JPH0710226Y2 - Air liquefaction separation device - Google Patents

Air liquefaction separation device

Info

Publication number
JPH0710226Y2
JPH0710226Y2 JP4484789U JP4484789U JPH0710226Y2 JP H0710226 Y2 JPH0710226 Y2 JP H0710226Y2 JP 4484789 U JP4484789 U JP 4484789U JP 4484789 U JP4484789 U JP 4484789U JP H0710226 Y2 JPH0710226 Y2 JP H0710226Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling water
raw material
booster
turbine fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4484789U
Other languages
Japanese (ja)
Other versions
JPH02137691U (en
Inventor
修 宇多田
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP4484789U priority Critical patent/JPH0710226Y2/en
Publication of JPH02137691U publication Critical patent/JPH02137691U/ja
Application granted granted Critical
Publication of JPH0710226Y2 publication Critical patent/JPH0710226Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、空気液化分離装置に関し、特に、原料空気圧
縮機で圧縮されて昇温した原料空気を冷却する手段であ
る水洗冷却塔と、原料空気の一部を膨脹タービンのター
ビン流体として用いるために昇圧する昇圧機とを備えた
空気液化分離装置における昇圧機により圧縮されて昇温
したタービン流体の冷却手段に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an air liquefaction / separation device, and more particularly, to a washing and cooling tower which is means for cooling raw material air that has been heated by being compressed by a raw material air compressor, The present invention relates to a cooling means for a turbine fluid that has been heated by being compressed by a booster in an air liquefaction separation device provided with a booster for boosting a part of raw material air as a turbine fluid of an expansion turbine.

〔従来の技術〕 第3図は従来の空気液化分離装置の要部の一例を示すも
ので、この空気液化分離装置1には、原料空気Aを圧縮
する原料空気圧縮機2と、圧縮されて高温となった原料
空気Aを冷却洗浄する水洗冷却塔3と、水分や炭酸ガス
を除去して原料空気Aを精製する一組の吸着器4,4と、
精製後の原料空気Aを精留分離後の製品ガスGpや排ガス
Gwと熱交換させて冷却する主熱交換器5とが設けられて
おり、さらに、精留分離操作に必要な寒冷を得るため
に、精製後の原料空気Aの一部をタービン流体として分
岐して昇圧し、次いで膨脹させて寒冷を発生させる昇圧
器6及び膨脹タービン7が設けられている。この昇圧機
6には、昇圧機6により圧縮されて昇温したタービン流
体Tを冷却する予冷器8及び熱交換器9とが設けられて
いる。昇圧機6で昇圧して昇温したタービン流体Tは、
予冷器8で冷却され、さらに熱交換器9で昇圧前のター
ビン流体Tと熱交換を行い冷却された後に、前記主熱交
換器5で所定の温度にまで冷却されて膨脹タービン7に
導入され、膨脹して寒冷を発生する。
[Prior Art] FIG. 3 shows an example of a main part of a conventional air liquefaction separation apparatus. In this air liquefaction separation apparatus 1, a raw material air compressor 2 for compressing a raw material air A and a compressed air are used. A water washing cooling tower 3 for cooling and washing the high temperature raw material air A, and a set of adsorbers 4 and 4 for purifying the raw material air A by removing water and carbon dioxide gas,
Product gas Gp and exhaust gas after rectification separation of raw material air A after purification
A main heat exchanger 5 for heat exchange with Gw for cooling is provided, and in addition, in order to obtain the refrigeration necessary for the rectification separation operation, a part of the raw material air A after purification is branched as a turbine fluid. A booster 6 and an expansion turbine 7 are provided for boosting pressure and then expanding to generate cold. The booster 6 is provided with a precooler 8 and a heat exchanger 9 that cool the turbine fluid T that has been compressed by the booster 6 and has risen in temperature. The turbine fluid T that has been boosted by the booster 6 to raise its temperature is
After being cooled in the precooler 8 and further cooled in the heat exchanger 9 by exchanging heat with the turbine fluid T before pressurization, it is cooled to a predetermined temperature in the main heat exchanger 5 and introduced into the expansion turbine 7. It expands and produces cold.

原料空気Aは、これらの機器を経て圧縮,精製,冷却さ
れた後に精留塔(図示せず)に導入され、公知の精留操
作により精留されて窒素や酸素等の製品ガスGpと排ガス
Gwとに分離する。この製品ガスGpや排ガスGwは、前記主
熱交換器5で原料空気Aを冷却するとともに、自身は温
度回復して導出される。
The raw material air A is introduced into a rectification column (not shown) after being compressed, purified and cooled through these devices, and rectified by a known rectification operation to produce a product gas Gp such as nitrogen or oxygen and an exhaust gas.
Separated into Gw. The product gas Gp and the exhaust gas Gw are discharged while the raw air A is cooled by the main heat exchanger 5 and the temperature of itself is recovered.

上記水洗冷却塔3は、原料空気Aを冷却水Wにより冷却
するとともに洗浄するもので、この水洗冷却塔3には、
精留分離後に排出される排ガスGwの一部を利用して冷却
水Wの冷却を行う冷水塔10及び冷却水Wを水洗冷却塔3
に供給する冷水ポンプ11が付設されており、約9℃の冷
却水Wが水洗冷却塔3の上部に導入されている。
The washing and cooling tower 3 cools and cleans the raw material air A with the cooling water W, and the washing and cooling tower 3 includes:
The cooling water tower 10 for cooling the cooling water W by utilizing a part of the exhaust gas Gw discharged after the rectification separation and the washing tower 3 for washing the cooling water W
A chilled water pump 11 for supplying water is supplied to the upper part of the washing and cooling tower 3.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかしながら、上述のものでは、昇圧機6で昇圧して昇
温したタービン流体Tを昇圧前のタービン流体T、即ち
原料空気Aの一部と熱交換させているために、主熱交換
器5の温端器5aに温度差を生じてしまう。例えば、吸着
器4から導出する原料空気Aの温度を18℃とすると、該
熱交換器9では、この18℃の昇圧前のタービン流体T
と、昇圧後に予冷器8で冷却されて約35℃となったター
ビン流体Tとが熱交換を行うこととなるため、熱交換に
より冷却して導出する昇圧後のタービン流体Tの温度
を、約20℃まで冷却するのが限度である。従って、主熱
交換器5の温端部5aには、18℃の原料空気Aと、20℃の
タービン流体Tとが導入されることになり、主熱交換器
5にとって好ましいのではない。
However, in the above-mentioned one, since the turbine fluid T that has been pressurized and raised by the booster 6 is heat-exchanged with the turbine fluid T before being boosted, that is, a part of the raw material air A, the main heat exchanger 5 has A temperature difference occurs in the warm end device 5a. For example, if the temperature of the raw material air A discharged from the adsorber 4 is 18 ° C., the turbine fluid T before the pressure increase of 18 ° C. is performed in the heat exchanger 9.
And the turbine fluid T, which has been cooled by the precooler 8 and has reached about 35 ° C. after pressure increase, performs heat exchange. Therefore, the temperature of the turbine fluid T after pressure increase, which is cooled by heat exchange and then derived, is about Cooling down to 20 ° C is the limit. Therefore, the raw air A of 18 ° C. and the turbine fluid T of 20 ° C. are introduced into the warm end 5a of the main heat exchanger 5, which is not preferable for the main heat exchanger 5.

またタービン流体Tが昇圧機6に導入される前に熱交換
器9の狭い流路を通過するために、圧力損失を生じると
ともに、昇圧により昇温したタービン流体Tと熱交換し
て昇温した状態で昇圧機6に吸入されるため、昇圧機6
の圧縮効率が低下する。
Further, since the turbine fluid T passes through the narrow flow path of the heat exchanger 9 before being introduced into the booster 6, a pressure loss occurs, and heat is exchanged with the turbine fluid T that has been heated by pressurization to raise the temperature. Since the booster 6 is inhaled in this state,
Compression efficiency is reduced.

そこで本考案は、上記主熱交換器5に導入される原料空
気Aとタービン流体Tとの温度差を無くすとともに、昇
圧機6導入前のタービン流体Tの圧力損失や昇温を無く
して昇圧機6の効率向上を図ることのできる空気液化分
離装置を提供することを目的としている。
Therefore, the present invention eliminates the temperature difference between the raw material air A introduced into the main heat exchanger 5 and the turbine fluid T, and eliminates the pressure loss and temperature rise of the turbine fluid T before the introduction of the booster 6, thereby increasing the booster. It is an object of the present invention to provide an air liquefaction separation device capable of improving the efficiency of No. 6 above.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記した目的を達成するために本考案は、原料空気圧縮
機で圧縮されて昇温した原料空気を冷却する水洗冷却塔
と、吸着器で精製された後に分岐した原料空気の一部を
タービン流体として昇圧する昇圧機と、原料空気及びタ
ービン流体を冷却する主熱交換器と、該主熱交換器で所
定温度まで冷却した前記タービン流体を膨脹させて寒冷
を発生する膨脹ターンビンとを備えた空気液化分離装置
において、前記昇圧機と主熱交換器との間に、前記昇圧
機で昇圧されて昇温したタービン流体と、前記水洗冷却
塔に導入する低温冷却水の一部とを熱交換させる熱交換
器を設けたことを特徴としている。
In order to achieve the above-mentioned object, the present invention provides a washing and cooling tower that cools the raw material air that is compressed and heated by a raw material air compressor, and a part of the raw material air that is branched after being purified by an adsorber as a turbine fluid. Air having a booster for boosting pressure, a main heat exchanger for cooling the feed air and the turbine fluid, and an expansion turnbin for expanding the turbine fluid cooled to a predetermined temperature in the main heat exchanger to generate cold. In the liquefaction separation device, between the booster and the main heat exchanger, heat exchange is performed between the turbine fluid that has been pressurized and raised by the booster and a part of the low-temperature cooling water that is introduced into the washing cooling tower. The feature is that a heat exchanger is provided.

さらに、本考案は、前記昇圧機と熱交換器との間に、該
昇圧機で昇圧されて昇温したタービン流体を予冷する予
冷器を設けたこと、また、前記熱交換器は、該熱交換器
の中間部から温端部に至る工業用水等の常温冷却水の流
路と、該熱交換器の冷端部から中間部に至る前記低温冷
却水の流路とを備えていることを特徴としている。
Further, the present invention provides a precooler between the booster and the heat exchanger, the precooler precooling the turbine fluid that has been pressurized by the booster and has risen in temperature. It is provided with a flow path of room temperature cooling water such as industrial water from the middle part to the warm end of the exchanger, and a flow path of the low temperature cooling water from the cold end of the heat exchanger to the middle part. It has a feature.

〔作用〕[Action]

上記のごとく、原料空気圧縮機で圧縮されて高温となっ
た原料空気を冷却する低温冷却水の一部で、昇圧機で昇
圧されて昇温したタービン流体を冷却することにより、
吸着器を導出した原料空気と同じ温度まで冷却すること
ができ、主熱交換器に導入する原料ガスとタービン流体
を同温度とすることができる。さらに原料空気から分岐
したタービン流体をそのまま昇圧機に導入できるので、
圧力損失も無く、昇温することも無いので昇圧機の圧縮
効率が向上できる。
As described above, a part of the low-temperature cooling water that cools the raw material air that has been compressed by the raw material air compressor and has reached a high temperature, by cooling the turbine fluid that has been heated up by the booster,
It is possible to cool the adsorber to the same temperature as the discharged raw material air, and to make the raw material gas and the turbine fluid introduced into the main heat exchanger have the same temperature. Furthermore, since the turbine fluid branched from the raw air can be directly introduced to the booster,
Since there is no pressure loss and no temperature rise, the compression efficiency of the booster can be improved.

また、昇圧機と熱交換器との間に予冷器を配設すること
により、熱交換器の負担を軽減して低温冷却水の必要量
を低減できる。さらに熱交換器に、常温冷却水の流路と
低温冷却水の流路とを設けることにより、昇温したター
ビン流体を常温冷却水で適当温度まで冷却した後に低温
冷却水で冷却することができ、熱交換器1基で、かつ少
量の低温冷却水でタービン流体の冷却を行うことができ
る。
Further, by disposing the precooler between the booster and the heat exchanger, the load on the heat exchanger can be reduced and the required amount of low-temperature cooling water can be reduced. Furthermore, by providing the normal temperature cooling water flow path and the low temperature cooling water flow path in the heat exchanger, it is possible to cool the heated turbine fluid to the appropriate temperature with the normal temperature cooling water and then to cool it with the low temperature cooling water. The turbine fluid can be cooled with one heat exchanger and a small amount of low-temperature cooling water.

〔実施例〕〔Example〕

以下、本考案を図面に示す実施例に基づいてさらに詳細
に説明する。尚、以下の説明において前記第3図に示し
た従来例と同一要素のものには同一符号を付して詳細な
説明を省略する。
Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. In the following description, the same elements as those of the conventional example shown in FIG. 3 are designated by the same reference numerals and detailed description thereof will be omitted.

まず第1図は、本考案の空気液化分離装置の一実施例を
示すもので、この空気液化分離装置20は、昇圧機6と主
熱交換器5との間に予冷器8と熱交換器21とを配設した
ものである。
First, FIG. 1 shows an embodiment of an air liquefaction separation apparatus of the present invention. This air liquefaction separation apparatus 20 includes a precooler 8 and a heat exchanger between a booster 6 and a main heat exchanger 5. 21 is provided.

上記熱交換器21には、冷水塔10から水洗冷却塔3に導入
する低温冷却水Wcの一部を該熱交換器21に導入する管路
22と、該熱交換器21でタービン流体Tと熱交換して昇温
した低温冷却水Wcを冷水塔10に戻る管路23とが設けられ
ており、両管路22,23により冷水ポンプ11から吐出され
る低温冷却水Wcの一部が導入され循環している。
In the heat exchanger 21, a pipe line for introducing a part of the low temperature cooling water Wc introduced from the cold water tower 10 into the water washing cooling tower 3 into the heat exchanger 21.
22 and a pipe line 23 for returning the low-temperature cooling water Wc which has been heated by exchanging heat with the turbine fluid T in the heat exchanger 21 to the cold water tower 10 and which are provided with the cold water pump 11 by the pipe lines 22 and 23. A part of the low-temperature cooling water Wc discharged from is introduced and circulated.

尚、管路23へ導出した昇温冷却水は、直接冷水塔10へ帰
還させて循環させてもよいし、一度工業用水等と合流さ
せ、工業用水の一部が冷水塔10へ導入されるようにして
もよい。また予冷器8には、工業用水等の常温冷却水Wn
が導入されている。
The temperature-raised cooling water led to the pipeline 23 may be directly returned to the cold water tower 10 and circulated, or may be once joined with industrial water or the like, and a part of the industrial water is introduced into the cold water tower 10. You may do it. In addition, the precooler 8 has a room temperature cooling water Wn such as industrial water.
Has been introduced.

原料空気圧縮機2で約5.5kg/cm2Gに圧縮された原料空気
Aは、水洗冷却塔3で低温冷却水Wcにより約12℃にまで
冷却され、次いで一方の吸着器4に導入されて精製さ
れ、約18℃に昇温して導出される。吸着器4から導出し
た原料空気Aは、その大部分、例えば75%がそのまま主
熱交換器5に導入され、主熱交換器5で精留分離後の製
品ガスGp及び排ガスGwと熱交換を行い、液化点付近まで
冷却されて精留塔に導入される。
The raw material air A compressed to about 5.5 kg / cm 2 G by the raw material air compressor 2 is cooled to about 12 ° C. by the low temperature cooling water Wc in the water washing cooling tower 3 and then introduced into one of the adsorbers 4. It is refined and heated to about 18 ° C and then discharged. Most of the raw material air A discharged from the adsorber 4 is introduced into the main heat exchanger 5 as it is, for example, 75%, and heat exchange with the product gas Gp and exhaust gas Gw after rectification and separation is performed in the main heat exchanger 5. It is cooled to near the liquefaction point and introduced into the rectification column.

原料空気Aの一部、例えば25%は、タービン流体Tとし
て管路24に分岐し、昇圧機6で圧縮され、約11kg/cm2G
に昇圧するとともに約85℃に昇温する。昇温したタービ
ン流体Tは、予冷器8に導入され、約30℃の常温冷却水
Wnにより冷却されて約35℃になる。次いで、このタービ
ン流体Tは、熱交換器21に導入され、水洗冷却塔3に用
いる約9℃の低温冷却水Wcと熱交換を行い、吸着器4を
導出した原料空気Aと同じ温度の18℃に冷却される。
A part of the raw material air A, for example 25%, is branched to the pipe line 24 as the turbine fluid T, compressed by the booster 6, and is about 11 kg / cm 2 G.
And the temperature rises to about 85 ° C. The heated turbine fluid T is introduced into the precooler 8 and cooled to about 30 ° C. room temperature cooling water.
It is cooled by Wn to about 35 ℃. Next, this turbine fluid T is introduced into the heat exchanger 21 and exchanges heat with the low temperature cooling water Wc of about 9 ° C. used in the water washing cooling tower 3 and has the same temperature as that of the raw material air A discharged from the adsorber 4. It is cooled to ℃.

原料空気Aと同じ温度になったタービン流体Tは、原料
空気Aと共に主熱交換器5に導入される。主熱交換器5
で所定の温度までさらに降温して主熱交換器5の中間部
から導出されたタービン流体Tは、膨脹タービン7で膨
脹し、寒冷を発生するとともに昇圧機6の駆動源とな
る。
The turbine fluid T that has reached the same temperature as the raw material air A is introduced into the main heat exchanger 5 together with the raw material air A. Main heat exchanger 5
The turbine fluid T, which has been further cooled to a predetermined temperature and led out from the intermediate portion of the main heat exchanger 5, expands in the expansion turbine 7 to generate cold, and serves as a drive source for the booster 6.

ここで、前記水洗冷却塔3で原料空気Aを冷却するとと
もに、その一部がタービン流体Tを冷却するのに用いら
れる低温冷却水Wcは、次のようにして得ることができ
る。
Here, the low temperature cooling water Wc used for cooling the raw material air A in the water washing cooling tower 3 and for cooling a part of the turbine fluid T can be obtained as follows.

主熱交換器5で原料空気A及びタービン流体Tと熱交換
を行い、16℃に温度回復して排出される排ガスGwは、そ
の一部が水洗冷却塔3に付設された冷水塔10に導入され
る。この排ガスGwは、水分を全く含まない乾燥ガスであ
るため、この冷水塔10に導入される常温の水、例えば工
業用水、前記熱交換器21でタービン流体Tとの熱交換を
終えて約30℃に昇温した低温冷却水Wc、水洗冷却塔3か
ら排出されて循環する冷却水等を、約9℃に冷却するこ
とができる。このようにして冷水塔10で得られる低温冷
却水Wcは、冷水ポンプ11により水洗冷却塔3及び熱交換
器21に供給され循環する。
Exhaust gas Gw that exchanges heat with raw material air A and turbine fluid T in the main heat exchanger 5 and recovers its temperature to 16 ° C. and is discharged is partly introduced into the cold water tower 10 attached to the washing and cooling tower 3. To be done. Since this exhaust gas Gw is a dry gas that does not contain any moisture, water at room temperature introduced into the cold water tower 10, for example, industrial water, is used after the heat exchange with the turbine fluid T is completed in the heat exchanger 21 for about 30 minutes. It is possible to cool the low-temperature cooling water Wc heated to ℃, the cooling water discharged from the washing and cooling tower 3 and circulated, to about 9 ° C. The low-temperature cooling water Wc thus obtained in the cold water tower 10 is supplied to the washing and cooling tower 3 and the heat exchanger 21 by the cold water pump 11 and circulates.

このように、昇圧機6で圧縮して昇温したタービン流体
Tを、原料空気Aの冷却を行う低温冷却水Wcと熱交換さ
せて冷却することにより、前述のごとく主熱交換器5に
導入する原料空気Aと同じ温度とすることができる。さ
らに、昇圧機6の吸入側に熱交換器を設けていないので
圧力損失を生じることが無く、また吸着器4を導出した
ままの低い温度で圧縮を行うために圧縮効率の向上が図
れる。
In this way, the turbine fluid T that has been compressed and heated by the booster 6 is introduced into the main heat exchanger 5 by heat exchange with the low-temperature cooling water Wc that cools the raw material air A to cool it. The temperature can be the same as that of the raw material air A to be used. Further, since the heat exchanger is not provided on the suction side of the booster 6, no pressure loss occurs, and since the compression is performed at a low temperature while the adsorber 4 is led out, the compression efficiency can be improved.

次に第2図は、本考案の他の実施例を示すもので、この
空気液化分離装置30には、昇圧機6と主熱交換器5との
間に、常温冷却水Wnの流路31と低温冷却水Wcの流路32と
を有する熱交換器33が配設されている。
Next, FIG. 2 shows another embodiment of the present invention. In this air liquefaction / separation device 30, a passage 31 for the room temperature cooling water Wn is provided between the booster 6 and the main heat exchanger 5. A heat exchanger 33 having a flow path 32 for the low temperature cooling water Wc is arranged.

上記常温冷却水Wnの流路31は、熱交換器33の中間部から
温端部33aに至るもので、この常温冷却水Wnの流路31に
は、常温の工業用水等が導入され、昇圧機6で昇圧され
て約85℃に昇温したタービン流体Tを約35℃に冷却す
る。
The flow path 31 of the room temperature cooling water Wn extends from the middle part of the heat exchanger 33 to the warm end 33a, and the room temperature industrial water or the like is introduced into the flow path 31 of the room temperature cooling water Wn to increase the pressure. The turbine fluid T, which has been pressurized by the machine 6 and heated to about 85 ° C., is cooled to about 35 ° C.

また低温冷却水Wcの流路32は、熱交換器33の冷端部33b
から中間部に至るもので、前記実施例と同様に、水洗冷
却等3で原料空気Aと冷却する低温冷却水Wcの一部が導
入され、流路31の常温冷却水Wnにより約35℃に冷却され
たタービン流体Tを、吸着器4から導出する原料空気A
と同じ18℃に冷却している。
Further, the flow path 32 of the low-temperature cooling water Wc is the cold end 33b of the heat exchanger 33.
In the same manner as in the above embodiment, a part of the low temperature cooling water Wc for cooling the raw material air A in the washing and cooling 3 etc. is introduced, and the room temperature cooling water Wn of the flow path 31 raises the temperature to about 35 ° C. The raw material air A that draws out the cooled turbine fluid T from the adsorber 4
It is cooled to the same 18 ℃.

上記常温冷却水Wnは、例えば循環用のクーリングタワー
等から供給されるもので、この常温冷却水Wnは、水洗冷
却塔3の冷却効率向上のために、水洗冷却塔3の中間部
に導入する常温冷却水Wnの一部を用いることができる。
The room-temperature cooling water Wn is supplied from, for example, a cooling tower for circulation, and the room-temperature cooling water Wn is introduced into the middle portion of the water-washing cooling tower 3 in order to improve the cooling efficiency of the water-washing cooling tower 3. A part of the cooling water Wn can be used.

このように、常温及び低温のそれぞれの冷却水Wn,Wcの
流路31,32を有する熱交換器33を配設することにより、
上記実施例のごとく、予冷器8と熱交換器21をそれぞれ
配置するものに比べて装置コストを低減することができ
る。
In this way, by disposing the heat exchanger 33 having the flow paths 31 and 32 for the cooling water Wn and Wc at normal temperature and low temperature, respectively,
The apparatus cost can be reduced as compared with the case where the precooler 8 and the heat exchanger 21 are respectively arranged as in the above embodiment.

尚、常温冷却水Wnを用いずにタービン流体Tを原料空気
Aと同じ温度まで冷却することも可能であるが、例え
ば、圧縮されたタービン流体Tの温度を85℃,低温冷却
水Wcの温度を9℃とし、低温冷却水Wcのみでタービン流
体Tを85℃から18℃まで冷却するのに毎時20tの低温冷
却水Wcを必要とする場合に、上記両実施例に示すごと
く、予冷器8あるいは常温冷却水Wnの流路31を設けて、
約30℃の常温冷却水Wnによりタービン流体Tを35℃まで
冷却するようにすれば、35℃のタービン流体Tを18℃ま
で冷却するのに必要な低温冷却水Wcの量を毎時7.5t程度
とすることができる。これにより、毎時約20tの水を9
℃に冷却するためのエネルギーを低減させることができ
る。特に、精留分離効率が高くて製品ガス量が多く、排
ガス量が少ない空気液化分離装置にあっては、低温冷却
水Wcを得るために冷凍機等の付帯設備を設けることもあ
るため、上記常温冷却水Wnによる予冷を行い、低温冷却
水Wcの使用量を低減させることが望ましい。
Although it is possible to cool the turbine fluid T to the same temperature as the raw material air A without using the room temperature cooling water Wn, for example, the temperature of the compressed turbine fluid T is 85 ° C. and the temperature of the low temperature cooling water Wc. Is 9 ° C., and 20 t / h of low temperature cooling water Wc is required to cool the turbine fluid T from 85 ° C. to 18 ° C. only with the low temperature cooling water Wc, the precooler 8 Or by providing the flow path 31 for the room temperature cooling water Wn,
If the turbine fluid T is cooled to 35 ° C. by the room temperature cooling water Wn of about 30 ° C., the amount of the low temperature cooling water Wc required to cool the 35 ° C. turbine fluid T to 18 ° C. is about 7.5 t / h. Can be With this, about 20 tons of water can be
The energy for cooling to ℃ can be reduced. In particular, the rectification separation efficiency is high, the amount of product gas is large, and the amount of exhaust gas is small In an air liquefaction separation device, an auxiliary equipment such as a refrigerator may be provided to obtain the low-temperature cooling water Wc. It is desirable to reduce the amount of the low-temperature cooling water Wc used by precooling with the room-temperature cooling water Wn.

また図示以外の精留塔部分等、その他、通常の空気液化
分離装置に用いられている各種機器は、従来と同様に用
いることが可能であり、採取する製品の種類や性状,量
等により適宜な構成とすることができる。本実施例にお
いて説明した昇圧機6は、第1図のごとく膨張タービン
7の制動用ブロワーとして用いることができるのは勿論
である。
Further, other components such as a rectification column portion other than those shown in the figure, and other various devices used in a normal air liquefaction separation device can be used in the same manner as in the past, and may be appropriately selected depending on the type, properties, quantity, etc. of the product to be collected. It can be configured in various ways. It goes without saying that the booster 6 described in this embodiment can be used as a braking blower for the expansion turbine 7 as shown in FIG.

〔考案の効果〕[Effect of device]

本考案は、以上説明したように、昇圧機と主熱交換器と
の間に、タービン流体と低温冷却水とを熱交換させる熱
交換器を設けたから、タービン流体を吸着器から導出し
た原料空気と同じ温度まで冷却することができ、主熱交
換器に導入する原料ガスとタービン流体とを同温度にす
ることができる。従って、主熱交換器における温度分布
を均一にでき、熱交換効率の向上が図れる。さらに、原
料空気から分岐したタービン流体をそのまま昇圧機に導
入できるので、圧力損失も無く、昇温することも無いの
で昇圧機の圧縮効率が向上し、従来より高い圧力に昇圧
できるから、後段の膨脹タービンにおける膨脹率を上げ
て寒冷の発生量を増大させることができる。
As described above, according to the present invention, the heat exchanger for exchanging heat between the turbine fluid and the low-temperature cooling water is provided between the booster and the main heat exchanger. It is possible to cool to the same temperature as above, and it is possible to bring the raw material gas and the turbine fluid introduced into the main heat exchanger to the same temperature. Therefore, the temperature distribution in the main heat exchanger can be made uniform, and the heat exchange efficiency can be improved. Furthermore, since the turbine fluid branched from the raw material air can be directly introduced into the booster, there is no pressure loss and there is no temperature rise, so the compression efficiency of the booster is improved and the pressure can be raised to a higher pressure than in the conventional case. The expansion rate in the expansion turbine can be increased to increase the amount of cold produced.

また、昇圧機と熱交換器との間に予冷器を配設すること
により、熱交換器の負担を軽減して低温冷却水の必要量
を低減でき、冷水塔や冷凍機等の装置コストの低減を図
ることができる。さらに、熱交換器に、常温冷却水の流
路と低温冷却水の流路とを設け、昇温したタービン流体
を常温冷却水で適当温度まで冷却した後に低温冷却水で
冷却するように構成することにより、熱交換器1基で、
かつ少量の低温冷却水でタービン流体の冷却を行うこと
ができ、装置コストの低減とともに製造工程における配
管作業等も少なくでき、製造コストの低減を図ることが
できる。
Further, by disposing a pre-cooler between the booster and the heat exchanger, the load on the heat exchanger can be reduced and the required amount of low-temperature cooling water can be reduced. It can be reduced. Further, the heat exchanger is provided with a room temperature cooling water channel and a low temperature cooling water channel, and is configured to cool the heated turbine fluid to a proper temperature with the room temperature cooling water and then to cool it with the low temperature cooling water. As a result, with one heat exchanger,
In addition, the turbine fluid can be cooled with a small amount of low-temperature cooling water, and the cost of the apparatus can be reduced and the piping work in the manufacturing process can be reduced, which can reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す空気液化分離装置の要
部の系統図、第2図は同じく他の実施例を示す要部の系
統図、第3図は従来例を示す要部の系統図である。 2……原料空気圧縮機、3……水洗冷却塔 4……吸着器、5……主熱交換器、6……昇圧機 7……膨脹タービン、8……予冷器、10……冷水塔 20,30……空気液化分離装置 21……熱交換器、22,23,24……管路 31……常温冷却水の流路、32……低温冷却水の流路 33……熱交換器、A……原料空気、Gw……排ガス、Wc…
…低温冷却水、Wn……常温冷却水
FIG. 1 is a system diagram of a main part of an air liquefaction separation apparatus showing an embodiment of the present invention, FIG. 2 is a system diagram of a main part showing another embodiment of the present invention, and FIG. 3 is a main part showing a conventional example. FIG. 2 ... Raw material air compressor, 3 ... Washing cooling tower 4 ... Adsorber, 5 ... Main heat exchanger, 6 ... Booster, 7 ... Expansion turbine, 8 ... Precooler, 10 ... Cold water tower 20,30 …… Air liquefaction separation device 21 …… Heat exchanger, 22, 23, 24 …… Pipe line 31 …… Room temperature cooling water flow path, 32 …… Low temperature cooling water flow path 33 …… Heat exchanger , A ... Raw air, Gw ... Exhaust gas, Wc ...
… Low temperature cooling water, Wn …… Room temperature cooling water

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】原料空気圧縮機で圧縮されて昇温した原料
空気を冷却する水洗冷却塔と、吸着器で精製された後に
分岐した原料空気の一部をタービン流体として昇圧する
昇圧機と、原料空気及びタービン流体を冷却する主熱交
換器と、該主熱交換器で所定温度まで冷却した前記ター
ビン流体を膨脹させて寒冷を発生する膨脹タービンとを
備えた空気液化分離装置において、前記昇圧機と主熱交
換器との間に、前記昇圧機で昇圧されて昇温したタービ
ン流体と、前記水洗冷却塔に導入する低温冷却水の一部
とを熱交換させる熱交換器を設けたことを特徴とする空
気液化分離装置。
1. A water washing cooling tower for cooling the raw material air compressed by the raw material air compressor and heated, and a booster for boosting a part of the raw material air which has been purified by an adsorber and branched off as a turbine fluid. In the air liquefaction separation device including a main heat exchanger that cools the raw material air and the turbine fluid, and an expansion turbine that expands the turbine fluid cooled to a predetermined temperature by the main heat exchanger to generate cold A heat exchanger for exchanging heat between the turbine fluid that has been boosted and heated by the booster and a part of the low-temperature cooling water to be introduced into the flush cooling tower is provided between the machine and the main heat exchanger. An air liquefaction separator.
【請求項2】前記昇圧機と熱交換器との間に、該昇圧機
で昇圧されて昇温したタービン流体を予冷する予冷器を
設けたことを特徴とする請求項1記載の空気液化分離装
置。
2. An air liquefaction separation system according to claim 1, further comprising a precooler provided between the booster and the heat exchanger for precooling the turbine fluid that has been pressurized and raised in temperature by the booster. apparatus.
【請求項3】前記熱交換器は、該熱交換器の中間部から
温端部に至る工業用水等の常温冷却水の流路と、該熱交
換器の冷端部から中間部に至る前記低温冷却水の流路と
を備えていることを特徴とする請求項1記載の空気液化
分離装置。
3. The heat exchanger comprises: a flow path for normal temperature cooling water such as industrial water from an intermediate portion to a warm end of the heat exchanger; and a flow passage from a cold end to an intermediate portion of the heat exchanger. The air liquefaction separation apparatus according to claim 1, further comprising: a low temperature cooling water channel.
JP4484789U 1989-04-17 1989-04-17 Air liquefaction separation device Expired - Fee Related JPH0710226Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4484789U JPH0710226Y2 (en) 1989-04-17 1989-04-17 Air liquefaction separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4484789U JPH0710226Y2 (en) 1989-04-17 1989-04-17 Air liquefaction separation device

Publications (2)

Publication Number Publication Date
JPH02137691U JPH02137691U (en) 1990-11-16
JPH0710226Y2 true JPH0710226Y2 (en) 1995-03-08

Family

ID=31558508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4484789U Expired - Fee Related JPH0710226Y2 (en) 1989-04-17 1989-04-17 Air liquefaction separation device

Country Status (1)

Country Link
JP (1) JPH0710226Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880677B1 (en) * 2005-01-07 2012-10-12 Air Liquide METHOD FOR PRETREATING FRONT AIR INTRODUCTION IN CRYOGENIC AIR SEPARATION UNIT AND CORRESPONDING APPARATUS

Also Published As

Publication number Publication date
JPH02137691U (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US5263328A (en) Process for low-temperature air fractionation
TWI525298B (en) Air liquefaction separation method and device
CN109690215A (en) Industrial gasses place produces integrated with liquid hydrogen
CN107940801B (en) A kind of space division system recycling compressed air waste-heat
JP2000337767A (en) Air separating method and air separating facility
US5505050A (en) Process and installation for the distillation of air
JPH0140269B2 (en)
JPH0710226Y2 (en) Air liquefaction separation device
JP3208547B2 (en) Liquefaction method of permanent gas using cold of liquefied natural gas
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JPH10170144A (en) Device and method for cleaning raw air of air liquefaction and separation device
JPH02118391A (en) Manufacturing device for liquid air
JPH0792326B2 (en) Air liquefaction separation method
JP3142669B2 (en) Air separation equipment
JP3385409B2 (en) Air liquefaction separation method and apparatus
JP3203181B2 (en) Oxygen production method associated with nitrogen production equipment
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JP3537199B2 (en) Air separation method and air separation device used in the method
JP4230168B2 (en) Nitrogen production method and apparatus
JPH1163811A (en) Method and device for manufacturing low impurity oxygen
JP3551397B2 (en) Gas liquefaction method
JPH0240485A (en) Manufacture of nitrogen
JPH0128311B2 (en)
JPH0240484A (en) Nitrogen generating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees