JPH07131018A - Thin film transistor and fabrication thereof - Google Patents

Thin film transistor and fabrication thereof

Info

Publication number
JPH07131018A
JPH07131018A JP15229093A JP15229093A JPH07131018A JP H07131018 A JPH07131018 A JP H07131018A JP 15229093 A JP15229093 A JP 15229093A JP 15229093 A JP15229093 A JP 15229093A JP H07131018 A JPH07131018 A JP H07131018A
Authority
JP
Japan
Prior art keywords
film
gate electrode
gate insulating
forming
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15229093A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
浩司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15229093A priority Critical patent/JPH07131018A/en
Publication of JPH07131018A publication Critical patent/JPH07131018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To provide a thin film transistor having excellent characteristics in which fluctuation of leak current is suppressed at the time of turn OFF of the transistor. CONSTITUTION:An Si oxide 3, an Si nitride 4 and an Si oxide 5 constitute a gate electrode. When the uppermost Si oxide 3 is partially removed, the Si nitride 4 having different etching conditions serves as a stopper and thereby a desired layer can be removed by simply selecting the etchant. Since each part of an element is made uniform before an impurity diffusion layer is formed by ion implantation, a transistor having LDD structure of stabilized impurity profile can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば液晶表示デバイ
スの制御素子として利用される薄膜トランジスタ(Thin
Film Transistor:以下TFTという)及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor (Thin Film) used as a control element of a liquid crystal display device, for example.
Film Transistor: hereinafter referred to as TFT) and its manufacturing method.

【0002】[0002]

【従来の技術】液晶デバイスとしてのLCDにあって
は、近年は単純マトリックス方式からアクティブマトリ
ックス方式の開発が盛んとなっている。アクティブマト
リックス方式には、各画素毎に薄膜トランジスタを付け
たTFT型と非線形ダイオ−ドを付けたダイオ−ド型と
がある。このうち、TFT型は、そのスイッチング特性
と画素容量を利用して、選択期間に印加された電圧を次
の走査まで保持するものであり、大容量で高いコントラ
スト及び中間調を容易に得ることができる。
2. Description of the Related Art In LCDs as liquid crystal devices, the development of a simple matrix system to an active matrix system has become popular in recent years. The active matrix system includes a TFT type in which a thin film transistor is attached to each pixel and a diode type in which a non-linear diode is attached. Among them, the TFT type holds the voltage applied during the selection period until the next scanning by utilizing its switching characteristic and pixel capacitance, and it is possible to easily obtain high contrast and halftone with a large capacitance. it can.

【0003】しかしながら、このTFT型のLCDは、
印加された電圧を保持する、いわゆるTFTのOFF期
間に漏洩電流が生じる問題がある。そこで、この漏洩電
流を減少させるために、LDD構造のトランジスタが採
用されている。LDD構造のトランジスタの製造方法は
種々提案されているが、工程を簡略化するために、自己
整合的に形成する技術が、例えば特開平5−55255
号公報(H01L21/336)に示されている。
However, this TFT type LCD is
There is a problem that leakage current is generated during the so-called TFT OFF period in which the applied voltage is held. Therefore, in order to reduce this leakage current, an LDD structure transistor is adopted. Although various methods of manufacturing a transistor having an LDD structure have been proposed, a technique of forming in self alignment in order to simplify the process is disclosed in, for example, Japanese Patent Laid-Open No. 5-55255
Japanese Patent Publication (H01L21 / 336).

【0004】これを、図2に基づいて説明する.まず、
石英ガラス基板51上に多結晶シリコン膜52を形成
し、その上にゲ−ト絶縁膜としてのシリコン酸化膜53
を形成する(A)。次に、Si酸化膜53の上にド−プ
された多結晶シリコンを堆積し、パタ−ニングしてゲ−
ト電極54とし、さらにその上に、Si酸化膜55を堆
積させる(B)。
This will be described with reference to FIG. First,
A polycrystalline silicon film 52 is formed on a quartz glass substrate 51, and a silicon oxide film 53 as a gate insulating film is formed thereon.
Are formed (A). Next, the doped polycrystalline silicon is deposited on the Si oxide film 53 and patterned to obtain a gate.
And a Si oxide film 55 is deposited thereon (B).

【0005】次に、ゲ−ト電極54の回りをレジスト5
6で覆い、異方性エッチングにより、前記Si酸化膜5
3のレジスト56で覆われていない個所の膜厚を減少さ
せる(C)。レジスト56を除去すると、図2Dのよう
に前記Si酸化膜53は、ゲ−ト電極54の両隣の膜厚
が厚く、その横の膜厚が薄くなっているので、前記ゲ−
ト電極54をマスクとして、上方から前記多結晶シリコ
ン52内にリンイオン57を注入すると、多結晶シリコ
ン52中の不純物濃度は、前記Si酸化膜53の膜厚の
厚い部分は薄く、膜厚の薄い部分は濃くなり、ソ−ス及
びドレインとしてのLDD構造の不純物拡散領域が自己
整合的に形成される。
Next, the resist 5 is wrapped around the gate electrode 54.
6 and cover the Si oxide film 5 by anisotropic etching.
The thickness of the portion not covered with the resist 56 of No. 3 is reduced (C). When the resist 56 is removed, as shown in FIG. 2D, the Si oxide film 53 has a thick film on both sides of the gate electrode 54 and a thin film next to the gate electrode 54.
When phosphorus ions 57 are implanted into the polycrystalline silicon 52 from above using the gate electrode 54 as a mask, the impurity concentration in the polycrystalline silicon 52 is low in the thick portion of the Si oxide film 53 and is thin. The portion becomes thicker, and the impurity diffusion regions of the LDD structure as the source and the drain are formed in a self-aligned manner.

【0006】[0006]

【発明が解決しようとする課題】従来例にあっては、異
方性エッチングによってSi酸化膜53の膜厚を減少さ
せる方式であるので、各素子の膜厚が全て均一になるよ
うにエッチングするにはその調整が非常に困難である。
素子ごとの膜厚が微妙に変化すると、LDD構造の不純
物プロファイルも変化するので、素子ごとに特性がばら
つき易い問題がある。図4はこの従来例の薄膜トランジ
スタのゲ−ト電圧(Vg)−ドレイン電流(Id)特性
を示したものである。エラ−バ−が大きく、トランジス
タオフ時の漏洩電流にばらつきが生じやすいことが分か
る。
In the conventional example, since the film thickness of the Si oxide film 53 is reduced by anisotropic etching, etching is performed so that the film thickness of each element is uniform. Is very difficult to adjust.
If the film thickness of each element changes subtly, the impurity profile of the LDD structure also changes, so there is a problem that the characteristics tend to vary from element to element. FIG. 4 shows the gate voltage (Vg) -drain current (Id) characteristics of this conventional thin film transistor. It can be seen that the error is large and the leakage current when the transistor is off tends to vary.

【0007】特に、LCDにあっては数十万画素を有す
るものであるから、素子のばらつきが表示特性に直接影
響を及ぼすので、各素子の特性をかなり厳密に制御する
必要がある。本発明は薄膜トランジスタ及びその製造方
法に関し、斯かる問題点を解消するものである。
In particular, since the LCD has several hundreds of thousands of pixels, variations in the elements directly affect the display characteristics, so it is necessary to control the characteristics of each element quite strictly. The present invention relates to a thin film transistor and a manufacturing method thereof, and solves such a problem.

【0008】[0008]

【課題を解決するための手段】本発明の薄膜トランジス
タは、絶縁基板の上に形成された半導体膜と、この半導
体膜の上に、2層以上の積層膜であって、少なくとも2
層がエッチング条件の異なる材質で構成され且つ少なく
とも最下層の膜の領域が上層の膜の領域よりも大きくな
るよう形成されたゲート絶縁膜と、このゲ−ト絶縁膜の
上に形成され、ゲ−ト絶縁膜よりも領域の小さいゲ−ト
電極と、前記半導体膜における前記ゲ−ト電極の両側に
形成され、ソ−ス及びドレインとなるLDD構造の不純
物拡散領域とを具備したものである。
A thin film transistor of the present invention comprises a semiconductor film formed on an insulating substrate and a laminated film of two or more layers on the semiconductor film, and at least 2
A gate insulating film whose layers are made of materials having different etching conditions and at least a region of the lowermost film is larger than a region of the upper film, and a gate insulating film formed on the gate insulating film. -A gate electrode having a smaller area than the gate insulating film, and an impurity diffusion region of LDD structure which is formed on both sides of the gate electrode in the semiconductor film and serves as a source and a drain. .

【0009】また、本発明の薄膜トランジスタの製造方
法は、絶縁基板の上に半導体膜を形成する工程と、この
半導体膜の上に、2層以上の積層膜であって、少なくと
も2層がエッチング条件の異なる材質で構成されたゲー
ト絶縁膜を形成する工程と、このゲ−ト絶縁膜の上にゲ
−ト電極を形成する工程と、前記ゲ−ト絶縁膜の少なく
とも最上層を、その領域が下層よりも小さく且つ前記ゲ
−ト電極よりも大きくなるようにエッチング除去する工
程と、前記ゲ−ト電極をマスクとして、前記半導体膜内
に上方からイオンを注入して前記ゲ−ト電極の両側に、
ソ−ス及びドレインとなる不純物拡散領域を形成する工
程とを行うものである。
Further, the method of manufacturing a thin film transistor of the present invention comprises a step of forming a semiconductor film on an insulating substrate and a laminated film of two or more layers on the semiconductor film, wherein at least two layers are etching conditions. Forming a gate insulating film made of different materials, forming a gate electrode on the gate insulating film, and forming at least the uppermost layer of the gate insulating film in the region Etching away so that it is smaller than the lower layer and larger than the gate electrode; and using the gate electrode as a mask, ions are implanted into the semiconductor film from above to form both sides of the gate electrode. To
And a step of forming an impurity diffusion region to be a source and a drain.

【0010】また、本発明の薄膜トランジスタの製造方
法は、絶縁基板の上に半導体膜を形成する工程と、この
半導体膜の上に、2層以上の積層膜であって、少なくと
も2層がエッチング条件の異なる材質で構成されたゲー
ト絶縁膜を形成する工程と、前記ゲ−ト絶縁膜の少なく
とも最上層を、その領域が下層よりも小さくなるように
エッチング除去する工程と、前記ゲ−ト絶縁膜の上に、
このゲ−ト絶縁膜よりも領域の小さなゲ−ト電極を形成
する工程と、前記ゲ−ト電極をマスクとして、前記半導
体膜内に上方からイオンを注入して前記ゲ−ト電極の両
側に、ソ−ス及びドレインとなる不純物拡散領域を形成
する工程とを行うものである。
Further, the method of manufacturing a thin film transistor according to the present invention comprises a step of forming a semiconductor film on an insulating substrate and a laminated film of two or more layers on the semiconductor film, wherein at least two layers are etching conditions. Forming a gate insulating film made of different materials, etching removing at least the uppermost layer of the gate insulating film so that its region becomes smaller than the lower layer, and the gate insulating film On top of the,
Forming a gate electrode having a region smaller than the gate insulating film; and using the gate electrode as a mask, ions are implanted into the semiconductor film from above so that both sides of the gate electrode are formed. , A step of forming an impurity diffusion region serving as a source and a drain.

【0011】[0011]

【作用】即ち、ゲ−ト絶縁膜を、少なくとも2層がエッ
チング条件の異なる積層膜で構成する。すると、エッチ
ングによってゲ−ト絶縁膜の少なくとも最上層の一部を
除去する際に、エッチャントを選択するだけで、エッチ
ング条件の異なる他の層がストッパとなって、所望の層
のみを除去することができる。
That is, at least two layers of the gate insulating film are composed of laminated films having different etching conditions. Then, when removing at least a part of the uppermost layer of the gate insulating film by etching, another layer having different etching conditions serves as a stopper and only the desired layer is removed by simply selecting an etchant. You can

【0012】従って、イオン注入を行う際、不純物拡散
領域を形成する前の素子の各部分の膜厚が、素子ごとに
均一となって、安定した不純物プロファイルのLDD構
造トランジスタを得ることができる。
Therefore, when ion implantation is performed, the film thickness of each part of the element before forming the impurity diffusion region becomes uniform for each element, and an LDD structure transistor having a stable impurity profile can be obtained.

【0013】[0013]

【実施例】本発明の実施例を図1に基づいて説明する。
図1は本発明の薄膜トランジスタを作成するプロセスを
示す断面図である。図1Aにおいて、石英ガラス等の絶
縁基板1の上に、減圧CVD法により、700Åの多結
晶シリコン膜2を形成し、これを1050℃で熱酸化し
て、前記多結晶シリコン膜2の上に200Åのシリコン
酸化膜3を形成する。更に、このSi酸化膜3の上に減
圧CVD法により200Åのシリコン窒化膜4及び60
0Åのシリコン酸化膜5を順次形成する。このSi酸化
膜3、Si窒化膜4及びSi酸化膜5でゲ−ト絶縁膜を
構成する。
EXAMPLE An example of the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view showing a process for producing the thin film transistor of the present invention. In FIG. 1A, a 700Å polycrystalline silicon film 2 is formed on an insulating substrate 1 such as quartz glass by a low pressure CVD method, and this is thermally oxidized at 1050 ° C. A 200 Å silicon oxide film 3 is formed. Further, 200Å silicon nitride films 4 and 60 are formed on the Si oxide film 3 by a low pressure CVD method.
A 0Å silicon oxide film 5 is sequentially formed. The Si oxide film 3, the Si nitride film 4, and the Si oxide film 5 form a gate insulating film.

【0014】次に、図1Bにおいて、前記Si酸化膜5
の上に、減圧CVD法により2000Åの多結晶シリコ
ン膜を堆積し900℃でリン(P)を拡散する。更に、
この多結晶シリコン膜の上に、減圧CVD法により15
00Åのシリコン酸化膜6を堆積させた後、リソグラフ
ィ技術及びエッチング技術を用いて前記多結晶シリコン
膜を加工し、ゲ−ト電極7を形成する。
Next, referring to FIG. 1B, the Si oxide film 5 is formed.
A 2000 Å polycrystalline silicon film is deposited on the above by a low pressure CVD method, and phosphorus (P) is diffused at 900 ° C. Furthermore,
15 is formed on the polycrystalline silicon film by the low pressure CVD method.
After depositing a silicon oxide film 6 of 00Å, the polycrystalline silicon film is processed by using a lithography technique and an etching technique to form a gate electrode 7.

【0015】次に、図1Cにおいて、前記ゲ−ト電極7
に対しオフセット構造を有するレジスト8をパタ−ニン
グし、通常のRIE法(条件:RFパワー500W、処
理室内圧力40mTorr、使用ガスCHF3、ガス流量80
ccm)により異方性エッチングして、前記ゲ−ト酸化膜
4を除去する。この時、前記Si酸化膜5とSi窒化膜
4とはエッチング条件が異なるので、Si窒化膜4がス
トッパとなって、Si酸化膜5のみが除去される。
Next, referring to FIG. 1C, the gate electrode 7 is formed.
On the other hand, a resist 8 having an offset structure was patterned, and a normal RIE method (conditions: RF power 500 W, processing chamber pressure 40 mTorr, used gas CHF 3 , gas flow rate 80) was used.
The gate oxide film 4 is removed by anisotropic etching with a ccm). At this time, since the Si oxide film 5 and the Si nitride film 4 have different etching conditions, the Si nitride film 4 serves as a stopper to remove only the Si oxide film 5.

【0016】そして、図1Dにおいて、イオン注入法に
より、上方からリン(P)イオン9を加速電圧40Ke
V、ド−ズ量2×1015cm-2の条件で、前記多結晶シ
リコン膜2内に注入する。この時、前記レジストのオフ
セット構造により、前記Si酸化膜5の残存している部
分(図1DのP領域)は、図6に示す通り、リンイオン
のピ−ク濃度が、ゲート酸化膜内に存在し、このため、
前記多結晶シリコン膜2内の実効的なド−ズ量が4×1
13cm-2と低濃度の領域となる。
Then, in FIG. 1D, phosphorus (P) ions 9 are accelerated from above by an ion implantation method to an acceleration voltage of 40 Ke.
Implanting into the polycrystalline silicon film 2 under the conditions of V and dose amount 2 × 10 15 cm -2 . At this time, due to the offset structure of the resist, the peak portion of phosphorus ions exists in the remaining portion of the Si oxide film 5 (P region in FIG. 1D) in the gate oxide film as shown in FIG. And for this reason
The effective dose amount in the polycrystalline silicon film 2 is 4 × 1.
It is a low concentration region of 0 13 cm -2 .

【0017】一方、Si酸化膜5の存在しない部分(図
1DのQ領域)は、図5に示す通り、リンイオンのピ−
ク濃度が、前記多結晶シリコン膜2内に存在し、高濃度
領域となる。従って、この低濃度と高濃度の領域とでL
DD構造が構成される。最後に、窒素雰囲気中で900
℃、30分の熱処理を行い、リンを活性化させ、前記ゲ
−ト電極7の両側にソ−ス、ドレインとしてのLDD構
造の不純物拡散領域10、11を形成する。
On the other hand, the portion where the Si oxide film 5 does not exist (Q region in FIG. 1D) has a phosphorus ion peak as shown in FIG.
A high concentration exists in the polycrystalline silicon film 2 and becomes a high concentration region. Therefore, in the low and high density regions, L
The DD structure is constructed. Finally, 900 in a nitrogen atmosphere
A heat treatment is carried out at 30 ° C. for 30 minutes to activate phosphorus to form impurity diffusion regions 10 and 11 of LDD structure as sources and drains on both sides of the gate electrode 7.

【0018】図3は本実施例の薄膜トランジスタのゲ−
ト電圧(Vg)−ドレイン電流(Id)特性を示したも
のである。図4に比べてエラ−バ−が小さく、トランジ
スタオフ時の漏洩電流が安定していることがわかる。
尚、本実施例では、ゲ−ト電極7を加工してから、Si
酸化膜5の一部をエッチング除去したが、逆の工程にし
ても何ら問題はない。
FIG. 3 shows the gate of the thin film transistor of this embodiment.
The graph shows the characteristics of the voltage (Vg) -drain current (Id). It can be seen that the error is smaller than that in FIG. 4 and the leakage current when the transistor is off is stable.
In this embodiment, after the gate electrode 7 is processed, the Si
Although a part of the oxide film 5 was removed by etching, there is no problem even if the process is reversed.

【0019】また、本実施例にあっては、ゲート電極を
Si酸化膜3、Si窒化膜4及びSi酸化膜5の3層構
造とし、Si窒化膜4をストッパとして用いたが、これ
に限定するものではない。例えば、ゲート電極をSi酸
化膜3、Si窒化膜4の2層構造とした場合、Si酸化
膜3がストッパとして機能する。この場合Si窒化膜4
をRIE法によって除去するための条件としては、例え
ば、RFパワー200W、処理室内圧力40mTorr、使
用ガスCHF3+O2、ガス流量CHF380ccm、O2
6ccmとすればよい。そうすることにより、Si窒化膜
4だけが除去され、Si酸化膜3は残存する。
Further, in this embodiment, the gate electrode has a three-layer structure of the Si oxide film 3, the Si nitride film 4 and the Si oxide film 5, and the Si nitride film 4 is used as the stopper, but the present invention is not limited to this. Not something to do. For example, when the gate electrode has a two-layer structure of the Si oxide film 3 and the Si nitride film 4, the Si oxide film 3 functions as a stopper. In this case, Si nitride film 4
The conditions for removing RIE by the RIE method are, for example, RF power 200 W, processing chamber pressure 40 mTorr, used gas CHF 3 + O 2 , gas flow rate CHF 3 80 ccm, O 2 1.
It should be 6 ccm. By doing so, only the Si nitride film 4 is removed and the Si oxide film 3 remains.

【0020】[0020]

【発明の効果】本発明の薄膜トランジスタ及びその製造
方法にあっては、トランジスタオフ時の漏洩電流のばら
つきの少ない特性の良い素子を提供することができる。
According to the thin film transistor and the method of manufacturing the same of the present invention, it is possible to provide an element having good characteristics with little variation in leakage current when the transistor is off.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における薄膜トランジスタの製
造プロセスを示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a thin film transistor in an example of the present invention.

【図2】従来例における図1相当図である。FIG. 2 is a view corresponding to FIG. 1 in a conventional example.

【図3】本発明の実施例における薄膜トランジスタのゲ
−ト電流−ドレイン電流特性図である。
FIG. 3 is a gate current-drain current characteristic diagram of a thin film transistor according to an example of the present invention.

【図4】従来例における薄膜トランジスタのゲ−ト電流
−ドレイン電流特性図である。
FIG. 4 is a gate current-drain current characteristic diagram of a conventional thin film transistor.

【図5】本発明の実施例における薄膜トランジスタのイ
オン注入後の高濃度領域の不純物プロファイルを示す図
である。
FIG. 5 is a diagram showing an impurity profile of a high concentration region after ion implantation of a thin film transistor in an example of the present invention.

【図6】本発明の実施例における薄膜トランジスタのイ
オン注入後の低濃度領域の不純物プロファイルを示す図
である。
FIG. 6 is a diagram showing an impurity profile of a low concentration region after ion implantation of a thin film transistor in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 多結晶シリコン膜(半導体膜) 3 シリコン酸化膜(ゲ−ト絶縁膜) 4 シリコン窒化膜(ゲ−ト絶縁膜) 5 シリコン酸化膜(ゲ−ト絶縁膜) 7 ゲ−ト電極 10、11 不純物拡散領域 DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Polycrystalline silicon film (semiconductor film) 3 Silicon oxide film (gate insulating film) 4 Silicon nitride film (gate insulating film) 5 Silicon oxide film (gate insulating film) 7 Gate electrode 10, 11 Impurity diffusion region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板の上に形成された半導体膜と、
この半導体膜の上に、2層以上の積層膜であって、少な
くとも2層がエッチング条件の異なる材質で構成され且
つ少なくとも最下層の膜の領域が上層の膜の領域よりも
大きくなるよう形成されたゲート絶縁膜と、このゲ−ト
絶縁膜の上に形成され、ゲ−ト絶縁膜よりも領域の小さ
いゲ−ト電極と、前記半導体膜における前記ゲ−ト電極
の両側に形成され、ソ−ス及びドレインとなるLDD
(Lightly Doped Drain)構造の不純物拡散領域とを具
備したことを特徴とする薄膜トランジスタ。
1. A semiconductor film formed on an insulating substrate,
On this semiconductor film, two or more laminated films are formed, at least two layers are made of materials having different etching conditions, and at least the lowermost film region is formed to be larger than the upper film region. A gate insulating film, a gate electrode formed on the gate insulating film and having a smaller area than the gate insulating film, and a gate electrode formed on both sides of the gate electrode in the semiconductor film. -LDD as drain and drain
A thin film transistor comprising an impurity diffusion region having a (Lightly Doped Drain) structure.
【請求項2】 絶縁基板の上に半導体膜を形成する工程
と、この半導体膜の上に、2層以上の積層膜であって、
少なくとも2層がエッチング条件の異なる材質で構成さ
れたゲート絶縁膜を形成する工程と、このゲ−ト絶縁膜
の上にゲ−ト電極を形成する工程と、前記ゲ−ト絶縁膜
の少なくとも最上層を、その領域が下層よりも小さく且
つ前記ゲ−ト電極よりも大きくなるようにエッチング除
去する工程と、前記ゲ−ト電極をマスクとして、前記半
導体膜内に上方からイオンを注入して前記ゲ−ト電極の
両側に、ソ−ス及びドレインとなる不純物拡散領域を形
成する工程とを行うことを特徴とした薄膜トランジスタ
の製造方法。
2. A step of forming a semiconductor film on an insulating substrate, and a laminated film having two or more layers on the semiconductor film,
Forming a gate insulating film having at least two layers made of materials having different etching conditions; forming a gate electrode on the gate insulating film; and forming at least the gate insulating film. Etching the upper layer so that its region is smaller than the lower layer and larger than the gate electrode; and by implanting ions from above into the semiconductor film using the gate electrode as a mask. A method of manufacturing a thin film transistor, which comprises performing a step of forming an impurity diffusion region serving as a source and a drain on both sides of a gate electrode.
【請求項3】 絶縁基板の上に半導体膜を形成する工程
と、この半導体膜の上に、2層以上の積層膜であって、
少なくとも2層がエッチング条件の異なる材質で構成さ
れたゲート絶縁膜を形成する工程と、前記ゲ−ト絶縁膜
の少なくとも最上層を、その領域が下層よりも小さくな
るようにエッチング除去する工程と、前記ゲ−ト絶縁膜
の上に、このゲ−ト絶縁膜よりも領域の小さなゲ−ト電
極を形成する工程と、前記ゲ−ト電極をマスクとして、
前記半導体膜内に上方からイオンを注入して前記ゲ−ト
電極の両側に、ソ−ス及びドレインとなる不純物拡散領
域を形成する工程とを行うことを特徴とした薄膜トラン
ジスタの製造方法。
3. A step of forming a semiconductor film on an insulating substrate, comprising a laminated film of two or more layers on the semiconductor film,
A step of forming a gate insulating film in which at least two layers are made of materials having different etching conditions, and a step of etching and removing at least the uppermost layer of the gate insulating film so that its region becomes smaller than the lower layer. A step of forming a gate electrode having a smaller area than the gate insulating film on the gate insulating film, and using the gate electrode as a mask,
And a step of implanting ions into the semiconductor film from above to form impurity diffusion regions serving as a source and a drain on both sides of the gate electrode.
JP15229093A 1993-06-23 1993-06-23 Thin film transistor and fabrication thereof Pending JPH07131018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15229093A JPH07131018A (en) 1993-06-23 1993-06-23 Thin film transistor and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15229093A JPH07131018A (en) 1993-06-23 1993-06-23 Thin film transistor and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH07131018A true JPH07131018A (en) 1995-05-19

Family

ID=15537299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15229093A Pending JPH07131018A (en) 1993-06-23 1993-06-23 Thin film transistor and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH07131018A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030082139A (en) * 2002-04-16 2003-10-22 엘지.필립스 엘시디 주식회사 TFT for LCD having an offset structure and the fabrication method thereof
KR100526731B1 (en) * 2001-02-06 2005-11-09 가부시키가이샤 히타치세이사쿠쇼 Display apparatus and method of manufacturing the same
JP2006261692A (en) * 2006-05-16 2006-09-28 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
JP2007053343A (en) * 2005-08-13 2007-03-01 Samsung Electronics Co Ltd Thin film transistor substrate and manufacturing method therefor
WO2008062893A1 (en) * 2006-11-24 2008-05-29 Advanced Lcd Technologies Development Center Co., Ltd. Thin-film transistor, thin-film transistor manufacturing method, and display
JP2008153643A (en) * 2006-11-24 2008-07-03 Advanced Lcd Technologies Development Center Co Ltd Thin-film transistor and manufacturing method thereof, and display device
JP2008153641A (en) * 2006-11-24 2008-07-03 Advanced Lcd Technologies Development Center Co Ltd Thin-film transistor and manufacturing method thereof, and display device
JP2010206214A (en) * 2010-05-13 2010-09-16 Mitsubishi Electric Corp Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526731B1 (en) * 2001-02-06 2005-11-09 가부시키가이샤 히타치세이사쿠쇼 Display apparatus and method of manufacturing the same
KR20030082139A (en) * 2002-04-16 2003-10-22 엘지.필립스 엘시디 주식회사 TFT for LCD having an offset structure and the fabrication method thereof
JP2007053343A (en) * 2005-08-13 2007-03-01 Samsung Electronics Co Ltd Thin film transistor substrate and manufacturing method therefor
US8253202B2 (en) 2005-08-13 2012-08-28 Samsung Electronics Co., Ltd. Thin film transistor substrate and method of manufacturing the same
JP2006261692A (en) * 2006-05-16 2006-09-28 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
WO2008062893A1 (en) * 2006-11-24 2008-05-29 Advanced Lcd Technologies Development Center Co., Ltd. Thin-film transistor, thin-film transistor manufacturing method, and display
JP2008153643A (en) * 2006-11-24 2008-07-03 Advanced Lcd Technologies Development Center Co Ltd Thin-film transistor and manufacturing method thereof, and display device
JP2008153641A (en) * 2006-11-24 2008-07-03 Advanced Lcd Technologies Development Center Co Ltd Thin-film transistor and manufacturing method thereof, and display device
JP2010206214A (en) * 2010-05-13 2010-09-16 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US5789283A (en) LDD polysilicon thin film transistor and manufacturing method thereof
JPH0888375A (en) Thin film transistor and its formation
JPH05102483A (en) Film transistor and its manufacturing method
US6184070B1 (en) Thin film transistor and method of manufacturing the same
JP3352191B2 (en) Method for manufacturing thin film transistor
JPH07131018A (en) Thin film transistor and fabrication thereof
JP3171673B2 (en) Thin film transistor and method of manufacturing the same
KR100267755B1 (en) Manufacturing method of thin film transistor
JPH07153956A (en) Thin film transistor and manufacture thereof
JPH11340474A (en) Fabrication of thin film transistor
JPH034566A (en) Thin film field effect transistor and manufacture thereof
JP3131850B2 (en) Method for manufacturing thin film transistor
JP3358284B2 (en) Method for manufacturing thin film transistor
JPH0590589A (en) Thin film transistor and manufacture thereof
JPH03227024A (en) Manufacture of semiconductor device
JPH06112223A (en) Manufacture of thin-film transistor
JP2630195B2 (en) Thin film field effect transistor and method of manufacturing the same
KR100552936B1 (en) Method for fabricating a crystalline thin film transistor including a metal offset region
JP3312541B2 (en) Method for manufacturing thin film semiconductor device
JP3167445B2 (en) Method for manufacturing thin film transistor
KR100307458B1 (en) Method for manufacturing Thin Film Transistor
KR19990076290A (en) Method for manufacturing polycrystalline silicon thin film transistor having LED region
KR100198629B1 (en) Structure of thin film transistor and manufacturing method thereof
JPH0555255A (en) Manufacture of thin film semiconductor device
JPH05259457A (en) Thin film transistor