, so that the hot water after the dephosphorization process (especially when the hot water from a refining vessel having a hot water outlet such as a converter type vessel) It is important to prevent slag from flowing out together with the metal. That is, when dephosphorization processing of phosphorus distribution Lp = 200 is performed and the phosphorus concentration in the molten iron after the treatment is 0.015 mass% (standard value: 0.020 mass%), about 5 kg / molten ton of slag flows out. Moreover, since 0.015 mass% of phosphorus is brought into the decarburizing and blowing converter, lime for dephosphorization is required even in the decarburizing and blowing converter. However, this does not achieve the original purpose of the hot metal preliminary treatment. Therefore, prevention of slag outflow to the next process of dephosphorization slag is important.
[0035]
Conventionally, after dephosphorization processing using a converter type vessel, as a method for minimizing the outflow of slag to the next process, (1) slag cutting technology in hot water from the converter type vessel, (2) processing There are a method of lowering the slag fluidity by controlling the slag composition later, and a method of (3) removing (removing) slag from the ladle after tapping.
However, these conventional methods cannot stably prevent slag loss, are expensive due to the use of consumables, and the hot metal temperature is lowered due to the time required for the work, and the iron yield is reduced as slag is removed. There is a problem such as.
[0036]
On the other hand, according to the method of the present invention, as described above, the slag that is generated in the hot metal bath surface region centered on the fire point and is sequentially pushed out to the outside becomes the main component of the stable solid phase. Therefore, the slag at the end of the dephosphorization process is much less fluid than the slag produced by the conventional dephosphorization process. Slag outflow during hot water from a smelting vessel having a hot water outlet can be effectively prevented. Also, as mentioned earlier, this effect can be as the amount of either or CaF 2 without addition of
[0037]
Hereinafter, the slag produced by the method of the present invention will be described in comparison with the slag produced by the conventional method for preventing the slag from flowing out during hot water. FIG. 6 shows the state of slag / metal at the start of tapping in the converter type dephosphorization refining furnace. In the case of the conventional method shown in FIG. 6 (a), to melt actively slag by adding or or CaF 2 low slag basicity in a large amount, the slag is then forming, slag thickness It is increasing. For this reason, if the furnace is tilted at the time of the hot water, slag first passes through the hot water outlet, so slag outflow inevitably occurs. On the other hand, in the case of the method of the present invention shown in FIG. 6 (b), since the slag exists mainly in the solid phase, the slag thickness is extremely thin, and the slag outflow that occurs at the start of pouring is at a negligible level. .
[0038]
FIG. 7 shows the state of slag / metal in the vicinity of the hot water outlet at the end of the hot water. Immediately before the end of pouring, the metal depth becomes shallow and a metal eddy current is generated, but in the conventional method shown in FIG. 7 (a), molten slag on the metal is caught in the vortex and flows out. On the other hand, in the case of the method of the present invention shown in FIG. 7B, since the slag is mainly composed of solid phase, the slag interferes and coalesces on the vortex of the metal, so that the slag becomes the vortex of the metal. Is rarely involved.
[0039]
【Example】
After desiliconizing the hot metal discharged from the blast furnace in the casting bed, it is received in the hot metal ladle, desiliconized in the hot metal ladle, discharged, and then a 300-ton converter for dephosphorization The hot metal was charged in
In the dephosphorization treatment, lime powder (refining agent) was sprayed onto the hot metal bath surface using gaseous oxygen as a carrier gas using an upper blowing lance, and in some examples, the bulk lime was placed on top. Moreover, in a part of comparative example, the lime powder was not sprayed through the top blowing lance, but the block lime was added by the top charging. In each example, nitrogen gas was blown from the bottom of the converter at a supply rate of 0.07 to 0.12 Nm 3 / min / molten ton and dephosphorization treatment was performed for 8 to 14 minutes.
The results of each Example are shown in Tables 1 to 6 together with the dephosphorization treatment conditions.
[0040]
[Table 1]
[0041]
[Table 2]
[0042]
[Table 3]
[0043]
[Table 4]
[0044]
[Table 5]
[0045]
[Table 6]
[0046]
【The invention's effect】
As described above, according to the low phosphorus hot metal production method of the present invention, an efficient dephosphorization process can be performed with a small refining agent addition amount and a slag generation amount. In addition, the amount of CaF 2 added can be greatly reduced as compared to the conventional case, or dephosphorization can be performed without adding CaF 2, and slag outflow at the time of tapping after treatment can be effectively prevented. it can.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the Si concentration in hot metal and the amount of required lime for the method of the present invention and the conventional method. FIG. 2 shows the amount of lime required for dephosphorization and the lime efficiency ηcao for the method of the present invention and the conventional method. Graph showing relationship between P concentration in hot metal after dephosphorization treatment [FIG. 3] Ratio X / Wcao_P of amount of lime X sprayed on hot metal bath surface from top blowing lance to amount of lime Wcao_P for dephosphorization and dephosphorization treatment FIG. 4 is a graph showing the relationship between the P concentration in the hot metal after the process. FIG. 4 shows the depth L of the dent generated on the hot metal bath surface by the spraying of the refining agent using gaseous oxygen or gaseous oxygen as the carrier gas, and the dephosphorization efficiency and FIG. 5 is an explanatory diagram showing an example of the desiliconization process and the dephosphorization process according to the method of the present invention. FIG. 6 shows the conventional method using a converter type dephosphorization furnace and the present invention. Explanatory drawing which shows typically the state of slag / metal at the start of pouring in the invention method. FIG. 8 is an explanatory diagram schematically showing the state of slag / metal in the vicinity of the tap at the end of pouring in the conventional method using the furnace type dephosphorization furnace and the method of the present invention. FIG. 9 is a graph showing the relationship between the amount of lime required for each phosphorus distribution Lp and the reached P concentration after treatment in the conventional method. FIG. 10 is a graph showing the relationship between the Si concentration in hot metal and the basicity in the conventional method. FIG. 11 is a graph showing the relationship between the lime amount necessary for adjustment and FIG. 11 is a graph showing the relationship between the Si concentration in the hot metal and the required lime amount in the conventional method.
DESCRIPTION OF
Claims (7)
Si濃度が0.15mass%以下の溶銑に対して、上吹きランスを通じて気体酸素と少なくとも一部の精錬剤を溶銑浴面に吹き付けて脱燐処理を行うとともに、該脱燐処理においては、精錬剤として、下記(1)式で求められる石灰量Wcao_P(kg/溶銑ton)と下記(2)式で求められる石灰量Wcao_Si(kg/溶銑ton)を合計した量の石灰を添加することを特徴とする低燐溶銑の製造方法。
Wcao_P=(溶銑[P]−目標[P])×(10/62)×56×3/ηcao … (1)
但し 溶銑[P]:脱燐処理前の溶銑中P濃度(mass%)
目標[P]:目標とする脱燐処理後の溶銑中P濃度(mass%)
ηcao(石灰効率)=0.5〜1
Wcao_Si=溶銑[Si] ×(10/28)×56×2 … (2)
但し 溶銑[Si]:脱燐処理前の溶銑中Si濃度(mass%)In a method for producing low phosphorus hot metal by adding a refining agent mainly composed of lime and an oxygen source in a container holding hot metal, and performing dephosphorization treatment as hot metal pretreatment,
The hot metal having a Si concentration of 0.15 mass% or less is subjected to dephosphorization treatment by blowing gaseous oxygen and at least a part of the refining agent onto the hot metal bath surface through an upper blowing lance. In the dephosphorization treatment, The lime amount Wcao_P (kg / molten ton) obtained by the following equation (1) and the lime amount Wcao_Si (kg / molten ton) obtained by the following equation (2) are added, A method for producing low phosphorus hot metal.
Wcao_P = (Hot metal [P]-Target [P]) x (10/62) x 56 x 3 / ηcao (1)
However, hot metal [P]: P concentration in hot metal before dephosphorization (mass%)
Target [P]: P concentration (mass%) in hot metal after the target dephosphorization treatment
ηcao (lime efficiency) = 0.5-1
Wcao_Si = Hot metal [Si] x (10/28) x 56 x 2… (2)
However, hot metal [Si]: Si concentration in hot metal before dephosphorization (mass%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002245979A JP4026447B2 (en) | 2002-08-26 | 2002-08-26 | Method for producing low phosphorus hot metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002245979A JP4026447B2 (en) | 2002-08-26 | 2002-08-26 | Method for producing low phosphorus hot metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004083990A JP2004083990A (en) | 2004-03-18 |
JP4026447B2 true JP4026447B2 (en) | 2007-12-26 |
Family
ID=32053971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002245979A Expired - Lifetime JP4026447B2 (en) | 2002-08-26 | 2002-08-26 | Method for producing low phosphorus hot metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4026447B2 (en) |
-
2002
- 2002-08-26 JP JP2002245979A patent/JP4026447B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004083990A (en) | 2004-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2002022891A1 (en) | Refining agent and refining method | |
JP5181520B2 (en) | Hot metal dephosphorization method | |
KR101430377B1 (en) | Method of same processing for desiliconizing and dephosphorizing hot metal | |
JP3332010B2 (en) | Manufacturing method of low phosphorus hot metal | |
JP2018188730A (en) | Converter steelmaking process | |
JP4977870B2 (en) | Steel making method | |
JP5904238B2 (en) | Method of dephosphorizing hot metal in converter | |
JP4894325B2 (en) | Hot metal dephosphorization method | |
JP3888264B2 (en) | Method for producing low phosphorus hot metal | |
JP2006188769A (en) | Production method of low phosphorus molten iron | |
WO2007100109A1 (en) | Method of dephosphorization of molten iron | |
JP4026447B2 (en) | Method for producing low phosphorus hot metal | |
JP2001288507A (en) | Method for producing low phosphorus molten iron | |
JP4779464B2 (en) | Method for producing low phosphorus hot metal | |
JP2001049320A (en) | Production of iron and steel using high phosphorus ore as raw material | |
JP3823898B2 (en) | Method for producing low phosphorus hot metal | |
JP3952846B2 (en) | Method for producing low phosphorus hot metal | |
JP5435106B2 (en) | Hot metal dephosphorization method | |
JP3665600B2 (en) | Hot metal dephosphorization method | |
JP3823877B2 (en) | Method for producing low phosphorus hot metal | |
JPH11323419A (en) | Refining of molten iron | |
JP5333423B2 (en) | Hot metal dephosphorization method | |
JP3823623B2 (en) | Hot metal refining method | |
JP3823890B2 (en) | Method for producing low phosphorus hot metal | |
JP3832386B2 (en) | Method for producing low phosphorus hot metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071001 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4026447 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |