JP3209664B2 - Resin composition for semiconductor encapsulation - Google Patents

Resin composition for semiconductor encapsulation

Info

Publication number
JP3209664B2
JP3209664B2 JP24405295A JP24405295A JP3209664B2 JP 3209664 B2 JP3209664 B2 JP 3209664B2 JP 24405295 A JP24405295 A JP 24405295A JP 24405295 A JP24405295 A JP 24405295A JP 3209664 B2 JP3209664 B2 JP 3209664B2
Authority
JP
Japan
Prior art keywords
weight
less
particle size
silica
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24405295A
Other languages
Japanese (ja)
Other versions
JPH09124774A (en
Inventor
賢至 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP24405295A priority Critical patent/JP3209664B2/en
Publication of JPH09124774A publication Critical patent/JPH09124774A/en
Application granted granted Critical
Publication of JP3209664B2 publication Critical patent/JP3209664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、熱伝導性に優れた
高信頼性の半導体封止用樹脂組成物に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable resin composition for semiconductor encapsulation having excellent thermal conductivity.

【0002】[0002]

【従来の技術】トランジスター、IC、LSI等の半導
体素子の封止方法としてエポキシ樹脂組成物のトランス
ファー成形による方法が、低コスト大量生産に適した方
法として採用され今日に至っている。一方、半導体パッ
ケージは特にLSIで高集積化多ピン化、高速化が進み
素子の発熱量が増大してきている。この素子の発熱は高
速化の妨げとなるため、従来リードフレームを銅にし、
更に銅の放熱板をパッケージに付けたり、Siチップを
搭載しているダイパッドを厚くしパッケージ下面より放
熱させたりしてきたが、構造が複雑になったりコストア
ップの問題があった。また封止樹脂組成物の充填材とし
て熱伝導性に優れた結晶シリカ、アルミナ、窒化珪素の
いずれかを主成分として用い、パッケージの熱放散性を
向上させてきたが、熱放散性に限界があったり金型摩耗
の問題があった。
2. Description of the Related Art As a method for encapsulating semiconductor devices such as transistors, ICs and LSIs, a method by transfer molding of an epoxy resin composition has been adopted as a method suitable for mass production at low cost, and has been used up to the present day. On the other hand, semiconductor packages, particularly LSIs, are becoming more highly integrated, have more pins, operate at higher speeds, and generate more heat. Since the heat generated by this element hinders high speed operation, the conventional lead frame is made of copper,
Further, a copper heat radiating plate is attached to the package, and a die pad on which the Si chip is mounted is made thicker to radiate heat from the lower surface of the package. However, there have been problems of a complicated structure and an increase in cost. In addition, as a filler for the sealing resin composition, any one of crystalline silica, alumina, and silicon nitride, which have excellent thermal conductivity, is used as a main component to improve the heat dissipation of the package, but the heat dissipation is limited. Or there was a problem of mold wear.

【0003】[0003]

【発明が解決しようとする課題】本発明はかかる半導体
製品の熱放散性を飛躍的に改善するための半導体封止用
樹脂組成物を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a resin composition for semiconductor encapsulation for dramatically improving the heat dissipation of such semiconductor products.

【0004】[0004]

【課題を解決するための手段】本発明は、エポキシ樹
脂、フェノール樹脂硬化剤、硬化促進剤、窒化アルミニ
ウム及びシリカを必須成分とし、全組成物中に窒化アル
ミニウム及びシリカを80〜96重量%含み、かつ窒化
アルミニウム及びシリカの合計100重量%中に、
(a)平均粒径が10〜30μm、最大粒径が200μ
m以下の窒化アルミニウムを30〜95重量%、(b)
平均粒径0.1〜1.0μm、最大粒径5μm以下の球
状微粒シリカを2〜10重量%、(c)平均粒径10〜
30μm、最大粒径74μm以下の球状シリカを3〜6
8重量%含有することを特徴とする半導体封止用樹脂組
成物である。
The present invention comprises an epoxy resin, a phenol resin curing agent, a curing accelerator, aluminum nitride and silica as essential components, and contains 80 to 96% by weight of aluminum nitride and silica in the total composition. And in a total of 100% by weight of aluminum nitride and silica,
(A) The average particle size is 10 to 30 μm and the maximum particle size is 200 μm
m to 30% by weight of aluminum nitride, (b)
2 to 10% by weight of spherical fine silica having an average particle size of 0.1 to 1.0 μm and a maximum particle size of 5 μm or less;
Spherical silica having a particle size of 30 μm and a maximum particle size of 74 μm or less
It is a resin composition for semiconductor encapsulation characterized by containing 8% by weight.

【0005】[0005]

【発明の実施の態様】本発明に用いられるエポキシ樹脂
は、2個以上のエポキシ基を含むものならば特には限定
しない。例えば、クレゾールノボラック型エポキシ、三
官能エポキシ、ビフェニル型エポキシ、ビスフェノール
型エポキシ、臭素化エポキシ等が挙げられる。これらの
エポキシ樹脂は、単独でも混合して用いてもよい。フェ
ノール樹脂硬化剤は、2個以上の水酸基を含むものなら
ば特には限定しない。例えば、フェノールノボラック
型、クレゾールノボラック型、フェノールアラルキル
型、ジシクロペンタジエン型及びこれらの変性樹脂が挙
げられる。これらのフェノール樹脂は、単独でも混合し
て用いてもよい。又これらの硬化剤の配合量としてはエ
ポキシ樹脂のエポキシ基数とフェノール樹脂硬化剤の水
酸基数を合わせるように配合することが好ましい。硬化
促進剤としては、イミダゾール、有機ホスフィン、3級
アミン、1,8−ジアザビシクロウンデセンが挙げられ
るが特に限定するものではない。これらは、単独でも混
合して用いてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The epoxy resin used in the present invention is not particularly limited as long as it contains two or more epoxy groups. For example, cresol novolak type epoxy, trifunctional epoxy, biphenyl type epoxy, bisphenol type epoxy, brominated epoxy and the like can be mentioned. These epoxy resins may be used alone or as a mixture. The phenol resin curing agent is not particularly limited as long as it contains two or more hydroxyl groups. Examples include phenol novolak type, cresol novolak type, phenol aralkyl type, dicyclopentadiene type, and modified resins thereof. These phenol resins may be used alone or in combination. The amount of these curing agents is preferably such that the number of epoxy groups of the epoxy resin and the number of hydroxyl groups of the phenolic resin curing agent match. Examples of the curing accelerator include, but are not particularly limited to, imidazole, organic phosphine, tertiary amine, and 1,8-diazabicycloundecene. These may be used alone or as a mixture.

【0006】本発明の特徴は、 窒化アルミニウム(以
下ALNという)をSiO 2 からなる無機質で被覆され
た(a)の特性を有するALN、(b)の特性を有する
球状微粒シリカ及び(c)の特性を有する球状シリカを
最適配合することであり、これにより金型摩耗の少ない
高信頼性、高熱伝導性樹脂組成物を得ることができる。
ALN及びシリカは、全組成物中に80〜96重量%含
み、かつALN及びシリカの合計100重量%中に、
(a)平均粒径が10〜30μm、最大粒径が200μ
m以下のALNを30〜95重量%、(b)平均粒径
0.1〜1.0μm、最大粒径5μm以下の球状微粒シ
リカを2〜10重量%、(c)平均粒径10〜30μ
m、最大粒径74μm以下の球状シリカを3〜68重量
%含むものである。
A feature of the present invention is that aluminum nitride (hereinafter referred to as ALN) is coated with an inorganic material composed of SiO 2, ALN having the characteristics of (a), spherical fine-grained silica having the characteristics of (b), and (c). This means that spherical silica having characteristics is optimally blended, whereby a highly reliable and highly thermally conductive resin composition with less mold wear can be obtained.
ALN and silica comprise 80-96% by weight in the total composition and in a total of 100% by weight of ALN and silica,
(A) The average particle size is 10 to 30 μm and the maximum particle size is 200 μm
m to 30% by weight of ALN, (b) 2 to 10% by weight of spherical fine silica having an average particle size of 0.1 to 1.0 μm and a maximum particle size of 5 μm or less, and (c) 10 to 30 μm of average particle size.
m, containing 3 to 68% by weight of spherical silica having a maximum particle size of 74 μm or less.

【0007】ALNのみでは成形時の流動性、充填性、
バリに問題があるが、本発明の配合割合とすることによ
り流動性、充填性、バリに優れ、かつ高熱伝導性に優れ
た樹脂組成物が得られる。ALNは平均粒径が10〜3
0μm、最大粒径が200μm以下である。平均粒径が
10〜30μmのいずれかを外れると流動性とバリが悪
くなる。最大粒怪が200μmを越えるとゲート詰まり
による未充填が発生する。ALN及びシリカの合計10
0重量%中に、ALNは30〜95重量%含むが30重
量%未満だと十分な熱伝導性が得られず、96重量%を
越えると流動性が劣り未充填が発生し、またバリ悪くな
る。球状微粒シリカはバリ止めと流動性向上に必須であ
り、平均粒径0.1〜1.0μm、最大粒径5μm以下
である。平均粒径0.1〜1.0μmでないと流動性と
バリに効果がない。最大粒径5μmを越えると流動性と
バリに効果がない。更に、ALN及びシリカの合計10
0重量%中に、2〜10重量%含むが、2重量%未満又
は10重量%を越えると優れた流動性が得られない。球
状シリカは流動性の確保に必須であり、平均粒径l0〜
30μm、 最大粒径74μm以下である。平均粒径1
0〜30μmのいずれかを外れると流動性の向上がな
い。最大粒径74μmを越えると充填性が低下し好まし
くない。ALN及びシリカの合計100重量%中に、3
〜68重量%含むが3重量%未満又は68重量%を越え
ると、熱伝導性と流動性のバランスが取れない。ALN
とシリカとの配合比は重要であり本発明の範囲で適正な
成形性と十分な熱伝導性が得られる。粒度、平均粒怪
は、レーザーを用いた粒度測定器(堀場製作所LA−5
00)を用いて測定した。またALNがSiO 2 からな
る無機質で被覆され、かつ被覆ALNの重量変化率が1
25℃、相対湿度100%、500時間のプレッシャー
クッカー処理後に5重量%以下である必要がある。5重
量%以下でないとALNの加水分解が大きくなり成形品
に膨れが発生する。ALN自体の耐加水分解性を押さえ
ることにより半導体素子の耐湿信頼性を保証できる。こ
の無機質被覆ALNは、ダウケミカル、東洋アルミニウ
ム(株)が生産しており市場より容易に入手できる。
[0007] With ALN alone, the fluidity and filling property during molding,
Although there is a problem with burrs, a resin composition having excellent fluidity, filling properties, burrs, and high thermal conductivity can be obtained by setting the blending ratio of the present invention. ALN has an average particle size of 10 to 3
0 μm and the maximum particle size is 200 μm or less. If the average particle size is out of any of 10 to 30 μm, the fluidity and the burr are deteriorated. When the maximum grain size exceeds 200 μm, unfilling occurs due to gate clogging. Total 10 of ALN and silica
In 0% by weight, ALN contains 30 to 95% by weight, but if it is less than 30% by weight, sufficient thermal conductivity cannot be obtained, and if it exceeds 96% by weight, the fluidity is poor and unfilled, and burrs are poor. Become. Spherical fine silica is essential for deburring and improving fluidity, and has an average particle size of 0.1 to 1.0 μm and a maximum particle size of 5 μm or less. If the average particle size is not 0.1 to 1.0 μm, there is no effect on fluidity and burrs. If the maximum particle size exceeds 5 μm, there is no effect on fluidity and burrs. Furthermore, ALN and silica in total of 10
Although 0 to 10% by weight is contained in 0% by weight, excellent fluidity cannot be obtained if it is less than 2% by weight or exceeds 10% by weight. Spherical silica is essential for ensuring fluidity, and has an average particle size of l0 to
30 μm, maximum particle size 74 μm or less. Average particle size 1
If it is outside any of 0 to 30 μm, there is no improvement in fluidity. If the maximum particle size exceeds 74 μm, the filling property is undesirably reduced. In a total of 100% by weight of ALN and silica, 3
When the content is less than 3% by weight or more than 68% by weight, thermal conductivity and fluidity cannot be balanced. ALN
The mixing ratio between silica and silica is important, and proper moldability and sufficient thermal conductivity can be obtained within the scope of the present invention. Particle size and average particle size are measured using a laser-based particle size analyzer (Horiba, Ltd. LA-5)
00). ALN is coated with an inorganic material of SiO 2 , and the weight change rate of the coated ALN is 1%.
It is required to be 5% by weight or less after the pressure cooker treatment at 25 ° C. and a relative humidity of 100% for 500 hours. If the content is not more than 5% by weight, the hydrolysis of ALN becomes large, and the molded product swells. By suppressing the hydrolysis resistance of the ALN itself, the moisture resistance reliability of the semiconductor element can be guaranteed. This inorganic-coated ALN is produced by Dow Chemical, Toyo Aluminum Co., Ltd. and can be easily obtained from the market.

【0008】本発明の半導体封止用樹脂組成物の熱膨張
係数は、ガラス転移温度以下で2.0×10-51/℃以
下であることが必要である。2.0×10-51/℃を越
えると、特にLSIの用途で耐温度サイクル性が悪化す
る。また樹脂組成物の熱伝導率は、1.25W/m℃以
上が必要である。これ未満だと特にLSIの熱放散性が
悪くなる。本発明は、エポキシ樹脂、フェノール樹脂硬
化剤、硬化促進剤、ALN及びシリカを必須成分とする
が、これら以外に必要に応じてシランカップリング剤等
のフィラー表面処理剤、ブロム化エポキシ樹脂、三酸化
アンチモン等の難燃剤、カーボンブラック、ベンガラ等
の着色剤、天然ワックス、合成ワックス等の離型剤及び
シリコーンオイル、ゴム等の低応力添加剤その他種々の
添加剤を適宜配合しても差し支えない。又、本発明の半
導体封止用樹脂組成物を成形材料として製造するには、
エポキシ樹脂、フェノール樹脂硬化剤、硬化促進剤、A
LN及びシリカ、その他の添加剤をミキサー等によって
充分に均一に混合した後、更に熱ロール又はニーダー等
で溶融混練し、冷却粉砕して封止材料とすることができ
る。
The coefficient of thermal expansion of the resin composition for encapsulating a semiconductor of the present invention must be 2.0 × 10 −5 1 / ° C. or lower at a glass transition temperature or lower. If it exceeds 2.0 × 10 −5 1 / ° C., the temperature cycle resistance deteriorates especially in LSI applications. Further, the thermal conductivity of the resin composition needs to be 1.25 W / m ° C. or more. If it is less than this, the heat dissipation property of the LSI particularly deteriorates. The present invention comprises an epoxy resin, a phenolic resin curing agent, a curing accelerator, ALN and silica as essential components. In addition to these, a filler surface treating agent such as a silane coupling agent, a brominated epoxy resin, Flame retardants such as antimony oxide, coloring agents such as carbon black and red iron oxide, release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil and rubber, and other various additives may be appropriately compounded. . Further, in order to produce the resin composition for semiconductor encapsulation of the present invention as a molding material,
Epoxy resin, phenolic resin curing agent, curing accelerator, A
After sufficiently mixing LN, silica, and other additives uniformly using a mixer or the like, the mixture is melt-kneaded with a hot roll or a kneader or the like, and then cooled and pulverized to obtain a sealing material.

【0009】以下本発明を実施例で示す。配合割合は重
量部で示す。 実施例1 ビフェニル型エポキシ樹脂(油化シェル(株)・製、YX4000H、エポキ シ当量190、融点170℃) 90重量部 臭素化エポキシ樹脂(大日本インキ化学工業(株)・製、エピクロン152、 エポキシ当量360、軟化点65℃) 8重量部 フエノールノボラツク樹脂(住友デュレズ(株)・製、水酸基当量105、軟 化点70℃) 52重量部 表面被覆ALN(ダウケミカル・製、XU、平均粒径25μm、最大粒径13 0μm、SiO 2 で表面をコート) 750重量部 球状微粒シリカ(平均粒径0.5μm、最大粒径3μm) 20重量部 球状シリカ(平均粒径23μm、最大粒径74μm) 200重量部 γ−グリシドキシプロピルトリメトキシシラン(日本ユニカー(株)) 6重量部 2−メチルイミダゾール(四国化成(株)・製) 1重量部 三酸化アンチモン 8重量部 ヘキストワックスE 3重量部 カーボンプラック 2重量部 を常温で充分に混合し、次に80〜110℃で2軸熱ロ
ールを用いて混練し冷却後粉砕して半導体封止用樹脂組
成物を得た。
Hereinafter, the present invention will be described by way of examples. The mixing ratio is shown in parts by weight. Example 1 90 parts by weight of a biphenyl type epoxy resin (manufactured by Yuka Shell Co., Ltd., YX4000H, epoxy equivalent 190, melting point 170 ° C.) 90 parts by weight brominated epoxy resin (manufactured by Dainippon Ink and Chemicals, Epicron 152) Epoxy equivalent 360, softening point 65 ° C) 8 parts by weight phenol novolak resin (manufactured by Sumitomo Durez Co., Ltd., hydroxyl equivalent 105, softening point 70 ° C) 52 parts by weight Surface-coated ALN (Dow Chemical, XU, average) Particle size 25 μm, maximum particle size 130 μm, surface coated with SiO 2 ) 750 parts by weight Spherical fine silica (average particle size 0.5 μm, maximum particle size 3 μm) 20 parts by weight Spherical silica (average particle size 23 μm, maximum particle size) 74 μm) 200 parts by weight γ-glycidoxypropyltrimethoxysilane (Nippon Unicar Co., Ltd.) 6 parts by weight 2-methylimidazole (Shikoku Chemicals) 1 part by weight Antimony trioxide 8 parts by weight Hoechst wax E 3 parts by weight Carbon plaque 2 parts by weight is sufficiently mixed at room temperature, then kneaded at 80 to 110 ° C. using a biaxial heat roll and cooled. Thereafter, the resultant was pulverized to obtain a resin composition for semiconductor encapsulation.

【0010】得られた半導体封止用樹脂組成物をトラン
スファー成形機を用いて温度175℃、注入圧120K
g/cm2で成形しテストピースを得、以下の項目につ
いて評価した。 評価方法 スパイラルフロー:EMII−I−66に準じた金型を
用い、175℃、注入圧70Kg/cm2で測定。単位
はcm。 ゲルタイム:175℃の熱板で測定。 単位は秒。 熱伝導率:50φ×50mmの成形品をプローブ型熱伝
導率測定機(昭和電工(株)・製)を用いて常温で測定。
単位はW/m℃。 充填性:パッケージサイズ28×28×1.4mm、チ
ップサイズ14×14×0.3mmの薄型QFPへの充
填性をボイド発生率、ダイパッドシフト不良率、ワイヤ
ー流れ不良率で評価した。 金型摩耗度:SEMI法に基づき500gの半導体封止
用樹脂組成物を175℃でアルミオリフィスを通過させ
た時のアルミオリフィスの重量減少率(%)で評価し
た。 耐湿信頼性:模擬素子を用いた300ミルのSOPで8
5℃、85%RH、72時間吸湿後、260℃の半田処
理を10秒間行った後125℃、相対湿度100%のプ
レッシャークッカー処理500時間で評価した。以上の
評価結果を表1に示す。熱膨張係数は、15×4×4m
mのテストピースを175℃で成形し、175℃、8時
間のポストキュア処理した後、TMA(セイコー電子
(株)・製)にて60℃における値とした。単位は×10
-51/℃。
The obtained resin composition for encapsulating a semiconductor is heated at a temperature of 175 ° C. and an injection pressure of 120 K using a transfer molding machine.
A test piece was obtained by molding at g / cm 2 , and the following items were evaluated. Evaluation method Spiral flow: Measured at 175 ° C. and an injection pressure of 70 kg / cm 2 using a mold conforming to EMII-I-66. The unit is cm. Gel time: Measured on a hot plate at 175 ° C. The unit is seconds. Thermal conductivity: Measured at room temperature using a probe-type thermal conductivity measuring instrument (manufactured by Showa Denko KK) on a molded product of 50 mm x 50 mm.
The unit is W / m ° C. Filling property: The filling property of a thin QFP having a package size of 28 × 28 × 1.4 mm and a chip size of 14 × 14 × 0.3 mm was evaluated based on a void generation rate, a die pad shift defective rate, and a wire flow defective rate. Mold abrasion: Evaluated by the weight loss rate (%) of the aluminum orifice when 500 g of the resin composition for semiconductor encapsulation was passed at 175 ° C. through the aluminum orifice based on the SEMI method. Moisture resistance reliability: 8 at 300 mil SOP using simulated device
After moisture absorption at 5 ° C. and 85% RH for 72 hours, a soldering treatment at 260 ° C. was performed for 10 seconds, and then a pressure cooker treatment at 125 ° C. and a relative humidity of 100% was performed for 500 hours. Table 1 shows the evaluation results. Thermal expansion coefficient is 15 × 4 × 4m
m test piece at 175 ° C, post-curing at 175 ° C for 8 hours, and then TMA (Seiko
Co., Ltd.) at 60 ° C. The unit is × 10
-5 1 / ° C.

【0011】実施例2〜4 表1に示した配合で実施例1と同様にして半導体封止用
樹脂組成物を得た。実施例3に用いるクレゾールノボラ
ック型エポキシ樹脂は、エポキシ当量200、軟化点6
5℃のオルソクレゾールノボラック型エポキシ樹脂であ
る。実施例2〜4、比較例3に用いるフェノールアラル
キル樹脂は、三井東圧化学(株)・製、XL−225−3
Lである。以上の評価結果を表1に示す。 比較例1〜5 表2に示した配合で実施例1と同様にして半導体封止用
樹脂組成物を得た。比較例5に用いるALN(表面被覆
なし)は、ダウケミカル・製で平均粒径25μm、最大
粒径130μmである。以上の評価結果を表2に示す。
Examples 2 to 4 A resin composition for encapsulating a semiconductor was obtained in the same manner as in Example 1 with the composition shown in Table 1. The cresol novolak type epoxy resin used in Example 3 had an epoxy equivalent of 200 and a softening point of 6.
Orthocresol novolak epoxy resin at 5 ° C. The phenol aralkyl resin used in Examples 2 to 4 and Comparative Example 3 was manufactured by Mitsui Toatsu Chemicals, Inc., XL-225-3.
L. Table 1 shows the evaluation results. Comparative Examples 1 to 5 A resin composition for encapsulating a semiconductor was obtained in the same manner as in Example 1 with the composition shown in Table 2. ALN (without surface coating) used in Comparative Example 5 was manufactured by Dow Chemical Co. and had an average particle size of 25 μm and a maximum particle size of 130 μm. Table 2 shows the evaluation results.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【発明の効果】本発明の樹脂組成物を用いることによ
り、成形用金型の摩耗を減少でき、半導体製品の熱放散
性を大幅に改善できる。
By using the resin composition of the present invention, abrasion of a molding die can be reduced, and heat dissipation of a semiconductor product can be greatly improved.

フロントページの続き (51)Int.Cl.7 識別記号 FI // H01L 23/29 H01L 23/30 R 23/31 (58)調査した分野(Int.Cl.7,DB名) C08L 63/00 - 63/10 C08K 3/36 C08K 3/28 C08K 9/02 C08G 59/62 H01L 23/29 Continuation of the front page (51) Int.Cl. 7 identification symbol FI // H01L 23/29 H01L 23/30 R 23/31 (58) Field surveyed (Int.Cl. 7 , DB name) C08L 63/00- 63/10 C08K 3/36 C08K 3/28 C08K 9/02 C08G 59/62 H01L 23/29

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エポキシ樹脂、フェノール樹脂硬化剤、
硬化促進剤、窒化アルミニウム及びシリカを必須成分と
し、窒化アルミニウムがSiO 2 により被覆され、かつ
該被覆窒化アルミニウムが125℃、相対湿度100
%、500時間のプレッシャークッカー処理後の重量変
化率が5重量%以下であり、全組成物中に窒化アルミニ
ウム及びシリカを80〜96重量%含み、かつ窒化アル
ミニウム及びシリカの合計100重量%中に、(a)平
均粒径10〜30μm、最大粒径が200μm以下の窒
化アルミニウムを30〜95重量%、(b)平均粒径
0.1〜1.0μm、最大粒径5μm以下の球状微少シ
リカを2〜10重量%、(c)平均粒径10〜30μ
m、最大粒径74μm以下の球状シリカを3〜68重量
%含有することを特徴とする半導体封止用樹脂組成物。
An epoxy resin, a phenol resin curing agent,
A curing accelerator, aluminum nitride and silica as essential components, aluminum nitride is coated with SiO 2 , and
The coated aluminum nitride has a temperature of 125 ° C. and a relative humidity of 100.
%, Weight change after 500 hours of pressure cooker treatment
Conversion ratio is 5% by weight or less, aluminum nitride and silica are contained in the entire composition in an amount of 80 to 96% by weight, and in a total of 100% by weight of aluminum nitride and silica, (a) an average particle size of 10 to 30 μm; 30 to 95% by weight of aluminum nitride having a maximum particle diameter of 200 μm or less, (b) 2 to 10% by weight of spherical micro silica having an average particle diameter of 0.1 to 1.0 μm and 5 μm or less, (c) average Particle size 10-30μ
m. A resin composition for encapsulating a semiconductor, comprising 3 to 68% by weight of spherical silica having a maximum particle size of 74 μm or less.
【請求項2】 請求項1記載の半導体封止用樹脂組成物
の熱膨張係数及び熱伝導率が、ガラス転移温度以下で各
々2.0×10-51/℃以下、1.25W/m℃以上で
ある半導体封止用樹脂組成物。
2. The resin composition for semiconductor encapsulation according to claim 1, which has a thermal expansion coefficient and a thermal conductivity of 2.0 × 10 -5 1 / ° C. or less and 1.25 W / m or less at a glass transition temperature or less, respectively. A resin composition for encapsulating a semiconductor having a temperature of at least ℃.
JP24405295A 1995-08-31 1995-09-22 Resin composition for semiconductor encapsulation Expired - Fee Related JP3209664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24405295A JP3209664B2 (en) 1995-08-31 1995-09-22 Resin composition for semiconductor encapsulation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-223223 1995-08-31
JP22322395 1995-08-31
JP24405295A JP3209664B2 (en) 1995-08-31 1995-09-22 Resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH09124774A JPH09124774A (en) 1997-05-13
JP3209664B2 true JP3209664B2 (en) 2001-09-17

Family

ID=26525340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24405295A Expired - Fee Related JP3209664B2 (en) 1995-08-31 1995-09-22 Resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3209664B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000038720A (en) * 1998-12-08 2000-07-05 유현식 High heat-conductive epoxy resin composition for sealing semiconductor device
SG141222A1 (en) * 2003-12-04 2008-04-28 Sumitomo Bakelite Singapore Pt Semiconductor devices containing epoxy moulding compositions and the compositions per se
JP5392178B2 (en) * 2010-05-13 2014-01-22 日立化成株式会社 High thermal conductive composite particles and heat dissipation material using the same
JP6222209B2 (en) * 2015-12-04 2017-11-01 日立化成株式会社 Resin composition, resin sheet, resin sheet with metal foil, cured resin sheet, structure, and semiconductor device for power or light source
JP7348847B2 (en) * 2019-01-15 2023-09-21 京セラ株式会社 Resin composition for semiconductor encapsulation and semiconductor device using the same

Also Published As

Publication number Publication date
JPH09124774A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
JP2874089B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP3334998B2 (en) Epoxy resin composition
JPH06102715B2 (en) Epoxy resin composition and semiconductor device
JP3209664B2 (en) Resin composition for semiconductor encapsulation
JPH10173103A (en) Epoxy resin compsn. for sealing semiconductor
JP2991849B2 (en) Epoxy resin composition
JP2000007894A (en) Epoxy resin composition and semiconductor device
JP2954412B2 (en) Epoxy resin composition
JPH07118366A (en) Epoxy resin composition
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP2690795B2 (en) Epoxy resin composition
JP2925905B2 (en) Epoxy resin composition
JP2862777B2 (en) Epoxy resin composition
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JPH09143345A (en) Epoxy resin composition
JP3235798B2 (en) Epoxy resin composition
JP2843247B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP3310446B2 (en) Epoxy resin composition
JP2864415B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP2000186183A (en) Epoxy resin composition for sealing and semiconductor device
JP3305098B2 (en) Epoxy resin composition
JP3032067B2 (en) Epoxy resin composition
JP3255376B2 (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees