JPH07118506A - Semiconductor-sealing resin composition and semiconductor device - Google Patents

Semiconductor-sealing resin composition and semiconductor device

Info

Publication number
JPH07118506A
JPH07118506A JP28741393A JP28741393A JPH07118506A JP H07118506 A JPH07118506 A JP H07118506A JP 28741393 A JP28741393 A JP 28741393A JP 28741393 A JP28741393 A JP 28741393A JP H07118506 A JPH07118506 A JP H07118506A
Authority
JP
Japan
Prior art keywords
particle size
inorganic filler
average particle
resin composition
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28741393A
Other languages
Japanese (ja)
Other versions
JP2864415B2 (en
Inventor
Shigeki Ino
茂樹 井野
Toshio Shiobara
利夫 塩原
Koji Futatsumori
浩二 二ッ森
Hidekazu Asano
英一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17717011&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07118506(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP28741393A priority Critical patent/JP2864415B2/en
Publication of JPH07118506A publication Critical patent/JPH07118506A/en
Application granted granted Critical
Publication of JP2864415B2 publication Critical patent/JP2864415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title compsn. with a high thermal conductivity, low stress properties, and excellent flowability and moldability. CONSTITUTION:The compsn. contains an epoxy resin, a curative, and an inorg. filler which comprises 60-100wt.% alumina particles with an average particle size of 5mum or higher based on whole fillers and 0-40wt.% at least either silica particles with an average particle size of 10mum or lower or spherical crystalline silica particles with an average particle size of 70mum or higher and which has a particle size distribution satisfying that the n-value of the Rosin-Rammler equation in the range of particle sizes of from 1mum to the max. size is 0.60-0.93 and that the coefficient of correlation of regression line is 0.990 or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高熱伝導性で、かつ低
応力性、成形性、流動性に優れた半導体封止用樹脂組成
物及び該半導体封止用樹脂組成物の硬化物で封止された
半導体装置に関する。
FIELD OF THE INVENTION The present invention relates to a resin composition for semiconductor encapsulation which has high thermal conductivity and excellent stress resistance, moldability and fluidity, and a cured product of the resin composition for semiconductor encapsulation. The present invention relates to a stopped semiconductor device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】現在、
集積回路を組み込んだ携帯型コンピューターや通信機器
の小型化、高速化が活発化しているためMCM(マルチ
チップモジュール)やASICの汎用化が進んでいる。
このような高速回路は発熱が起こるために高熱伝導性、
低応力性に優れた封止材で封止する必要があり、従来、
線膨張係数が小さく熱伝導性が高いセラミックで封止す
るか、銅板等の高熱伝導金属を放熱板として低応力型樹
脂封止材により封止する方法が主流であった。
2. Description of the Related Art Currently,
MCMs (multi-chip modules) and ASICs are becoming more and more versatile because the miniaturization and speeding up of portable computers and communication devices incorporating integrated circuits are becoming active.
High-speed circuits like this have high thermal conductivity because they generate heat.
It is necessary to seal with a low stress encapsulant,
The mainstream method has been to seal with a ceramic having a small linear expansion coefficient and a high thermal conductivity, or to seal a high thermal conductive metal such as a copper plate as a radiator plate with a low stress type resin sealant.

【0003】しかし、セラミック封止ではコストが高す
ぎて汎用化に向かず、放熱板を用いるとパッケージが厚
くなってしまい小型化が不可能になるという欠点があっ
た。
However, ceramic encapsulation has a drawback that the cost is too high and it is not suitable for general use, and the use of a heat radiating plate causes the package to become thick, which makes it impossible to reduce the size.

【0004】この欠点を解消するために、窒化ケイ素や
窒化アルミ、アルミナ、結晶シリカ等の高熱伝導性無機
質充填材を含有する半導体封止樹脂組成物で封止する方
法(窒化ケイ素:特開昭62−43415号公報、アル
ミナ:特開昭61−218622号公報)があるが、窒
化ケイ素や窒化アルミを無機質充填材として用いると耐
湿信頼性等の信頼性が大きく低下するという欠点があ
る。また、結晶シリカは線膨張係数が大きく、低応力性
を必要とする封止材の充填材には不適当である。
In order to solve this drawback, a method of encapsulating with a semiconductor encapsulating resin composition containing a highly heat-conductive inorganic filler such as silicon nitride, aluminum nitride, alumina, crystalline silica, etc. 62-43415 and alumina: Japanese Patent Laid-Open No. 61-218622), but when silicon nitride or aluminum nitride is used as the inorganic filler, there is a drawback that reliability such as humidity resistance is greatly reduced. Further, crystalline silica has a large linear expansion coefficient and is unsuitable as a filler for a sealing material that requires low stress.

【0005】そこで、現在は窒化ケイ素や窒化アルミよ
りも比較的信頼性を低下させず、線膨張係数も小さいア
ルミナがこのような高熱伝導性無機充填材として好適に
用いられている。
Therefore, at present, alumina, which is relatively less reliable than silicon nitride or aluminum nitride and has a small linear expansion coefficient, is preferably used as such a high thermal conductivity inorganic filler.

【0006】しかしながら、集積回路の高速化が進むに
つれて更なる熱伝導性の向上が必要とされているため
に、高熱伝導性充填材を高充填する技術が必要となって
いる。例えば、アルミナの充填率を上げる方法として
は、平均粒径が8〜35μmの粗粒アルミナに平均粒径
が0.1〜4μmの微粒の球状アルミナ及び/又はシリ
カを充填材の2〜35重量%混合して流動性を向上させ
る方法(特開平4−18445号公報)等が知られてい
るが、この方法では流動性が粒度分布の形状や累積粒度
分布曲線の傾きに左右されることに注目しておらず、結
果として流動性の向上が不十分となっている。
However, as the speed of integrated circuits increases, it is necessary to further improve the thermal conductivity. Therefore, a technique for highly filling the high thermal conductive filler is required. For example, as a method of increasing the filling rate of alumina, coarse alumina having an average particle diameter of 8 to 35 μm and fine spherical alumina and / or silica having an average particle diameter of 0.1 to 4 μm are used in an amount of 2 to 35 parts by weight of the filler. %, There is known a method for improving fluidity by mixing the same (JP-A-4-18445). However, in this method, the fluidity depends on the shape of the particle size distribution and the slope of the cumulative particle size distribution curve. Not paying attention, and as a result, insufficient improvement of liquidity.

【0007】また、溶融シリカを用いる通常の半導体封
止材では、溶融シリカを高充填するためにこの粒度分布
をロジン−ラムラー式のn値が0.6〜1.5の範囲に
なるように調整する等の方法(特開昭63−12802
0号公報)がある。しかし、流動性は粒度分布の形状に
も左右されるためにこの形状を表わす累積粒度分布曲線
と回帰直線との相関係数も考慮しなければならないが、
現在のところ相関係数とn値を指標とする充填材の高充
填化技術は提案されていない。また、溶融シリカの系で
はn値が0.95付近で最も流動性が良好になるが(特
開昭63−128020号公報)、アルミナ含有系では
上記のような粒度分布調整による高流動化は検討されて
いないためにアルミナを高充填できず、低線膨張化や更
なる高熱伝導化は未だ実現されていない。
Further, in a usual semiconductor encapsulant using fused silica, the particle size distribution of the fused silica is adjusted so that the n value of the Rosin-Rammler formula is in the range of 0.6 to 1.5 in order to highly fill the fused silica. Adjustment method (Japanese Patent Laid-Open No. 63-12802)
No. 0). However, since the fluidity also depends on the shape of the particle size distribution, it is necessary to consider the correlation coefficient between the cumulative particle size distribution curve representing this shape and the regression line,
At present, there has not been proposed a technique for increasing the packing density of the packing material using the correlation coefficient and the n value as indexes. Further, in the fused silica system, the fluidity is best when the n value is around 0.95 (Japanese Patent Laid-Open No. 63-128020), but in the alumina-containing system, high fluidity cannot be obtained by adjusting the particle size distribution as described above. Since it has not been examined, it cannot be filled with alumina at a high level, and low linear expansion and further high thermal conductivity have not yet been realized.

【0008】本発明は、上記事情に鑑みなされたもの
で、高熱伝導性で、かつ低応力性、成形性、流動性に優
れた半導体封止用樹脂組成物及び該半導体封止用樹脂組
成物の硬化物によって封止された半導体装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and is a resin composition for semiconductor encapsulation which has high thermal conductivity and excellent stress resistance, moldability, and fluidity, and the resin composition for semiconductor encapsulation. It is an object of the present invention to provide a semiconductor device sealed with the cured product of.

【0009】[0009]

【課題を解決するための手段及び作用】本発明者等は、
上記目的を達成すべく鋭意検討を行った結果、エポキシ
樹脂、硬化剤及び無機質充填材を含む半導体封止用樹脂
組成物において、無機質充填材として下記に示すような
充填材、即ち、(i)平均粒径が5μm以上のアルミナ
粒子を充填材全体の60〜100重量%、及び、(i
i)平均粒径が10μm以下のシリカ粒子もしくは平均
粒径が70μm以上の球状結晶シリカ粒子又はこれらの
混合シリカ粒子を充填材全体の0〜40重量%含有し、
かつ上記(i),(ii)から構成される無機質充填材
の粒径1μmから最大粒径までのロジン−ラムラー式の
n値が0.60〜0.93、回帰直線の相関係数が0.
990以下の粒度分布を有する無機質充填材を使用する
ことにより、高熱伝導性で、低応力な硬化物を与えると
共に、成形性、流動性に優れた半導体封止用樹脂組成物
が得られることを知見し、本発明をなすに至ったもので
ある。
Means and Actions for Solving the Problems The present inventors have
As a result of earnestly studying to achieve the above object, in a resin composition for semiconductor encapsulation containing an epoxy resin, a curing agent and an inorganic filler, a filler as shown below as an inorganic filler, that is, (i) Alumina particles having an average particle size of 5 μm or more are contained in an amount of 60 to 100% by weight of the entire filler, and (i
i) Containing silica particles having an average particle size of 10 μm or less, spherical crystalline silica particles having an average particle size of 70 μm or more, or mixed silica particles thereof in an amount of 0 to 40% by weight of the entire filler,
Moreover, the n value of the rosin-Rammler formula from the particle size of 1 μm to the maximum particle size of the inorganic filler composed of (i) and (ii) is 0.60 to 0.93, and the correlation coefficient of the regression line is 0. .
By using an inorganic filler having a particle size distribution of 990 or less, it is possible to obtain a resin composition for semiconductor encapsulation which is excellent in moldability and fluidity while giving a cured product having high thermal conductivity and low stress. They have found out the present invention and made the present invention.

【0010】以下、本発明につき更に説明すると、本発
明の半導体封止用樹脂組成物は、 (A)エポキシ樹脂 (B)硬化剤 (C)無機質充填材 を必須成分として含有してなる樹脂組成物である。
The present invention will be further described below. The resin composition for semiconductor encapsulation of the present invention comprises (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler as an essential component. It is a thing.

【0011】ここで、本発明に用いる(A)成分のエポ
キシ樹脂としては、その分子中にエポキシ基を少なくと
も2個有する化合物である限り、分子構造、分子量等は
特に限定されず、例えば、ノボラック型、ビスフェノー
ル型、ビフェニル型エポキシ樹脂、ナフタレン骨格含有
エポキシ樹脂等のエポキシ樹脂が挙げられ、これらのエ
ポキシ樹脂を単独又は2種以上混合して用いることがで
きるが、充填材を高充填した封止用樹脂組成物を得るた
めには、溶融粘度の低いビフェニル型エポキシ樹脂を単
独で使用することが特に好ましい。
Here, the epoxy resin of the component (A) used in the present invention is not particularly limited in its molecular structure, molecular weight and the like, as long as it is a compound having at least two epoxy groups in its molecule. Type, bisphenol type, biphenyl type epoxy resin, epoxy resin such as naphthalene skeleton-containing epoxy resin, and the like. These epoxy resins can be used alone or in combination of two or more kinds, but the sealing material is filled with a high amount of filler. In order to obtain the resin composition for use, it is particularly preferable to use the biphenyl type epoxy resin having a low melt viscosity alone.

【0012】一方、本発明に用いる(B)成分の硬化剤
としては、エポキシ樹脂と反応可能な官能基を2個以上
有する化合物である限り、分子構造、分子量等は特に限
定されない。例えば、ノボラック型、ビスフェノール
型、ビフェニル型フェノール樹脂、ナフタレン骨格含有
フェノール樹脂、更にはアミン系硬化剤等の硬化剤が挙
げられ、これらの硬化剤は単独又は2種以上混合して用
いることができる。
On the other hand, the curing agent of the component (B) used in the present invention is not particularly limited in molecular structure, molecular weight and the like as long as it is a compound having two or more functional groups capable of reacting with the epoxy resin. Examples thereof include novolac type, bisphenol type, biphenyl type phenol resin, naphthalene skeleton-containing phenol resin, and further curing agents such as amine curing agents. These curing agents can be used alone or in combination of two or more. .

【0013】なお、(A)成分のエポキシ樹脂、(B)
成分の硬化剤の配合量は特に制限されないが、(A)成
分のエポキシ樹脂中に含まれるエポキシ基1モルに対し
て、(B)成分の硬化剤中に含まれるフェノール性OH
基のモル比が0.5〜1.5であることが好ましい。
The epoxy resin of component (A), (B)
The compounding amount of the curing agent as the component is not particularly limited, but to 1 mol of the epoxy group contained in the epoxy resin as the component (A), the phenolic OH contained in the curing agent as the component (B).
The molar ratio of the groups is preferably 0.5 to 1.5.

【0014】本発明に用いる(C)成分の無機質充填材
は、(i)平均粒径が5μm以上のアルミナ粒子を充填
材全体の60〜100重量%、及び、(ii)平均粒径
が10μm以下のシリカ粒子もしくは平均粒径が70μ
m以上の球状結晶シリカ粒子又はこれらの混合シリカ粒
子を充填材全体の0〜40重量%含有し、かつ上記
(i),(ii)から構成される無機質充填材の粒径1
μmから最大粒径までのロジン−ラムラー式のn値が
0.60〜0.93、回帰直線の相関係数が0.990
以下の粒度分布を有するものである。
The inorganic filler as the component (C) used in the present invention comprises (i) 60 to 100% by weight of the entire filler of alumina particles having an average particle size of 5 μm or more, and (ii) an average particle size of 10 μm. The following silica particles or average particle size is 70μ
A particle size of the inorganic filler containing 1 to 40% by weight of spherical crystalline silica particles of m or more or mixed silica particles thereof in an amount of 0 to 40% by weight of the entire filler, and comprising (i) and (ii) above.
The n value of the Rosin-Rammler formula from μm to the maximum particle size is 0.60 to 0.93, and the correlation coefficient of the regression line is 0.990.
It has the following particle size distribution.

【0015】ここで、充填材の粒度分布測定方法は以下
の通りである。 (1)平均粒径の測定方法 レーザー回折式粒度分布測定装置(シーラス,HR85
0)で測定する。 (2)ロジン−ラムラー式のn値及び相関係数の測定方
法 (1)で得られたデータを以下のロジン−ラムラーの式
によりロジン−ラムラー線図に変換し、最大粒子径から
粒子径1μmまでの回帰直線を引き、直線の傾き(n
値)と回帰直線の相関係数とを算出する R(Dp)=100・exp(−b・Dpn) ここで、Dp ;粒径 R(Dp);最大粒径からDpまでの積算重量% n,b ;定数
The method for measuring the particle size distribution of the filler is as follows. (1) Measuring method of average particle size Laser diffraction type particle size distribution measuring device (Cirrus, HR85
It is measured in 0). (2) Method for measuring n value and correlation coefficient of Rosin-Rammler equation The data obtained in (1) is converted into a Rosin-Rammler diagram by the following Rosin-Rammler equation, and the maximum particle diameter is converted to a particle diameter of 1 μm. Draw a regression line up to
Here is calculated the correlation coefficient between the value) regression line R (Dp) = 100 · exp (-b · Dp n), Dp; particle size R (Dp); accumulated from the maximum particle diameter up to Dp wt% n, b; constant

【0016】上記無機質充填材は、具体的には、まず異
なる任意の粒度分布を有する各種のアルミナ粒子を単独
又は任意の割合に混合して、平均粒径5μm以上のアル
ミナ粒子とする。こうして得られたアルミナ粒子を単独
で又は上記アルミナ粒子と同様にして得られた平均粒径
10μm以下のシリカ粒子及び/又は上記アルミナ粒子
と同様にして得られた平均粒径70μm以上の球状結晶
シリカ粒子と上記割合で混合して、上述したような最適
粒度分布を有する前記無機質充填材を調整する。この
時、このようにして得られる前記無機質充填材の累積粒
度分布曲線の傾きが任意の点で急激な変化をしないよう
にすることが好ましい。累積粒度分布の傾きが任意の点
で急激な変化を示すような粒度分布を有する充填材は、
急激な変化を示さない粒度分布に比べて流動性を低下さ
せる。
Specifically, the above-mentioned inorganic filler is, first, various alumina particles having different arbitrary particle size distributions, alone or mixed at an arbitrary ratio, to obtain alumina particles having an average particle diameter of 5 μm or more. Silica particles having an average particle size of 10 μm or less obtained by using the alumina particles thus obtained alone or in the same manner as the above alumina particles and / or spherical crystalline silica having an average particle size of 70 μm or more obtained in the same manner as the above alumina particles The particles are mixed with the above proportions to prepare the inorganic filler having the optimum particle size distribution as described above. At this time, it is preferable that the gradient of the cumulative particle size distribution curve of the inorganic filler thus obtained does not change suddenly at any point. The filler having a particle size distribution in which the slope of the cumulative particle size distribution shows a sharp change at any point,
Reduces fluidity compared to a particle size distribution that does not show abrupt changes.

【0017】前記無機質充填材のようなアルミナ含有系
では、溶融シリカ系とは異なり、上述したように前記無
機質充填材をロジン−ラムラー式のn値が0.60〜
0.93、より好ましくは0.65〜0.85の範囲の
粒度分布になるように調整した場合にのみ、著しく流動
性を向上できるが、更に充填材を高充填した封止用樹脂
組成物を得るためには、球状アルミナ及び球状シリカを
使用することが特に好ましい。
In the alumina-containing system such as the inorganic filler, unlike the fused silica system, the n-value of the rosin-Rammler formula of the inorganic filler is 0.60 to 0.60 as described above.
The flowability can be remarkably improved only when the particle size distribution is adjusted to 0.93, more preferably 0.65 to 0.85, but a sealing resin composition further filled with a filler is highly added. It is particularly preferable to use spherical alumina and spherical silica in order to obtain

【0018】上記の無機質充填材を含有した樹脂組成物
は、著しく成形性、流動性に優れる樹脂組成物となるた
め無機質充填材の充填量を増加させることが可能とな
り、その結果、高熱伝導性、低応力性に優れた硬化物を
与える。この条件を満たさない無機充填材、即ち平均粒
径5μmより小さいアルミナ粒子を無機質充填材全体の
60重量%以上含有する樹脂組成物は成形性、流動性が
不十分なものとなり、充填材の充填量を増加させられな
くなる。また、アルミナ粒子を無機質充填材全体の60
重量%より少なくすると十分な熱伝導性が得られなくな
る。同様に、シリカを無機質充填材全体の40重量%よ
り多くすると十分な熱伝導性が得られなくなる。更に、
無機質充填材の粒径1μmから最大粒径までのロジン−
ラムラー式のn値が0.60〜0.93以外か又はロジ
ン−ラムラー式の回帰直線の相関係数が0.990より
大きい場合には、著しく成形性、流動性が不十分なもの
となり、その結果、高熱伝導性、低応力性に乏しい硬化
物を与えることとなる。
Since the resin composition containing the above-mentioned inorganic filler becomes a resin composition having remarkably excellent moldability and fluidity, it is possible to increase the filling amount of the inorganic filler, resulting in high thermal conductivity. Gives a cured product excellent in low stress. An inorganic filler that does not satisfy this condition, that is, a resin composition containing 60% by weight or more of alumina particles having an average particle size of less than 5 μm based on the total weight of the inorganic filler has insufficient moldability and fluidity. You cannot increase the amount. In addition, the alumina particles are added to the inorganic filler 60%.
If the amount is less than wt%, sufficient thermal conductivity cannot be obtained. Similarly, if the content of silica is more than 40% by weight of the whole inorganic filler, sufficient thermal conductivity cannot be obtained. Furthermore,
Rosin with a particle size of 1 μm to the maximum particle size of the inorganic filler
When the n value of the Lambler formula is other than 0.60 to 0.93 or when the correlation coefficient of the regression line of the rosin-Rammler formula is larger than 0.990, the formability and fluidity are remarkably insufficient, As a result, a cured product having a high thermal conductivity and a low stress is provided.

【0019】本発明の上記無機質充填材を充填した場合
には、成形性、流動性に優れる樹脂組成物となるため無
機質充填材の充填量を増加させることが可能とあり、そ
の結果、高熱伝導性、低応力性に優れた硬化物を得るこ
とができる。従って、このような点から、十分な高熱伝
導性及び低応力性を得るため樹脂組成物中に上記無機質
充填材を85重量%以上含有させることが望ましい。
When the above-mentioned inorganic filler of the present invention is filled, a resin composition having excellent moldability and fluidity is obtained, so that the filling amount of the inorganic filler can be increased, and as a result, high thermal conductivity can be obtained. A cured product having excellent properties and low stress can be obtained. From this point of view, therefore, it is desirable that the resin composition contains 85% by weight or more of the inorganic filler in order to obtain sufficiently high thermal conductivity and low stress.

【0020】なお、本発明において、前記無機質充填材
はシランカップリング剤、チタネートカップリング剤な
どのカップリング剤で予め表面処理することが低吸水
性、耐熱衝撃性及び耐クラック性を向上させる点で好ま
しい。カップリング剤としてはγ−グリシドキシプロピ
ルトリメトキシシラン、γ−グリシドキシプロピルメチ
ルジエトキシシラン、β−(3,4−エポキシシクロヘ
キシル)エチルトリメトキシシランのようなエポキシシ
ラン、N−β−(アミノエチル)−γ−アミノプロピル
トリメトキシシラン、γ−アミノプロピルトリエトキシ
シラン、N−フェニル−γ−アミノプロピルトリメトキ
シシランのようなアミノシラン、γ−メルカプトトリメ
トキシシランのようなメルカプトシランなどのシランカ
ップリング剤を用いることが好ましい。ここで表面処理
に用いるカップリング剤量及び表面処理方法については
特に制限されない。
In the present invention, the surface treatment of the inorganic filler with a coupling agent such as a silane coupling agent or a titanate coupling agent improves low water absorption, thermal shock resistance and crack resistance. Is preferred. As the coupling agent, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, epoxysilane such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N-β- (Aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, aminosilane such as N-phenyl-γ-aminopropyltrimethoxysilane, mercaptosilane such as γ-mercaptotrimethoxysilane, and the like. It is preferable to use a silane coupling agent. Here, the amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

【0021】また、本発明において、(A)エポキシ樹
脂と(B)硬化剤との硬化反応を促進するため硬化触媒
を用いることが好ましい。硬化触媒は硬化反応を促進さ
せるものならば特に限定されず、例えばトリフェニルホ
スフィン、トリブチルホスフィン、トリ(p−メチルフ
ェニル)ホスフィン、トリ(ノニルフェニル)ホスフィ
ン、トリフェニルホスフィン・トリフェニルボレート、
テトラフェニルホスフィン・テトラフェニルボレートな
どのリン系化合物、トリエチルアミン、ベンジルジメチ
ルアミン、α−メチルベンジルジメチルアミン、1,8
−ジアザビシクロ(5.4.0)ウンデセン−7などの
第3級アミン化合物、2−メチルイミダゾール、2−フ
ェニルイミダゾール、2−フェニル−4−メチルイミダ
ゾールなどのイミダゾール化合物等を使用することがで
きる。
Further, in the present invention, it is preferable to use a curing catalyst in order to accelerate the curing reaction between the epoxy resin (A) and the curing agent (B). The curing catalyst is not particularly limited as long as it accelerates the curing reaction, and examples thereof include triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, triphenylphosphine / triphenylborate,
Phosphorus compounds such as tetraphenylphosphine and tetraphenylborate, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 1,8
-A tertiary amine compound such as diazabicyclo (5.4.0) undecene-7, an imidazole compound such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and the like can be used.

【0022】本発明の封止樹脂組成物はエポキシ樹脂、
硬化剤及び前記無機質充填材を必須成分とするが、本発
明の目的に反しない限度において、また、必要に応じ
て、ワツクス類、難燃剤、着色剤等を添加配合すること
ができる。
The encapsulating resin composition of the present invention is an epoxy resin,
Although the curing agent and the inorganic filler are essential components, waxes, flame retardants, colorants, and the like can be added and blended as long as the object of the present invention is not impaired.

【0023】本発明の封止樹脂組成物を成形材料として
調製する場合の一般的な方法としては、エポキシ樹脂、
硬化剤、前記無機質充填材、その他の添加物を所定の組
成比で配合し、これをミキサー等によって十分均一に混
合した後、熱ロール又はニーダー等による溶融混合処理
を行い、次いで冷却固化させ、適当な大きさに粉砕して
成形材料とすることができる。こうして得られた成形材
料は、半導体装置をはじめとする電子部品或いは電気部
品の封止、被覆に用いれば優れた特性と信頼性とを付与
させることができる。
As a general method for preparing the encapsulating resin composition of the present invention as a molding material, epoxy resin,
A curing agent, the inorganic filler, and other additives are blended at a predetermined composition ratio, and after sufficiently mixing them with a mixer or the like, a melt mixing process with a hot roll or a kneader is performed, followed by cooling and solidification, It can be crushed to an appropriate size to obtain a molding material. The molding material thus obtained can be provided with excellent characteristics and reliability when it is used for sealing or covering electronic components such as semiconductor devices or electrical components.

【0024】本発明の半導体装置は、上記の封止用樹脂
組成物を用いて、半導体素子を封止することにより容易
に製造することができる。封止を行う半導体素子として
は、例えば集積回路、トランジスタ、サイリスタ、ダイ
オード等が挙げられるが特に限定されるものではない。
封止の最も一般的な方法としては、トランスファー成形
法が挙げられる。また、上記封止樹脂組成物は成形の後
に更に加熱して後硬化させることが好ましい。ここで、
後硬化は150℃以上の加熱条件で行うことが好まし
い。
The semiconductor device of the present invention can be easily manufactured by encapsulating a semiconductor element using the encapsulating resin composition. Examples of the semiconductor element for sealing include, but are not limited to, integrated circuits, transistors, thyristors, diodes, and the like.
The transfer molding method is mentioned as the most general method of sealing. Further, it is preferable that the encapsulating resin composition is further heated after molding to be post-cured. here,
Post-curing is preferably performed under heating conditions of 150 ° C. or higher.

【0025】[0025]

【発明の効果】本発明の封止樹脂組成物は、特定の粒度
分布の高熱伝導性充填材を従来の高熱伝導性封止樹脂組
成物よりも高充填することができるため半導体封止用と
して優れた高熱伝導性、低応力性、成形性を有すると共
に流動性に優れる。そして、本発明の封止樹脂組成物の
硬化物で封止した半導体封止装置は、高熱伝導性、低応
力性に優れると共に、特性のバランスが良好であり、信
頼性の高いものである。
EFFECT OF THE INVENTION The encapsulating resin composition of the present invention can be highly filled with a high thermal conductive filler having a specific particle size distribution as compared with a conventional high thermal conductive encapsulating resin composition, and thus is used for semiconductor encapsulation. It has excellent high thermal conductivity, low stress, and moldability, as well as excellent fluidity. The semiconductor encapsulating device encapsulated with the cured product of the encapsulating resin composition of the present invention is excellent in high thermal conductivity and low stress, has a good balance of characteristics, and is highly reliable.

【0026】[0026]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に示すが、本発明は下記の実施例に制限されるもので
はない。なお、以下の例において部はいずれも重量部で
ある。
EXAMPLES Hereinafter, the present invention will be specifically shown by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following examples, all parts are parts by weight.

【0027】〔実施例、比較例〕下記成分を熱2本ロー
ルにて均一に溶融混合し、冷却、粉砕して、実施例1〜
7、比較例1〜4の半導体封止用樹脂組成物を得た。な
お、比較例4の充填材は、特開平4−18445号公報
において最も良好な流動性を示している粒度分布(平均
粒径が24μmのアルミナを4.7重量%、平均粒径が
10μmのアルミナを81.3重量%、平均粒径が1μ
mの微粒の球状シリカを14.1重量%含有する充填
材)を有する高熱伝導性充填材を用いたものである。組成 エポキシ樹脂 54.5部 (油化シェルエポキシ社製,TX−4000H,エポキシ当量190g/モル) フェノール樹脂 24.3部 (三井東圧化学社製,ミレックスXL−225,水酸基当量168g/モル) フェノール樹脂 15.0部 (明和化成社製,MEH7710,水酸基当量137g/モル) ブロム化エポキシ樹脂 6.2部 (旭チバ社製,AER755,エポキシ当量459g/モル) 硬化触媒(トリフェニルホスフィン) 1.5部 三酸化アンチモン 8.0部 着色剤(三菱カーボンブラック) 1.5部 シランカップリング剤(信越化学工業社製,KBM−403) 2.0部 離型剤(カルナバワックス)
[Examples and Comparative Examples] The following components were uniformly melt-mixed with a hot two-roll, cooled and pulverized to obtain Examples 1 to 1.
7. Resin compositions for semiconductor encapsulation of Comparative Examples 1 to 4 were obtained. It should be noted that the filler of Comparative Example 4 exhibits the best fluidity in Japanese Patent Laid-Open No. 18445/1992 (the particle size distribution is 4.7% by weight of alumina having an average particle size of 24 μm and the average particle size of 10 μm). 81.3% by weight of alumina, average particle size is 1μ
m is a filler having a high thermal conductivity of 14.1% by weight of fine spherical silica particles. Composition Epoxy resin 54.5 parts (Yukaka Shell Epoxy Co., TX-4000H, epoxy equivalent 190 g / mol) Phenolic resin 24.3 parts (Mitsui Toatsu Chemical Co., Inc., Milex XL-225, hydroxyl equivalent 168 g / mol) Phenolic resin 15.0 parts (MEH7710, manufactured by Meiwa Kasei Co., hydroxyl equivalent 137 g / mol) Brominated epoxy resin 6.2 parts (AER755, epoxy equivalent 459 g / mol, manufactured by Asahi Ciba) Curing catalyst (triphenylphosphine) 1 0.5 parts Antimony trioxide 8.0 parts Colorant (Mitsubishi carbon black) 1.5 parts Silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM-403) 2.0 parts Release agent (carnauba wax)

【0028】次に、得られた組成物につき下記諸試験を
行った。結果を表1,2に示す。 (イ)スパイラルフロー値 EMMI規格に準じた金型を使用して、175℃、70
kg/cm2、成形時間120秒の条件で測定した。 (ロ)熱伝導率 175℃、70kg/cm2、成形時間120秒の条件
で成形し、180℃、4時間後加熱して得られた50m
mφ×6mmの試験片を上部ヒーターと熱量計及び下部
ヒーターの間にサンドイッチ状に挿入し、空気圧にて一
定に密着させ、50℃で定常状態に達した後の試験片両
面間の温度差、熱量計出力から自動的に熱コンダクタン
スを算出し、この熱コンダクタンスの値と試験片の厚さ
との積から熱伝導率を求めた。 (ハ)成形性 100ピンQFP(パッケージサイズ:14mm×20
mm×2.2mm)の金型を用い、トランスファー成形
機により175℃、70kg/cm2、2分の条件で成
形し、この時の外観不良(ボイド)を測定した。
Next, the following tests were conducted on the obtained composition. The results are shown in Tables 1 and 2. (A) Spiral flow value Using a mold conforming to the EMMI standard, 175 ° C, 70
It was measured under the conditions of kg / cm 2 and molding time of 120 seconds. (B) Thermal conductivity of 175 ° C., 70 kg / cm 2 , molding time of 120 seconds, and molding at 120 ° C. for 4 hours, and heating after 50 m
A test piece of mφ x 6 mm was inserted between the upper heater and the calorimeter and the lower heater in a sandwich shape, and was brought into constant contact with air pressure, and the temperature difference between both surfaces of the test piece after reaching a steady state at 50 ° C, The thermal conductance was automatically calculated from the calorimeter output, and the thermal conductivity was determined from the product of the value of this thermal conductance and the thickness of the test piece. (C) Formability 100-pin QFP (Package size: 14 mm x 20
(mm × 2.2 mm) using a transfer molding machine under the conditions of 175 ° C., 70 kg / cm 2 , and 2 minutes, and the appearance defect (void) at this time was measured.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】以上の実施例より、本発明の高熱伝導性無
機質充填材を含む封止樹脂組成物の硬化物は、優れた高
熱伝導性、低応力性を有すると共に流動性に優れ、そし
てボイド等の発生もなく、成形性にも優れるものである
ことが認められる。
From the above examples, the cured product of the encapsulating resin composition containing the high thermal conductive inorganic filler of the present invention has excellent high thermal conductivity, low stress, excellent fluidity, and voids. It is recognized that the moldability is excellent and the moldability is excellent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 (72)発明者 二ッ森 浩二 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内 (72)発明者 浅野 英一 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01L 23/31 (72) Inventor Koji Nimori Mitsuda-cho, Usui-gun, Gunma Prefecture 1 Hitomi Hitoshi 10 Shin-Etsu Chemical Industrial Co., Ltd. Silicon Electronic Materials Research Laboratory (72) Inventor Eiichi Asano 1 Hitomi, Osamu Matsuida-cho, Usui-gun, Gunma Shin-Etsu Chemical Co., Ltd. Silicon Electronic Materials Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂と硬化剤と無機質充填材と
を含有する半導体封止用樹脂組成物において、上記無機
質充填材として、(i)平均粒径が5μm以上のアルミ
ナ粒子を充填材全体の60〜100重量%、及び、(i
i)平均粒径が10μm以下のシリカ粒子もしくは平均
粒径が70μm以上の球状結晶シリカ粒子又はこれらの
混合シリカ粒子を充填材全体の0〜40重量%含有し、
かつ上記(i),(ii)から構成される無機質充填材
の粒径1μmから最大粒径までのロジン−ラムラー式の
n値が0.60〜0.93、回帰直線の相関係数が0.
990以下の粒度分布を有する無機質充填材を使用した
ことを特徴とする半導体封止用樹脂組成物。
1. A semiconductor encapsulating resin composition containing an epoxy resin, a curing agent, and an inorganic filler, wherein (i) alumina particles having an average particle size of 5 μm or more are used as the inorganic filler in the entire filler. 60 to 100% by weight, and (i
i) Containing silica particles having an average particle size of 10 μm or less, spherical crystalline silica particles having an average particle size of 70 μm or more, or mixed silica particles thereof in an amount of 0 to 40% by weight of the entire filler,
Moreover, the n value of the rosin-Rammler formula from the particle size of 1 μm to the maximum particle size of the inorganic filler composed of (i) and (ii) is 0.60 to 0.93, and the correlation coefficient of the regression line is 0. .
A resin composition for semiconductor encapsulation, comprising an inorganic filler having a particle size distribution of 990 or less.
【請求項2】 請求項1記載の組成物の硬化物で封止し
た半導体装置。
2. A semiconductor device encapsulated with the cured product of the composition according to claim 1.
JP28741393A 1993-10-22 1993-10-22 Resin composition for semiconductor encapsulation and semiconductor device Expired - Fee Related JP2864415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28741393A JP2864415B2 (en) 1993-10-22 1993-10-22 Resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28741393A JP2864415B2 (en) 1993-10-22 1993-10-22 Resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JPH07118506A true JPH07118506A (en) 1995-05-09
JP2864415B2 JP2864415B2 (en) 1999-03-03

Family

ID=17717011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28741393A Expired - Fee Related JP2864415B2 (en) 1993-10-22 1993-10-22 Resin composition for semiconductor encapsulation and semiconductor device

Country Status (1)

Country Link
JP (1) JP2864415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273570A (en) * 2003-03-05 2004-09-30 Sanyo Electric Co Ltd Resin sealed semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273570A (en) * 2003-03-05 2004-09-30 Sanyo Electric Co Ltd Resin sealed semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2864415B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP2874089B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP3479827B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2003165893A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPH1167982A (en) Epoxy resin composition and semiconductor device
JPH10173103A (en) Epoxy resin compsn. for sealing semiconductor
JP2864415B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP3209664B2 (en) Resin composition for semiconductor encapsulation
JP2954412B2 (en) Epoxy resin composition
JPH10204257A (en) Epoxy resin composition and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JPH0841294A (en) Insulating resin paste and semiconductor apparatus
JP2951092B2 (en) Epoxy resin composition
JP4020632B2 (en) Epoxy resin composition and semiconductor device
JPH10182947A (en) Epoxy resin composition for sealing and semiconductor device using the same
JPH11181236A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP3235798B2 (en) Epoxy resin composition
JP3417283B2 (en) Epoxy resin composition for sealing and semiconductor device sealing method
JP2862777B2 (en) Epoxy resin composition
JP3309688B2 (en) Method for producing epoxy resin composition
JP2954413B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP3032067B2 (en) Epoxy resin composition
JP4379972B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees