JPH07116510B2 - Non-oriented electrical steel sheet manufacturing method - Google Patents

Non-oriented electrical steel sheet manufacturing method

Info

Publication number
JPH07116510B2
JPH07116510B2 JP2011720A JP1172090A JPH07116510B2 JP H07116510 B2 JPH07116510 B2 JP H07116510B2 JP 2011720 A JP2011720 A JP 2011720A JP 1172090 A JP1172090 A JP 1172090A JP H07116510 B2 JPH07116510 B2 JP H07116510B2
Authority
JP
Japan
Prior art keywords
hot
rolling
annealing
rolled sheet
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011720A
Other languages
Japanese (ja)
Other versions
JPH03219020A (en
Inventor
昭彦 西本
佳弘 細谷
俊明 占部
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP2011720A priority Critical patent/JPH07116510B2/en
Publication of JPH03219020A publication Critical patent/JPH03219020A/en
Publication of JPH07116510B2 publication Critical patent/JPH07116510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無方向性電磁鋼板、特に良好な磁束密度−鉄損
バランスを有する無方向性電磁鋼板の製造方法に関する
ものである。
The present invention relates to a non-oriented electrical steel sheet, and more particularly to a method for producing a non-oriented electrical steel sheet having a good magnetic flux density-iron loss balance.

〔従来の技術および解決すべき課題〕[Conventional technology and problems to be solved]

無方向性電磁鋼板は方向性電磁鋼板に比べ磁気特性にお
ける異方性が小さく、このため一般に回転機鉄芯に使用
される。また、方向性電磁鋼板に比べ安価であるため、
一部は変圧器あるいは安定器等の静止器にも適用されて
いる。無方向性電磁鋼板に要求される特性値は、主に鉄
損と磁束密度であり、鉄損が低く、磁束密度の高い良好
な磁束密度−鉄損バランスを有するものが望ましい。
The non-oriented electrical steel sheet has a smaller anisotropy in magnetic properties than the grain-oriented electrical steel sheet, and therefore is generally used for iron cores of rotating machines. Also, because it is cheaper than grain-oriented electrical steel,
Some are also applied to static devices such as transformers and ballasts. The characteristic values required for the non-oriented electrical steel sheet are mainly the iron loss and the magnetic flux density, and it is desirable that the iron loss is low, and the magnetic flux density is high and the iron loss balance is good.

従来、このような良好な磁気特性を有する無方向性電磁
鋼板を製造するために、数々の製造方法が開示されてい
る。特に、磁束密度を向上させるためには集合組織を制
御することが重要であり、(100)あるいは(110)面の
比率を高め、(111)面比を低く抑えなければならず、
そのために、熱延板焼鈍を行うことで熱延板組織を改良
する技術、冷圧率を適正化することにより続いて行う焼
鈍時の再結晶集合組織を制御する技術、さらに冷圧、焼
鈍を2回以上行うことにより磁気特性に好ましい集合組
織へと淘汰する技術などが開示されている。これらの技
術は熱延以降の工程の条件適正化を行う技術である。し
かしながら、最終焼鈍後の集合組織を適正化するために
は、熱延段階での集合組織制御が重要な鍵を握ってお
り、この意味で上述した各技術は集合組織の改善を十分
図ることができない。すなわち、これらの技術は約200m
mのスラブを熱延した熱延板を素材としており、熱延段
階での集合組織を積極的に改良しようとする技術ではな
い。
Heretofore, various manufacturing methods have been disclosed in order to manufacture a non-oriented electrical steel sheet having such good magnetic properties. In particular, it is important to control the texture in order to improve the magnetic flux density, and it is necessary to increase the ratio of (100) or (110) faces and keep the (111) face ratio low.
Therefore, the technology for improving the hot-rolled sheet structure by performing hot-rolled sheet annealing, the technology for controlling the recrystallized texture during subsequent annealing by optimizing the cold pressure ratio, further cold pressure, annealing A technique for selecting a texture preferable for magnetic properties by performing the treatment twice or more is disclosed. These techniques are techniques for optimizing the conditions of the steps after hot rolling. However, in order to optimize the texture after the final annealing, texture control in the hot rolling stage holds an important key, and in this sense, each technology described above can sufficiently improve the texture. Can not. In other words, these technologies are about 200m
It uses a hot-rolled sheet obtained by hot-rolling m slabs, and is not a technology that actively attempts to improve the texture at the hot-rolling stage.

一方、近年省エネルギー、省プロセスの観点から注目さ
れているストリップキャスティングによれば、従来の熱
延板板厚程度の板厚に直接鋳造することができるため、
従来法による熱延板と異なった集合組織を得ることがで
きる。すなわち、ストリップキャスティングによれば、
溶湯の冷却速度が大きいため、板厚全厚にわたる柱状組
織となる。また、1.7%以上のSiを含有した鋼において
は、α−γ変態をしないため、鋳片の冷却後も柱状組織
が保持される。このような柱状組織は{100}〈uvw〉方
位を有しており、磁気特性に最も好ましい集合組織とな
る。そこで、無方向性電磁鋼板の製造においても、スト
リップキャスティングにより柱状晶を有した薄鋳片をで
きるだけ薄く鋳造し、次工程の冷延、焼鈍段階での{10
0}〈uvw〉組織の維持を図った技術が開示されている
(例えば、特開昭62−240714号、特開昭63−60227
号)。
On the other hand, according to strip casting, which has been attracting attention from the viewpoint of energy saving and process saving in recent years, since it is possible to directly cast into a plate thickness of the conventional hot rolled plate thickness,
It is possible to obtain a texture different from that of the hot rolled sheet produced by the conventional method. That is, according to strip casting,
Since the molten metal has a high cooling rate, it has a columnar structure over the entire plate thickness. Further, in the steel containing 1.7% or more of Si, since the α-γ transformation does not occur, the columnar structure is retained even after cooling the cast slab. Such a columnar structure has a {100} <uvw> orientation, and is the most preferable texture for magnetic properties. Therefore, also in the production of non-oriented electrical steel sheets, thin cast pieces having columnar crystals are cast as thin as possible by strip casting, and {10
A technique for maintaining the 0} <uvw> structure has been disclosed (for example, JP-A-62-240714 and JP-A-63-60227).
issue).

しかしながら、α−γ変態を有する1.7%以下のSi量を
含有する鋼においては、鋳造後の冷却段階において、α
−γ変態により鋳造段階で生成した{100}〈uvw〉組織
がランダム化してしまうため、鋳造組織の維持が極めて
困難となる。
However, in the steel containing 1.7% or less of Si having α-γ transformation, in the cooling stage after casting, α
Since the {100} <uvw> structure generated at the casting stage is randomized by the −γ transformation, it becomes extremely difficult to maintain the cast structure.

本発明はこのような問題に鑑み、α−γ変態する無方向
性電磁鋼板における磁束密度−鉄損バランスの向上を目
的として、薄スラブ−直接熱延プロセスを利用した熱延
板の集合組織制御を行う、磁気特性に優れた無方向性電
磁鋼板の製造方法を開示するものである。
In view of such problems, the present invention aims to improve the magnetic flux density-iron loss balance in a non-oriented electrical steel sheet that undergoes α-γ transformation, and controls the texture of a hot rolled sheet using a thin slab-direct hot rolling process. The method for producing a non-oriented electrical steel sheet having excellent magnetic properties is disclosed.

すなわち、本発明は、重量%で、C≦0.01%、0.1≦Si
<1.7%、Al<1%、(Si+1.7Al)<1.7%、N≦0.003
%、S≦0.005%、残部Feおよび不可避的不純物からな
る溶鋼を薄鋳片に鋳造した後、この鋳片をA3点以下まで
冷却することなく熱間圧延を開始し、該熱間圧延工程で
は、材料温度がA3点に到達するまでに圧下量20%以上の
圧延を行うとともに、熱間圧延時の総圧下量を80〜95%
とし、該熱延板をそのまままたは熱延板焼鈍した後、1
回または中間焼鈍を挾む2回以上の冷間圧延を行い、し
かるのち焼鈍を行うことをその特徴とする。
That is, according to the present invention, in weight%, C ≦ 0.01%, 0.1 ≦ Si
<1.7%, Al <1%, (Si + 1.7Al) <1.7%, N ≦ 0.003
%, S ≦ 0.005%, the balance Fe and the unavoidable impurities are cast into a thin slab, and then the slab is hot-rolled without cooling to a point A 3 or less, and the hot-rolling step is performed. So with the material temperature makes a rolling reduction of 20% or more to reach the three points a, the total amount of reduction during hot rolling 80% to 95%
And after annealing the hot rolled sheet as it is or after hot rolled sheet annealing,
It is characterized in that cold rolling is performed twice or more, including intermediate or intermediate annealing, and then annealing is performed.

〔作用〕 本発明は、α−γ変態を有する組織の無方向性電磁鋼板
において、優れた磁束密度−鉄損バランスを得るため
に、薄鋳片−直接熱延法を適用し、熱延時のα−γ変態
を利用することにより熱延板の組織制御を行い、最終焼
鈍後の磁気特性の改善を図ろうとするものである。
[Operation] In the non-oriented electrical steel sheet having a structure having an α-γ transformation, the present invention applies a thin cast slab-direct hot rolling method to obtain an excellent magnetic flux density-iron loss balance. By utilizing the α-γ transformation, the structure of the hot rolled sheet is controlled to improve the magnetic properties after the final annealing.

本発明の作用効果を明らかにするため、以下のような実
験を行った。
The following experiments were conducted to clarify the effects of the present invention.

第1表に示した組成の1.63%Si鋼を30mmt厚さの薄鋳片
に鋳造した後、その冷却段階においてγ領域(1230〜10
00℃)を−5×10-2℃/secで冷却し、室温まで炉冷した
サンプル(FC材)と、γ領域を−5℃/secで冷却し、室
温まで金型中で冷却したサンプル(MC材)の鋳片の断面
組織を第1図の写真(A)(B)に示す。これによれ
ば、写真(B)のMC材は鋳片の冷却速度が大きいため、
鋳造直後の柱状組織が維持されている。一方、写真
(A)のFS材は冷却速度が小さいため、α→γ→α変態
により微細な等軸粒となっている。また、MC材を再加熱
し、1050℃×5min均熱した場合も写真(C)に示すよう
に、柱状組織は維持されていることから、鋳造後、A3
(1000℃)を下回ることなく、1050℃から熱延を開始す
る直送圧延材(HDR材)の場合も、熱延開始直前の鋳片
の組織は、MC材と同様に柱状組織となっていることは明
らかである。
After casting 1.63% Si steel having the composition shown in Table 1 into a thin ingot with a thickness of 30 mmt, in the cooling stage, the γ region (1230 to 10
Sample (FC material) cooled at room temperature to -5 × 10 -2 ° C / sec and cooled to room temperature (FC material), and sample cooled at room temperature in the mold to -5 ° C / sec. Photographs (A) and (B) of FIG. 1 show the cross-sectional structure of the slab of (MC material). According to this, since the MC material in the photograph (B) has a high cooling rate of the slab,
The columnar structure immediately after casting is maintained. On the other hand, since the FS material in photograph (A) has a low cooling rate, it becomes fine equiaxed grains due to the α → γ → α transformation. Also, when the MC material is reheated and soaked at 1050 ° C for 5 minutes, as shown in photograph (C), the columnar structure is maintained, so after casting, it should be below A 3 point (1000 ° C). However, even in the case of a straight rolled material (HDR material) in which hot rolling is started at 1050 ° C, it is clear that the structure of the cast slab just before the start of hot rolling has a columnar structure like the MC material.

上記FC材およびMC材の熱延板と、鋳造後、A3点を下回る
ことなく1050℃×5minの均熱を行った後、熱延を開始し
て得られた熱延板(HDR材)とを、下記工程で冷圧、焼
鈍した。第2図に各鋳片の熱間圧延までの熱履歴を示
す。また、熱間圧延ではHDR材、CCR材(MC材、FC材)と
もにA3点(1000℃)までに40%の圧下を行い、板厚2.5m
mの熱延板(圧下率91.7%)とした。
Said the FC material and MC materials hot rolled plate, after casting, after soaking 1050 ° C. × 5min without below three points A, hot-rolled sheet obtained by starting the hot rolled (HDR material) And were cold-pressed and annealed in the following steps. Fig. 2 shows the heat history of each cast piece until hot rolling. Also, HDR material is hot-rolled, CCR material (MC member, FC material) together make 40% reduction up to A 3 point (1000 ° C.), the plate thickness 2.5m
It was a hot-rolled sheet of m (reduction ratio 91.7%).

熱延板 ↓ 熱延板焼鈍:800℃×5min、空冷 ↓ 冷圧(板厚0.5mm) ↓ 焼鈍:750〜920℃×2min、空冷、25%H2+75%Ar中 このようにして得られた鋼板のX線積分反射強度比を最
終焼鈍温度との関係で第3図に示す。
Hot rolled sheet ↓ Hot rolled sheet annealing: 800 ℃ × 5min, air cooling ↓ Cold pressure (sheet thickness 0.5mm) ↓ Annealing: 750〜920 ℃ × 2min, air cooling, in 25% H 2 + 75% Ar The X-ray integrated reflection intensity ratio of the steel sheet is shown in FIG. 3 in relation to the final annealing temperature.

これによれば、HDR材はいずれの焼鈍温度においても、
熱延前に鋳片がA3点を下回っているFC材、MC材に比べ
{200}、{100}成分が高く、{222}成分が低いこと
がわかる。一般に、無方向性電磁鋼板の磁束密度を向上
させるためには、容易磁化方向である〈100〉軸を鋼板
表面にできる限り多く集積させることが望ましく、この
ために有効な結晶面は(100)あるいは(110)面とな
り、(111)面のような磁化容易軸を含まない結晶面は
極力避けなければならない。したがって、HDR材の方
が、MC材、FC材よりも磁束密度が高くなることは明らか
である。すなわち、熱延直前の組織が同じ柱状組織で
も、凝固から熱延までに鋳片がA3点を下回るか否かによ
り、上記のような集合組織の差を生じるものである。
According to this, the HDR material, at any annealing temperature,
It can be seen that the {200} and {100} components are higher and the {222} component is lower than the FC material and MC material in which the slab is below A 3 point before hot rolling. In general, in order to improve the magnetic flux density of a non-oriented electrical steel sheet, it is desirable to integrate as many <100> axes, which are easy magnetization directions, on the steel sheet surface as much as possible. For this reason, the effective crystal plane is (100). Alternatively, a crystal plane such as the (110) plane, which does not include the easy axis of magnetization, such as the (111) plane, should be avoided as much as possible. Therefore, it is clear that the HDR material has a higher magnetic flux density than the MC material and the FC material. That is, even if the microstructure just before hot rolling is the same columnar structure, the above-mentioned difference in texture occurs depending on whether the slab falls below the A 3 point from solidification to hot rolling.

鋳片の厚みが薄くなると抜熱速度が大きくなり、凝固速
度が大きく、凝固直後は微細な柱状組織となる。このよ
うな凝固時に生成した柱状組織は{100}〈uvw〉からな
る集合組織を有しており、磁化容易軸を最も多く含んだ
磁気特性に良好な集合組織である。ここで、変態を伴う
鋼は凝固後の冷却段階でA4点及びA3点を通過し、その際
α→γ、γ→α変態を経て室温に至る。熱延前に鋳片の
温度がA3点を下回る場合、鋳片の冷却段階でα→γおよ
びγ→α変態し、さらに再加熱時にα→γ変態するた
め、鋳片は凝固後、熱延開始までに3回の変態を経てし
まい、鋳片の集合組織が完全にランダム化してしまう。
一方、凝固後、A3点を下回ることなく圧延を開始する場
合、鋳片の冷却時にA4点でα→γ変態が1回なされるだ
けであり、また熱延までのγ領域中で保持時間も短いた
め、変態が鋳片全体で完了せず、{100}〈uvw〉に近い
組織が維持されることになる。
When the thickness of the slab becomes thin, the heat removal rate becomes large, the solidification rate becomes large, and the columnar structure becomes fine immediately after solidification. The columnar structure formed during such solidification has a texture composed of {100} <uvw>, and is a texture having the most magnetic easy axes and good magnetic properties. Here, the steel accompanied by transformation passes through points A 4 and A 3 in the cooling stage after solidification, and reaches room temperature through α → γ and γ → α transformations. If the temperature of the slab is lower than A 3 point before hot rolling, α → γ and γ → α transformation occurs in the cooling stage of the slab, and α → γ transformation occurs during reheating. Three transformations are required before the start of rolling, and the texture of the slab is completely randomized.
On the other hand, if the rolling is started below the A 3 point after solidification, the α → γ transformation is performed only once at the A 4 point when the slab is cooled, and is maintained in the γ region until hot rolling. Since the time is short, the transformation is not completed in the entire slab and the structure close to {100} <uvw> is maintained.

さらに、鋳片の凝固後、A3点を下回らずに熱延を開始す
る場合、下記するようにγ領域中での圧下率が磁束密度
の向上に大きく寄与することが明らかとなった。
Further, when the hot rolling is started after the solidification of the slab and the temperature does not fall below the A 3 point, it was revealed that the rolling reduction in the γ region greatly contributes to the improvement of the magnetic flux density as described below.

第2表のNo.1〜3の組成の鋼を厚さ40mmtの薄鋳片に鋳
造後、1.5℃/secで冷却し、その冷却段階で各組成にお
けるA3点を下回ることなく、1000〜1150℃で熱間圧延を
開始し、A3点を通過するまでの圧下率を変化させ、冷
圧、焼鈍後の磁束密度を測定して、上記圧下率が磁束密
度に及ぼす影響について検討を行った。また、No.4鋼は
A3点を持たない鋼種であるが、比較のためこれについて
も同様に鋳造−冷却し、1000℃を通過するまでの圧下率
を変化させ、同様の測定を行った。なお、上記熱間圧延
では、最終板厚2.0〜2.5mmt(総圧下量93.75〜95%)と
し、放冷により室温まで冷却した。実機熱延時の巻取り
後の冷却をシミュレートするため、No.1、2、3、4各
組成の熱延板において、それぞれ660℃、680℃、550
℃、700℃の炉中に30min均熱後、炉中冷却を行った。さ
らにNo.3、4の熱延板は870℃×1.5min空冷の熱延板焼
鈍を施した。次に、酸洗を行いスケールを除去した後、
0.5mmt厚まで冷圧し、続いて25%H2−75%N2雰囲気中
で、No.1は800℃×1.5min、No.2は830℃×1.5min、No.
3、4は880℃×2min空冷の焼鈍を行った。
After casting a thin cast strip having a thickness of 40mmt the steel composition of No.1~3 in Table 2, and cooled at 1.5 ° C. / sec, without falling below the 3-point A in the composition in the cooling step, 1000 Hot rolling was started at 1150 ° C, the rolling reduction until passing the A 3 point was changed, the magnetic flux density after cold pressing and annealing was measured, and the effect of the rolling reduction on the magnetic flux density was examined. It was In addition, No. 4 steel
Although it is a steel type that does not have A 3 points, for comparison, this was also cast-cooled in the same manner, and the reduction ratio until passing 1000 ° C. was changed, and the same measurement was performed. In the hot rolling, the final plate thickness was set to 2.0 to 2.5 mmt (total reduction amount 93.75 to 95%), and it was cooled to room temperature by cooling. In order to simulate the cooling after winding at the time of actual hot rolling, in hot rolled sheets of No. 1, 2, 3, 4 composition, 660 ℃, 680 ℃, 550 ℃
After soaking in a furnace at ℃ and 700 ℃ for 30 minutes, the inside of the furnace was cooled. Further, the hot-rolled sheets of Nos. 3 and 4 were subjected to air-cooled hot-rolled sheet annealing at 870 ° C for 1.5 minutes. Next, after pickling and removing the scale,
0.5mmt cold pressed to a thickness, followed by 25% H 2 -75% N 2 atmosphere, No.1 is 800 ° C. × 1.5 min, No.2 is 830 ℃ × 1.5min, No.
No. 3 and 4 were annealed by air cooling at 880 ° C for 2 minutes.

第4図は、上記磁束密度の測定結果を示しており、この
測定結果から、A3点以上で20%以上の圧下をすることに
より磁束密度が急激に増加することが明らかとなった。
これは鋳片に残存した{100}〈uvw〉組織を、A3点通過
前に圧延することにより、磁気特性に良好な熱延板の集
合組織形成ができるだけでなく、A3点通過までに圧延さ
れた加工組織をA3点通過時の変態エネルギーにより回
復、再結晶を促進することができるからである。
FIG. 4 shows the measurement results of the above-mentioned magnetic flux density. From the measurement results, it was revealed that the magnetic flux density sharply increases when the rolling point is reduced by 20% or more at the point A 3 or higher.
This is because not only the texture of the hot-rolled sheet with good magnetic properties can be formed by rolling the {100} <uvw> structure remaining in the slab before passing the A 3 point, but also by passing the A 3 point. This is because the rolled processed structure can be recovered and recrystallized by the transformation energy when passing through the A 3 point.

一方、熱間圧延時のフェライト組織形成および集合組織
形成に関しては、前述のA3点以上の圧下率だけでなく、
熱延時の総圧下率も大きく作用し、冷圧、焼鈍後の集合
組織形成すなわち磁束密度まで影響する。
On the other hand, regarding the ferrite structure formation and texture formation during hot rolling, not only the above-mentioned reduction ratio of A 3 point or more,
The total rolling reduction during hot rolling also has a large effect, and affects the cold pressing and texture formation after annealing, that is, the magnetic flux density.

第3表のNo.5、No.6の組成の鋼を、各厚さが8、10、1
5、20、30、40、50、80mmの薄鋳片に鋳造後、4.2〜1℃
/secで冷却し、その冷却段階で各組成におけるA3点を下
回ることなく1000〜1200℃で熱間圧延を開始し、圧延中
にA3点を通過するまでに23〜47%の圧下を行って1.4〜
2.5mm厚さの熱延板とし、放冷により室温まで冷却し
た。これら熱延板について冷圧、焼鈍後の磁束密度を測
定し、熱延時の総圧下量が磁束密度に及ぼす影響につい
て検討を行った。また、No.7の鋼はA3点を持たない鋼種
であるが、上記各厚さの薄鋳片と上記と同様に鋳造−冷
却し、その冷却段階で1000℃を通過する前に23〜47%の
圧下を行って1.4〜2.5mm厚とし、放冷により室温まで冷
却し、これら熱延板について冷圧、焼鈍後の磁束密度を
測定した。なお、実機熱延時の巻取り後の冷却をシミュ
レートするため、No.5、6、7各組成の熱延板におい
て、それぞれ680℃、700℃及び710℃の炉中に1hr均熱
後、炉中冷却を行った。さらにNo.7の熱延板については
870℃×1.5min空冷の熱延板焼鈍を施した。これらの熱
延板を酸洗した後0.5mmt厚まで冷圧し、続いて25%H2
75%N2雰囲気中で、No.5は800℃×1.5min、No.6は850℃
×2min、No.7は880℃×2min空冷の焼鈍を行った。ま
た、比較材として同一組成、厚さの薄鋳片を鋳造して、
一旦室温まで空冷後、1250℃に再加熱し、同一スケジュ
ールで加工、処理を行い、同様の測定を行った。
Steels with compositions No. 5 and No. 6 in Table 3 are available with thicknesses of 8, 10, 1
After casting into thin slabs of 5, 20, 30, 40, 50, 80 mm, 4.2 to 1 ℃
/ sec, start hot rolling at 1000 ~ 1200 ℃ without lowering A 3 point in each composition at that cooling stage, and reduce rolling by 23 ~ 47% before passing A 3 point during rolling. Go 1.4
A hot rolled sheet having a thickness of 2.5 mm was left to cool to room temperature. The magnetic flux density after cold pressing and annealing was measured for these hot-rolled sheets, and the effect of the total reduction amount during hot rolling on the magnetic flux density was examined. Further, No. 7 steel is a steel type that does not have A 3 points, but it is cast-cooled in the same manner as above with a thin slab of each of the above thicknesses, and at the cooling stage, before passing through 1000 ° C, 23 ~ A 47% reduction was performed to obtain a thickness of 1.4 to 2.5 mm, the temperature was cooled to room temperature by cooling, and the cold rolling of these hot rolled sheets and the magnetic flux density after annealing were measured. In order to simulate the cooling after winding in the actual hot rolling, in hot rolled sheets of No. 5, 6, and 7 compositions, after soaking for 1 hr in furnaces at 680 ° C, 700 ° C, and 710 ° C, respectively, Cooling was performed in the furnace. Furthermore, regarding No. 7 hot rolled sheet
870 ℃ × 1.5min Air-cooled hot-rolled sheet annealing. These hot-rolled sheets were pickled, then cold pressed to a thickness of 0.5 mmt, and then 25% H 2
In a 75% N 2 atmosphere, No.5 is 800 ℃ × 1.5min, No.6 is 850 ℃
× 2min, No.7 was annealed by air cooling at 880 ℃ × 2min. Also, as a comparative material, cast a thin slab of the same composition and thickness,
Once air-cooled to room temperature, it was reheated to 1250 ° C., processed and treated on the same schedule, and the same measurement was performed.

第5図は、上記磁束密度の測定結果を示しており、この
測定結果から、熱延時の総圧下率が80〜95%で磁束密度
を最良にできることが判明した。これは、熱延直前まで
維持された{100}〈uvw〉組織を熱延により加工する場
合、結晶のすべり変形および剪断変形に伴う結晶軸の回
転が、その後の組織の回復、再結晶過程での新たな集合
組織形成に対してマッチングしたことによるものであ
る。また、95%以上の圧下率の場合、熱延時に導入され
る歪が大きくなり過ぎるため、フェライトの回復、再結
晶の進行が抑えられ、熱延時のフェライト組織形成を阻
害してしまう。また、鋳片の凝固後、熱延前にA3点を下
回る場合、第5図に示すように、熱延圧下率において、
磁束密度が大幅に向上するような条件は得られない。
FIG. 5 shows the measurement results of the magnetic flux density. From the measurement results, it was found that the magnetic flux density can be optimized when the total rolling reduction during hot rolling is 80 to 95%. This is because when the {100} <uvw> structure maintained until just before hot rolling is processed by hot rolling, the rotation of the crystal axis due to the slip deformation and shear deformation of the crystal causes the subsequent recovery of the structure and recrystallization process. This is due to the fact that they were matched against the formation of a new texture of. Further, when the rolling reduction is 95% or more, the strain introduced during hot rolling becomes too large, so that the recovery of ferrite and the progress of recrystallization are suppressed, and the formation of the ferrite structure during hot rolling is hindered. Further, when the slab is below the A 3 point before solidification after hot rolling, as shown in FIG.
The condition that the magnetic flux density is significantly improved cannot be obtained.

以下、本発明の構成要件について具体的に説明する。The constituent features of the present invention will be specifically described below.

本発明の方法は、素材鋼としてC:0.01%以下、Si:0.1%
以上1.7%未満、Al:1%未満、(Si+1.7Al):1.7%未
満、N:0.003%以下、S:0.005%以下の成分条件を満足す
る鋼を使用する。以下、その限定理由について説明す
る。
The method of the present invention, as a raw material steel, C: 0.01% or less, Si: 0.1%
Above 1.7%, Al: less than 1%, (Si + 1.7Al): less than 1.7%, N: 0.003% or less, S: 0.005% or less. The reason for the limitation will be described below.

C:0.01%を超えると磁気特性のうちの鉄損に有害であ
り、このためCは0.01%をその上限とする。また、磁気
時効による鉄損の劣化を抑えるためには、C:0.005%以
下が望ましい。また、Cを0.005〜0.01%含む鋼におい
て磁気特性が問題となる場合、熱延板焼鈍あるいは最終
焼鈍段階で脱炭焼鈍することにより、鋼中のCを0.005
%以下とすることができる。
C: If it exceeds 0.01%, it is harmful to the iron loss of the magnetic properties, and therefore C has 0.01% as its upper limit. Further, in order to suppress deterioration of iron loss due to magnetic aging, C: 0.005% or less is desirable. When magnetic properties become a problem in steel containing 0.005 to 0.01% C, decarburization annealing is performed in the hot-rolled sheet annealing or the final annealing stage to make C in the steel 0.005%.
It can be less than or equal to%.

Si:Siは鋼の比抵抗を増加し、鉄損を低下させるため0.1
%以上添加しなければならない。しかし、Siを1.7%以
上添加すると変態が消失してα単相鋼となり、本発明に
おける変態利用による集合組織の改良ができなくなる。
以上の理由からSiは0.1%以上1.7%未満とする。
Si: Si increases the specific resistance of steel and lowers iron loss.
% Or more must be added. However, if Si is added in an amount of 1.7% or more, the transformation disappears to become an α single phase steel, and the texture cannot be improved by utilizing the transformation in the present invention.
For the above reasons, the Si content is 0.1% or more and less than 1.7%.

Al:AlもSi同様に鋼の比抵抗を増加し、鉄損を低下させ
るのに有効な元素であるが、1%以上添加すると、変態
点が消失してα単相鋼となり、本発明における変態利用
による集合組織の改良ができなくなる。このためAlは1
%未満とする。また溶鋼の十分な脱酸を行うためには、
Al:0.001%以上が望ましい。
Al: Al is also an element effective for increasing the specific resistance of steel and lowering iron loss like Si, but if 1% or more is added, the transformation point disappears to become an α single phase steel. The transformation cannot be used to improve the texture. Therefore, Al is 1
Less than%. In order to perform sufficient deoxidation of molten steel,
Al: 0.001% or more is desirable.

(Si+1.7Al):Si、Alはいずれも鉄損低下に対して有効
な元素であるが、同時にフェライト形成元素でもある。
Si+1.7Alが1.7%以上となるとフェライト単相鋼となる
ため、本発明では(Si+1.7Al.):1.7%未満とする必要
がある。
(Si + 1.7Al): Si and Al are both effective elements for reducing iron loss, but are also ferrite forming elements.
When Si + 1.7Al is 1.7% or more, a ferritic single phase steel is obtained. Therefore, in the present invention, it is necessary to make (Si + 1.7Al.): Less than 1.7%.

N:0.003%を超えて添加すると、固溶状態で鉄損を劣化
させてしまい、このためNはその上限を0.003%とす
る。また、Alを添加している鋼においては、AlN粒子の
析出により焼鈍時のフェライト粒成長性が悪くなり鉄損
が劣化するため、極力少なくすることが望ましい。
If N is added in excess of 0.003%, iron loss is deteriorated in a solid solution state. Therefore, N has an upper limit of 0.003%. In addition, in the steel containing Al, the precipitation of AlN particles deteriorates the ferrite grain growth during annealing and the iron loss deteriorates.

S:Nと同様に固溶状態で鉄損を劣化させてしまうため、
0.005%以下と規定する。
As with S: N, since iron loss is degraded in the solid solution state,
It is specified as 0.005% or less.

なお、その他の成分については、特に限定するものでは
ないが、以下に説明するように、Mn:0.01〜2.0%、P:≦
0.1%とすることが好ましい。
The other components are not particularly limited, but as described below, Mn: 0.01 to 2.0%, P: ≤
It is preferably 0.1%.

Mn:Mnはオーステナイト形成元素であり、その添加によ
りA3点を低下させることができ、Si、Al量の高い鋼にお
いては、A3点以上での20%以上の圧下率を確保するため
に有効となる。しかし、2.0%を超える添加は冷圧時の
延性を低下させるため、2.0%以下が望ましい。
Mn: Mn is an austenite forming element, and its addition can lower the A 3 point, and in steels with high Si and Al contents, in order to secure a reduction rate of 20% or more at the A 3 point or higher. It becomes effective. However, addition of more than 2.0% reduces ductility at cold pressure, so 2.0% or less is desirable.

P:Pはその添加により鋼の比抵抗を増加させ、鉄損の低
下を図ることができるが、0.1%を超えると冷延性が著
しく劣化するため、0.1%以下が望ましい。
The addition of P: P can increase the specific resistance of the steel and reduce the iron loss, but if it exceeds 0.1%, the cold ductility deteriorates significantly, so 0.1% or less is desirable.

また、AlNが微細に析出し、最終焼鈍時にフェライト粒
成長性を劣化させるような場合、BをB/N:0.5〜2.0の範
囲で添加することによりこれを改善することができる。
これはAlN粒子に比べて粗大なBN粒子が優先的に析出す
るためである。また、Alを添加しない鋼においても、B
を添加することにより、固溶NをBNとして固定し、鉄損
を改善することができる。
Further, when AlN is finely precipitated and deteriorates the ferrite grain growth property during the final annealing, it can be improved by adding B in the range of B / N: 0.5 to 2.0.
This is because coarser BN particles preferentially precipitate than AlN particles. In addition, even in the steel containing no Al, B
By adding, it is possible to fix the solid solution N as BN and improve the iron loss.

次に、鋳造、圧延条件について説明する。Next, casting and rolling conditions will be described.

無方向性電磁鋼板は、一般に板厚0.50mmあるいは0.35mm
が製品板厚である。一般に、無方向性電磁鋼板の冷圧に
おいては、60〜80%の圧下を施すことにより良好な集合
組織が得られることが知られている。したがって、熱延
板を1回の冷間圧延により製品板厚とするためには、熱
延板厚を1.0〜2.5mmとしなければならない。本発明にお
いては、熱延時の総圧下率を85〜95%と規定しており、
このため溶鋼を薄鋳片とする場合の厚さは7〜50mmが望
ましい。また、2回以上の冷圧を行う場合は100mmまで
の板厚とすることが可能である。
Non-oriented electrical steel sheets are generally 0.50 mm or 0.35 mm thick.
Is the product thickness. It is generally known that, in the cold pressure of a non-oriented electrical steel sheet, a good texture can be obtained by applying a reduction of 60 to 80%. Therefore, in order to make a hot rolled sheet into a product sheet thickness by one cold rolling, the hot rolled sheet thickness must be 1.0 to 2.5 mm. In the present invention, the total rolling reduction during hot rolling is defined as 85 to 95%,
Therefore, when the molten steel is a thin cast piece, the thickness is preferably 7 to 50 mm. Further, when the cold pressing is performed twice or more, the plate thickness can be up to 100 mm.

また、本発明においては、凝固後の鋳片が熱延開始まで
にA3点を通過しないことが重要である。したがって、鋳
片の冷却速度に関しては、熱延開始までにA3点を通過し
ない条件が満たされれば特に限定する必要はない。しか
し、冷却速度が速い場合、鋳片の中央部とコーナー部の
冷却むらが発生するばかりか、コーナー部の温度がA3
以下になるという問題がある。そこで、鋳造後直ちに熱
間圧延することは可能であるが、後述するA3点以上での
保熱を行う場合における保熱開始のための実質的なプロ
セス制約から、鋳片の平均冷却速度は20℃/sec以下であ
ることが好ましい。本発明では、冷却速度が大きい場合
も、鋳造後直ちに保熱カバーまたは高周波誘導加熱等を
用いて均熱することも有効な手段である。ここで、熱延
前に薄鋳片を均熱する場合、その均熱時間に関しては特
に限定はないが、30分を超えて均熱すると鋳片表面の酸
化が問題となるため、均熱時間は30分以内が望ましい。
このようなプロセスを採ることにより、従来の200mm厚
スラブを再加熱し、粗圧延および仕上圧延を施すプロセ
スに比べ、再加熱および粗圧延のプロセスを省略するこ
とが可能であり、大幅なコスト低減も図ることができ
る。
Further, in the present invention, it is important that the slab after solidification does not pass point A 3 before the start of hot rolling. Therefore, the cooling rate of the slab is not particularly limited as long as the condition of not passing the point A 3 before the start of hot rolling is satisfied. However, when the cooling rate is high, there are problems that not only uneven cooling occurs in the central portion and the corner portion of the slab but also the temperature at the corner portion becomes A 3 point or less. Therefore, it is possible to perform hot rolling immediately after casting, but from the substantial process constraint for starting heat retention when performing heat retention at A 3 points or more described later, the average cooling rate of the slab is It is preferably 20 ° C./sec or less. In the present invention, even when the cooling rate is high, it is an effective means to use a heat-retaining cover or high-frequency induction heating to soak the heat immediately after casting. Here, when soaking a thin slab before hot rolling, the soaking time is not particularly limited, but if soaking for more than 30 minutes, oxidation of the surface of the slab becomes a problem, soaking time Within 30 minutes is desirable.
By adopting such a process, it is possible to omit the reheating and rough rolling processes as compared with the conventional process of reheating a 200 mm thick slab and performing rough rolling and finish rolling, resulting in a significant cost reduction. You can also plan.

本発明では薄鋳片を上述のような条件で熱間圧延した
後、通常、熱延板をコイルに巻取り、放冷する。この巻
取り後の冷却は徐冷となるため、その間に熱延板のフェ
ライト組織の再結晶および粒成長を促進できる。このた
め600〜750℃で巻取ることが望ましい。また、その効果
を高めるために、巻取り後直ちにコイルを保熱カバーで
覆い、Ar等の非酸化雰囲気中で炉冷することも可能であ
る。一方、熱延巻取り後、さらに熱延板焼鈍を施す場
合、熱延時の巻取り温度に特に制限はない。特に、熱延
板焼鈍を行うと、微細析出物粒子の凝集粗大化が促進さ
れ、最終焼鈍時の焼鈍温度を低くしてもフェライト粒成
長性が良好となり、鉄損の低減を図ることができる。熱
延板焼鈍は、連続焼鈍の場合750〜950℃×0.5〜5min、
オープンバッチ焼鈍の場合、熱延板を酸洗後、非酸化雰
囲気中で700〜850℃×1〜10hrの条件で行うことが望ま
しい。
In the present invention, after the thin cast piece is hot-rolled under the above-mentioned conditions, the hot-rolled sheet is usually wound around a coil and allowed to cool. Since the cooling after the winding is slow cooling, recrystallization and grain growth of the ferrite structure of the hot rolled sheet can be promoted during that period. Therefore, it is desirable to wind at 600 to 750 ° C. Further, in order to enhance the effect, it is possible to cover the coil with a heat insulating cover immediately after winding and cool the furnace in a non-oxidizing atmosphere such as Ar. On the other hand, when hot-rolled sheet annealing is further performed after hot-rolling, there is no particular limitation on the winding temperature during hot-rolling. Particularly, when hot-rolled sheet annealing is performed, aggregation coarsening of fine precipitate particles is promoted, and even if the annealing temperature at the final annealing is lowered, the ferrite grain growth property becomes good and iron loss can be reduced. . For hot-rolled sheet annealing, continuous annealing is 750-950 ° C x 0.5-5 min.
In the case of open batch annealing, it is desirable to carry out the pickling of the hot rolled sheet and then the conditions of 700 to 850 ° C. for 1 to 10 hours in a non-oxidizing atmosphere.

また、熱延板焼鈍を施すに際して、巻取り後の熱延コイ
ルが室温まで冷却しないうちに熱延板焼鈍を開始するこ
とにより、加熱時のエネルギーを節約でき、省エネルギ
ーの観点から有効である。また、熱延仕上げ後、直接熱
延板焼鈍ラインを通板するならば、熱延板を巻取る必要
はない。
Further, when performing hot-rolled sheet annealing, by starting hot-rolled sheet annealing before the coiled hot-rolled coil is cooled to room temperature, energy during heating can be saved, which is effective from the viewpoint of energy saving. Further, if the hot-rolled sheet annealing line is directly passed through the hot-rolled finish, it is not necessary to wind the hot-rolled sheet.

また、2回以上冷間圧延を行う場合は、冷延と冷延の間
に中間焼鈍を施し、組織の回復および再結晶処理を行
う。中間焼鈍は、これを連続焼鈍で行う場合750〜950℃
×0.5〜5min、オープンバッチ焼鈍の場合、非酸化雰囲
気中で700〜850℃×1〜10hrの条件とすることが望まし
い。最終焼鈍は、フェライト組織に再結晶および粒成長
を行わせ、鉄損と磁束密度が最適バランスとなるフェラ
イト粒に制御するために行われるものであり、その条件
は、露点0℃以下の乾燥した非酸化雰囲気中にて750〜1
000℃×0.5〜5minの均熱を行うことが望ましい。
When cold rolling is performed twice or more, intermediate annealing is performed between cold rolling to recover the structure and recrystallize. Intermediate annealing is 750 to 950 ° C when this is performed by continuous annealing.
In the case of open batch annealing for 0.5 to 5 minutes, 700 to 850 ° C. for 1 to 10 hours is preferable in a non-oxidizing atmosphere. The final annealing is performed to recrystallize and grow grains in the ferrite structure and to control the ferrite grains so that the iron loss and the magnetic flux density are in an optimum balance, and the conditions are dry with a dew point of 0 ° C or less. 750-1 in non-oxidizing atmosphere
It is desirable to perform soaking at 000 ° C for 0.5 to 5 minutes.

〔実施例〕〔Example〕

実施例1. 第4表に示す成分の鋼を素材とし、以下に述べるような
条件で本発明法および比較法により無方向性電磁鋼板を
製造し、その磁気特性を調べた。その結果を第5表に示
す。
Example 1. A non-oriented electrical steel sheet was produced by the method of the present invention and the comparative method using the steel having the components shown in Table 4 as a raw material and the magnetic properties thereof were examined. The results are shown in Table 5.

本発明法(1) 組成Iの溶鋼を25mmt厚さに鋳造後、平均2℃/secで冷
却し、1100℃で熱延を開始しA3点以上で60%圧下後、さ
らに圧延を行い800℃で1.6mmt厚さの熱延板に仕上げた
(総圧下率93.6%)。この熱延板を酸洗した後、0.5mmt
厚さまで冷圧し、25%H2−75%N2雰囲気中で870℃×1.5
min、空冷の焼鈍を行った。
Inventive method (1) Molten steel of composition I is cast to a thickness of 25 mmt, then cooled at an average of 2 ° C / sec, hot rolling is started at 1100 ° C, 60% reduction at A 3 point or more, and further rolling is performed 800 Finished to a hot rolled sheet with a thickness of 1.6 mmt at ℃ (total reduction rate 93.6%). After pickling this hot rolled sheet, 0.5mmt
Cool down to thickness and 870 ℃ × 1.5 in 25% H 2 −75% N 2 atmosphere
min, air-cooled annealing was performed.

本発明法(2) 組成Iの溶鋼を25mmt厚さに鋳造後、平均5℃/secで冷
却し、1150℃の炉中に10分保持後、1100℃で熱延を開始
し、A3点以上で60%圧下後、さらに圧延を行い810℃で
1.6mmt厚さの熱延板に仕上げた(総圧下率93.6%)。以
後の条件は、本発明法(1)と同様である。
Inventive method (2) Molten steel of composition I is cast to a thickness of 25 mmt, cooled at an average of 5 ° C / sec, held in a furnace at 1150 ° C for 10 minutes, and hot rolled at 1100 ° C to start A 3 point. After rolling down 60% above, further rolling at 810 ℃
Finished to a hot rolled sheet with a thickness of 1.6 mmt (total reduction rate 93.6%). The subsequent conditions are the same as in the method (1) of the present invention.

本発明法(3) 組成Iの溶鋼を25mmt厚さに鋳造後、平均5℃/secで冷
却し、1150℃の炉中に25分保持後、1100℃で熱延を開始
し、A3点以上で60%圧下後、さらに圧延を行い800℃で
1.6mmt厚さの熱延板に仕上げた(総圧下率93.6%)。以
後の条件は、本発明法(1)と同様である。
Inventive method (3) After casting molten steel of composition I to a thickness of 25 mmt, cooling it at an average of 5 ° C / sec, holding it in a furnace at 1150 ° C for 25 minutes, and then starting hot rolling at 1100 ° C, A 3 point After rolling down 60% above, further rolling at 800 ℃
Finished to a hot rolled sheet with a thickness of 1.6 mmt (total reduction rate 93.6%). The subsequent conditions are the same as in the method (1) of the present invention.

本発明法(4) 組成Iの溶鋼を10mmt厚さに鋳造後、平均10℃/secで冷
却し、1150℃の炉中に30分保持後、1100℃で熱延を開始
し、A3点以上で60%圧下後、さらに圧延を行い800℃で
1.6mmt厚さの熱延板に仕上げた(総圧下率93.6%)。以
後の条件は、本発明法(1)と同様である。
Inventive method (4) Molten steel of composition I is cast to a thickness of 10 mmt, then cooled at an average of 10 ° C / sec, held in a furnace at 1150 ° C for 30 minutes, and hot rolled at 1100 ° C to start A 3 point. After rolling down 60% above, further rolling at 800 ℃
Finished to a hot rolled sheet with a thickness of 1.6 mmt (total reduction rate 93.6%). The subsequent conditions are the same as in the method (1) of the present invention.

本発明法(5) 組成Iの溶鋼を25mmt厚さに鋳造後、平均2℃/secで冷
却し、1100℃で熱延を開始し、A3点以上で60%圧下後、
さらに圧延を行い840℃で4.0mmt厚さの熱延板に仕上げ
た(総圧下率84%)。この熱延板について800℃×1mi
n、空冷の熱延板焼鈍を25%H2−75%N2雰囲気中で実施
した後、2.6mmtに冷圧し、25%H2−75%N2雰囲気中で83
0℃×1.5min、空冷の中間焼鈍を行った。さらに0.5mmt
に冷圧し、870℃×1.5min空冷の仕上げ焼鈍を25%H2−7
5%N2雰囲気中で行った。
Inventive method (5) After casting molten steel of composition I to a thickness of 25 mmt, it is cooled at an average of 2 ° C / sec, hot rolling is started at 1100 ° C, and after 60% reduction at A 3 point or more,
Further, it was rolled to finish a hot rolled sheet with a thickness of 4.0 mmt at 840 ° C (total reduction of 84%). About this hot rolled sheet 800 ℃ × 1mi
n, Air-cooled hot-rolled sheet annealing is performed in a 25% H 2 −75% N 2 atmosphere, and then cooled to 2.6 mmt, in a 25% H 2 −75% N 2 atmosphere.
Air-cooled intermediate annealing was performed at 0 ° C for 1.5 minutes. 0.5mmt
Cold-press to 870 ℃ × 1.5min and air-cooling finish annealing 25% H 2 −7
It was conducted in a 5% N 2 atmosphere.

比較法(1) 組成Jの溶鋼を220mmt厚さのスラブに鋳造後、平均0.6
℃/secで冷却し、その後粗圧延を行って35mmt厚とし、
続いて約1050℃で仕上げ圧延を開始して830℃で終了
し、1.6mmt厚の熱延板とした(総圧下率99%)。この熱
延板を酸洗した後、0.5mmt厚さまで冷圧し、870℃×1.5
min、空冷の焼鈍を行った。
Comparative method (1) After casting molten steel of composition J into a 220 mmt thick slab, an average of 0.6
Cooling at ℃ / sec, then rough rolling to 35mmt thickness,
Then, finish rolling was started at about 1050 ° C and finished at 830 ° C to obtain a hot rolled sheet with a thickness of 1.6 mmt (total reduction of 99%). After pickling this hot-rolled sheet, it is cold pressed to a thickness of 0.5mmt, 870 ℃ × 1.5
min, air-cooled annealing was performed.

比較法(2) 組成Jの溶鋼を220mmt厚さのスラブに鋳造後、一旦室温
まで放冷した後、1200℃に再加熱し、比較法(1)と同
様のスケジュールで熱延後、冷圧、焼鈍した。
Comparative method (2) Molten steel of composition J was cast into a slab with a thickness of 220 mmt, allowed to cool to room temperature, then reheated to 1200 ° C, hot rolled on the same schedule as in comparative method (1), and then cold pressed. , Annealed.

比較法(3) 組成Iの溶鋼を25mmt厚さに鋳造後、一旦室温まで空冷
した後、1200℃に再加熱し、1100℃で熱延を開始し、A3
点以上で60%圧下後、さらに圧延を行い810℃で1.6mmt
厚さの熱延板に仕上げた(総圧下率93.6%)。この熱延
板を酸洗した後、0.5mmt厚さに冷圧し、25%H2−75%N2
雰囲気中で870℃×1.5min、空冷の焼鈍を行った。
After casting comparison method (3) of molten steel having the composition I to 25mmt thickness, after once cooled to room temperature, reheated to 1200 ° C., hot rolled starting at 1100 ° C., A 3
After rolling down 60% above the point, further rolling is performed and 1.6 mmt at 810 ° C.
Finished hot-rolled sheet with a total thickness (total reduction of 93.6%). After pickling the hot rolled sheet, Hiyaoshi to 0.5mmt thickness, 25% H 2 -75% N 2
Air-cooled annealing was performed at 870 ° C for 1.5 minutes in the atmosphere.

比較法(4) 組成Iの溶鋼を10mmt厚さに鋳造後、平均30℃/secで900
℃まで冷却し、次いで1150℃まで加熱後、1100℃で熱延
を開始し、A3点以上で70%圧下後、さらに圧延を行い80
0℃で1.6mmt厚の熱延板に仕上げた(総圧下率84%)。
以後の条件は本発明法(1)と同様である。
Comparative method (4) After casting molten steel of composition I to a thickness of 10 mmt, the average is 900 at 30 ° C / sec.
After cooling to ℃, then heating to 1150 ℃, start hot rolling at 1100 ℃, 70% reduction at A 3 points or more, then further rolling 80
Finished hot rolled sheet with a thickness of 1.6 mmt at 0 ° C (total reduction of 84%).
The subsequent conditions are the same as in the method (1) of the present invention.

実施例2. 第6表に示す供試鋼を30mmtの薄鋳片に鋳造後、A3点を
下回ることなく熱延を開始し、熱延後、冷圧(板厚0.5m
mt)、焼鈍を行った。熱延および焼鈍条件を第7表に示
す。但し、A(3)、G(2)については熱延板焼鈍を
以下の条件で行った。
Example 2. After casting the test steel shown in Table 6 into a thin slab of 30 mmt, hot rolling was started without falling below A3 point, and after hot rolling, cold rolling (plate thickness 0.5 m
mt) and annealed. Table 7 shows the hot rolling and annealing conditions. However, for A (3) and G (2), hot-rolled sheet annealing was performed under the following conditions.

A(3):800℃×1.5min、空冷、25%H2−75%N2、PH2O
/PH2=0.005 G(2):770℃×5hr、炉冷、75%H2−25%N2、PH2O/PH
2=0.05 また、最終焼鈍時の雰囲気は以下の通りである。
A (3): 800 ℃ × 1.5min, air cooling, 25% H 2 −75% N 2 , PH 2 O
/ PH 2 = 0.005 G (2): 770 ℃ x 5hr, furnace cooling, 75% H 2 -25% N 2 , PH 2 O / PH
2 = 0.05 The atmosphere during final annealing is as follows.

G(3):25%H2−75%N2、PH2O/PH2=0.15 G(3)以外:25%H2−75%N2、PH2O/PH2=0.008 G(2)、G(3)の最終焼鈍後のC含有量は、それぞ
れ0.0018%、0.0043%であった。
G (3): 25% H 2 -75% N 2, PH 2 O / PH 2 = 0.15 G (3) except: 25% H 2 -75% N 2, PH 2 O / PH 2 = 0.008 G (2 ) And G (3) after the final annealing had a C content of 0.0018% and 0.0043%, respectively.

得られた鋼板の磁気特性を、その製造条件とともに第7
表に示す。
The magnetic properties of the obtained steel sheet are described below together with the manufacturing conditions.
Shown in the table.

【図面の簡単な説明】[Brief description of drawings]

第1図はFC材、MC材およびMC材の1050℃×5min再加熱材
の各鋳片の断面金属組織を示す写真である。第2図は、
第1図に示す各鋳片を熱間圧延した際の、熱間圧延まで
の熱履歴を示すグラフである。第3図は、第1図(A)
〜(C)に示す各鋳片を素材とする熱延板を、熱延板焼
鈍−冷圧−最終焼鈍して得られた鋼板のX線積分反射強
度比を、最終焼鈍温度との関係で示すグラフである。第
4図は、薄鋳片のAr3点以上での熱延圧下率が最終焼鈍
後の磁束密度に及ぼす影響を示すグラフである。第5図
は、薄鋳片の熱延時の総圧下率が最終焼鈍後の磁束密度
に及ぼす影響を示すグラフである。
FIG. 1 is a photograph showing the cross-sectional metallographic structure of each of the slabs of FC material, MC material, and MC material reheated at 1050 ° C. for 5 minutes. Figure 2 shows
It is a graph which shows the heat history until hot rolling when each slab shown in FIG. 1 is hot rolled. FIG. 3 shows FIG. 1 (A).
The hot-rolled sheet made of each of the slabs shown in (C) to (C) is subjected to hot-rolled sheet annealing-cold pressure-final annealing, and the X-ray integrated reflection intensity ratio of the steel sheet obtained is related to the final annealing temperature. It is a graph shown. FIG. 4 is a graph showing the effect of the hot rolling reduction rate at the Ar 3 point or higher of the thin cast piece on the magnetic flux density after the final annealing. FIG. 5 is a graph showing the effect of the total rolling reduction during hot rolling of a thin cast piece on the magnetic flux density after final annealing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C≦0.01%、0.1≦Si<1.7%、
Al<1%、(Si+1.7Al)<1.7%、N≦0.003%、S≦
0.005%、残部Feおよび不可避的不純物からなる溶鋼を
薄鋳片に鋳造した後、この鋳片をA3点以下まで冷却する
ことなく熱間圧延を開始し、該熱間圧延工程では、材料
温度がA3点に到達するまでに圧下量20%以上の圧延を行
うとともに、熱間圧延時の総圧下量を80〜95%とし、該
熱延板をそのまま又は熱延板焼鈍した後、1回または中
間焼鈍を挾む2回以上の冷間圧延を行い、しかるのち焼
鈍を行うことを特徴とする無方向性電磁鋼板の製造方
法。
1. In weight%, C ≦ 0.01%, 0.1 ≦ Si <1.7%,
Al <1%, (Si + 1.7Al) <1.7%, N ≦ 0.003%, S ≦
After casting molten steel consisting of 0.005%, balance Fe and unavoidable impurities into thin slabs, hot rolling is started without cooling the slabs to A 3 point or less, and in the hot rolling step, the material temperature is Is rolled with a reduction amount of 20% or more until reaching A 3 point, and the total reduction amount during hot rolling is set to 80 to 95%, and the hot rolled sheet is annealed as it is or after hot rolled sheet annealing. A method for producing a non-oriented electrical steel sheet, which comprises performing cold rolling twice or more with intermediate or intermediate annealing, and then performing annealing.
JP2011720A 1990-01-23 1990-01-23 Non-oriented electrical steel sheet manufacturing method Expired - Fee Related JPH07116510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011720A JPH07116510B2 (en) 1990-01-23 1990-01-23 Non-oriented electrical steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011720A JPH07116510B2 (en) 1990-01-23 1990-01-23 Non-oriented electrical steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH03219020A JPH03219020A (en) 1991-09-26
JPH07116510B2 true JPH07116510B2 (en) 1995-12-13

Family

ID=11785881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011720A Expired - Fee Related JPH07116510B2 (en) 1990-01-23 1990-01-23 Non-oriented electrical steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JPH07116510B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587900A4 (en) * 1992-02-10 1995-09-27 Daicel Chem Linear gas generating agent and filter construction for gas generator
KR100328032B1 (en) * 1997-10-01 2002-05-10 이구택 A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet
US7011139B2 (en) * 2002-05-08 2006-03-14 Schoen Jerry W Method of continuous casting non-oriented electrical steel strip
JP5388506B2 (en) * 2008-08-19 2014-01-15 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP5995002B2 (en) 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
MX2017002066A (en) * 2014-08-20 2017-05-04 Jfe Steel Corp Non-oriented electromagnetic steel sheet having excellent magnetic characteristics.
WO2018123558A1 (en) * 2016-12-28 2018-07-05 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent recyclability
JP6624393B2 (en) * 2016-12-28 2019-12-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent recyclability
KR20230110338A (en) * 2020-11-27 2023-07-21 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof, and hot-rolled steel sheet
BR112023019184A2 (en) * 2021-03-31 2023-10-17 Nippon Steel Corp NON-ORIENTED ELECTRIC STEEL SHEET
KR20230143192A (en) * 2021-03-31 2023-10-11 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
CN114045433B (en) * 2021-11-10 2022-10-21 张家港扬子江冷轧板有限公司 Ultra-low iron loss non-oriented silicon steel and production method thereof

Also Published As

Publication number Publication date
JPH03219020A (en) 1991-09-26

Similar Documents

Publication Publication Date Title
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
JPH07116510B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH0586455B2 (en)
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JPS6261644B2 (en)
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH0696743B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
GB2060697A (en) Grain-oriented silicon steel production
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2688146B2 (en) Method for producing unidirectional electrical steel sheet having high magnetic flux density
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP3485409B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH07116513B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3331535B2 (en) Method for manufacturing thick non-oriented electrical steel sheet with excellent magnetic properties
JPH0742504B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees