JPH0140269B2 - - Google Patents
Info
- Publication number
- JPH0140269B2 JPH0140269B2 JP58074138A JP7413883A JPH0140269B2 JP H0140269 B2 JPH0140269 B2 JP H0140269B2 JP 58074138 A JP58074138 A JP 58074138A JP 7413883 A JP7413883 A JP 7413883A JP H0140269 B2 JPH0140269 B2 JP H0140269B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- exchange device
- gas stream
- heat
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 103
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 63
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 45
- 239000001301 oxygen Substances 0.000 claims description 45
- 229910052760 oxygen Inorganic materials 0.000 claims description 45
- 229910052757 nitrogen Inorganic materials 0.000 claims description 41
- 230000006835 compression Effects 0.000 claims description 28
- 238000007906 compression Methods 0.000 claims description 28
- QGZKDVFQNNGYKY-AKLPVKDBSA-N Ammonia-N17 Chemical compound [17NH3] QGZKDVFQNNGYKY-AKLPVKDBSA-N 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000005057 refrigeration Methods 0.000 description 13
- 230000008901 benefit Effects 0.000 description 9
- 238000005265 energy consumption Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002808 molecular sieve Substances 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04387—Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/42—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【発明の詳細な説明】
本発明は高圧状態で空気を低温精溜してガス状
酸素を回収するに際し、空気を圧縮し、浄化し、
少なくとも一部第一の熱交換装置内で分離生成物
との熱交換により冷却し、精溜塔に導入するとと
もに第二のガス流をさらに高圧に圧縮し、第二の
熱交換装置内で分離生成物との熱交換により冷却
し、膨脹させ、同様に精溜塔に導入し、その際に
酸素を液状にて精溜塔から引出し、所望の圧力に
圧縮し、前記さらに高圧に圧縮したガス流との熱
交換により蒸発させて加熱するようになしたガス
状酸素の回収方法及びこの方法を実施する装置に
関する。Detailed Description of the Invention The present invention compresses and purifies air when recovering gaseous oxygen by low-temperature rectification of air under high pressure.
The second gas stream is cooled, at least in part, by heat exchange with the separated product in the first heat exchanger, introduced into the rectification column and further compressed to a higher pressure, and separated in the second heat exchanger. It is cooled by heat exchange with the product, expanded, and similarly introduced into the rectification tower, at which time oxygen is drawn out from the rectification tower in liquid form, compressed to the desired pressure, and the gas compressed to the higher pressure is The present invention relates to a method for recovering gaseous oxygen, which is vaporized and heated by heat exchange with a stream, and to an apparatus for carrying out this method.
このような方法は西独国公開公報第2557453号
によつて公知である。酸素は液状にて精溜塔から
引出され、液状にて消費者によつて望まれた高圧
に圧縮されて引続き蒸発され、加熱されるのであ
る。こゝで言う高圧とは大気圧よりも高い圧力の
ことである。酸素を蒸発させ加熱するのに必要な
熱量は圧縮された空気流から供給される。種々の
異なる物理的特性のために熱交換の際の酸素及び
空気の温度の経過は異なる。第二の熱交換装置の
低温端には比較的大きい温度差が生ずるが、この
ことはエネルギー損失を意味する。 Such a method is known from DE 2557453. Oxygen is withdrawn from the rectifier in liquid form, compressed in liquid form to the high pressure desired by the consumer, and subsequently evaporated and heated. High pressure here refers to pressure higher than atmospheric pressure. The amount of heat required to evaporate and heat the oxygen is provided by the compressed air stream. Due to the various different physical properties, the temperature profile of oxygen and air during heat exchange is different. A relatively large temperature difference occurs at the cold end of the second heat exchange device, which means energy losses.
このような「内部圧縮」(Innenverdichtung)
として知られる高圧状態で酸素を得る方法はエネ
ルギー的に比較的高価である。しかしながらこの
ような方法は酸素の外部圧縮
(Aussenverdichtung)によるエネルギー的に良
好な方法、すなわち酸素が実質的に無圧状態でガ
ス状で精溜塔から引出され、加熱され、所要の供
給圧力に圧縮される方法に比して、液状の酸素を
圧縮する方が遥かに燃焼の危険を少なくして行い
得る利点があるのである。 Such "internal compression" (Innenverdichtung)
The method of obtaining oxygen under high pressure conditions, known as oxidation, is relatively energetically expensive. However, such a process has an energetically favorable method with external compression of oxygen, i.e. the oxygen is withdrawn from the rectification column in gaseous form under virtually no pressure, heated and compressed to the required feed pressure. Compared to other methods, compressing liquid oxygen has the advantage that it can be carried out with far less risk of combustion.
本発明の目的は、酸素を回収する時のエネルギ
ー消費が減少されるようになす冒頭に述べた種類
の方法を提供することである。 The object of the invention is to provide a method of the type mentioned at the outset, in which the energy consumption when recovering oxygen is reduced.
上述の目的は本発明の特徴によつて分離される
ガスの第三の部分流を分離生成物との熱交換によ
り冷却することによつて達成されるのである。 The above-mentioned object is achieved in accordance with the features of the invention by cooling the third partial stream of the gas separated by heat exchange with the separation product.
本発明による方法の望ましい構成においては第
三のガス流として圧縮され、浄化された空気の一
部が第一の熱交換装置内で冷却され、少なくとも
一部第一の熱交換装置の中間位置から引出されて
仕事をして膨脹され、第二の熱交換装置の中間位
置から第一の熱交換装置の中間位置に伝達される
のである。 In a preferred configuration of the method according to the invention, a portion of the compressed and purified air as a third gas stream is cooled in the first heat exchange device, and at least a portion of the air is cooled from an intermediate position of the first heat exchange device. It is drawn out, does work, expands, and is transferred from an intermediate position of the second heat exchanger to an intermediate position of the first heat exchanger.
この方法においては第二の熱交換装置の低温端
にて自由に得られる余剰の熱は寒冷を作るのに利
用される。第二の熱交換装置の中間位置において
熱を排出させることによつて低温端における温度
差が低減される。引出された熱量は第一の熱交換
装置に導入され、したがつて、こゝで低温部分に
加熱用の少量の空気しか必要でなくなるのであ
る。このような必要でなくなつた流入空気の部分
は冷却の完了前に第一の熱交換装置から引出され
る。この第三のガス流から引出された空気の部分
流は仕事をして膨脹され、その際に寒冷が発生す
る。膨脹の際の入口温度は第二の熱交換装置の最
も狭い温度差によつて決定される。 In this method, the excess heat freely available at the cold end of the second heat exchange device is utilized to produce refrigeration. By discharging heat at an intermediate location of the second heat exchange device, the temperature difference at the cold end is reduced. The extracted heat is introduced into the first heat exchanger, so that only a small amount of air is needed for heating in the cold section. This portion of the incoming air that is no longer needed is withdrawn from the first heat exchange device before cooling is completed. A partial stream of air drawn from this third gas stream is expanded with work done, and refrigeration is generated in the process. The inlet temperature during expansion is determined by the narrowest temperature difference of the second heat exchange device.
さらに他の生成物流として精溜塔からの低圧ガ
ス流特に窒素が加熱のために両方の熱交換装置を
通して導かれるような方法においては本発明によ
る第一の熱交換装置に対して第二の熱交換装置か
ら附加的な熱を供与することによつて第二の熱交
換装置内のガス量がより少量になるために一層多
量のガス量が流過され得るようになり、これによ
つて、比較的高圧に圧縮されている第二の熱交換
装置内の第二のガス流の量も減少され得るのであ
る。これによつて附加的なエネルギー節約が可能
となる。さらに流量の減少により第二の熱交換装
置の高温端におけるエネルギー損失が減少する。 Furthermore, a low-pressure gas stream from the rectification column as a product stream, in particular nitrogen, is conducted through both heat exchange devices for heating, in which case a second heat exchanger is added to the first heat exchanger according to the invention. By providing additional heat from the exchange device, a larger amount of gas can be passed through because the amount of gas in the second heat exchange device is smaller, thereby: The amount of the second gas stream in the second heat exchange device, which is compressed to a relatively high pressure, may also be reduced. This allows additional energy savings. Additionally, the reduced flow rate reduces energy losses at the hot end of the second heat exchange device.
本発明による方法の有利な構成によつて第三の
ガス流は冷却の前にさらに圧縮されるのである。 An advantageous development of the method according to the invention is that the third gas stream is further compressed before cooling.
このようにさらに圧縮を行うことは一方ではさ
らに大きい圧力勾配を生じさせ、これによつて少
ないガス量にて同じ冷凍能力を与え、したがつて
流入空気の主圧縮機を小さくできるのである。さ
らに他の利点として、膨脹の際にさらに低温を得
ることができ、精溜歩留が改善されるのである。 This additional compression, on the one hand, creates an even larger pressure gradient, which provides the same refrigerating capacity with a smaller amount of gas, and therefore allows the main compressor for the incoming air to be smaller. Yet another advantage is that lower temperatures can be obtained during expansion, improving distillation yields.
目的に適するように第三のガス流は膨脹後に精
溜塔及び/或いは精溜塔から引出される窒素に導
入されるのである。 As appropriate for this purpose, the third gas stream is introduced after expansion into the rectification column and/or into the nitrogen drawn off from the rectification column.
本発明による方法の望ましい構成においては、
第三のガス流は第一の熱交換装置から実質的に熱
の導入が行われる位置で引出されるのである。 In a preferred configuration of the method according to the invention,
A third gas stream is withdrawn from the first heat exchange device at a location where substantial heat introduction takes place.
本発明の目的を達成するために本発明の対象の
修正形態によれば第二の部分流を仕事をさせて膨
脹させるのが良いことが証明されている。 In order to achieve the object of the invention, it has proven advantageous, according to a modification of the object of the invention, to work and expand the second partial stream.
仕事を行う膨脹は、主空気圧縮機にて少量の空
気が圧縮されるだけでよいようになす利点が得ら
れる。これと異なり、仕事を行う膨脹に関連して
多量の寒冷を発生させ得ることは、第一及び/或
いは第二の熱交換装置の高温端、したがつて低温
端における温度差をさらに大きくするのに利用さ
れることができ、これによつて第二のガス流の量
を減少させることができるのである。 Work-doing expansion has the advantage that only a small amount of air needs to be compressed in the main air compressor. On the other hand, the ability to generate large amounts of refrigeration in connection with the expansion that performs work further increases the temperature difference at the hot and therefore cold ends of the first and/or second heat exchange device. This can be used to reduce the amount of the second gas flow.
本発明による方法のさらに他の構成において
は、熱の伝達のために圧縮された第二のガス流の
一部が冷却の完了前に精溜塔からの第一の熱交換
装置内で加熱されるべきガス流の一部との熱交換
により冷却されるようになすことが提案される。 In a further development of the method according to the invention, a portion of the second gas stream compressed for heat transfer is heated in the first heat exchange device from the rectification column before the cooling is completed. It is proposed that the cooling is effected by heat exchange with a part of the gas stream to be cooled.
熱を排出する第二の部分流は本発明の方法の条
件にしたがつて第二のガス流の残余の部分に、特
に望ましくは第二の熱交換装置を出た後で再び導
入されるか、またはこの残余の部分とは別個に精
溜塔に導入されるのである。熱を受取る方のガス
流は熱を受取つた後で第一の熱交換装置の中間位
置に導入され、このガス流が取出された前記残余
の部分とともに、またはこれとは別個に加熱され
る。 The heat-eliminating second partial stream is reintroduced into the remaining part of the second gas stream, particularly preferably after leaving the second heat exchanger, according to the conditions of the process according to the invention. , or introduced into the rectification column separately from this remaining portion. After receiving the heat, the heat-receiving gas stream is introduced into an intermediate position of the first heat exchange device and heated together with or separately from the remaining portion from which it is removed.
本発明による方法のさらに他の有利な構成にお
いては、第二のガス流の圧縮が二段で行われ、そ
の際両方の段の間で部分流が分岐され、第二の熱
交換装置内で冷却され、熱交換の完了前に仕事を
して膨脹され、精溜塔に導入される。 In a further advantageous embodiment of the process according to the invention, the compression of the second gas stream is carried out in two stages, with a partial stream branching off between the two stages and in the second heat exchanger. It is cooled, expanded with work before the heat exchange is completed, and introduced into the rectification column.
第二のガス流を分岐することは、膨脹機械の入
口圧力を、第二のガス流の二つの部分流が仕事を
して膨脹する際にそれぞれ最良の値となし得る利
点を与える。 Dividing the second gas stream provides the advantage that the inlet pressure of the expansion machine can be at its best value as the two partial streams of the second gas stream perform work and expand.
本発明の対象のさらに他の有利な構成において
は最終的な圧力に圧縮された第二のガス流の一部
が熱交換の完了前に分岐され、仕事をして膨脹さ
れ、精溜塔に導入されるのである。 In a further advantageous embodiment of the object of the invention, a portion of the second gas stream compressed to the final pressure is branched off before the heat exchange is completed, expanded with work and sent to the rectification column. It will be introduced.
このように分岐された部分流は、第二の熱交換
装置の低温端にて引出された第二のガス流の残余
の部分よりも高い入口温度で膨脹されるのであ
る。これによつて冷凍能力が向上され、さらに膨
脹の際に湿つた蒸気の範囲が回避されるのであ
る。さらに附加的な利点として、第二の熱交換装
置の低温端には小さい温度差しか生じない。 This branched partial stream is expanded at a higher inlet temperature than the remaining portion of the second gas stream drawn off at the cold end of the second heat exchanger. This increases the refrigeration capacity and also avoids areas of moist steam during expansion. As an additional advantage, only a small temperature difference occurs at the cold end of the second heat exchange device.
また本発明による方法のさらに他の構成によれ
ば精溜塔からの窒素をそれぞれ一部を第一及び第
二の熱交換装置を通して導き、窒素の一部を第二
の熱交換装置の中間位置から引出して第一の熱交
換装置の中間位置の窒素に導入するのが目的に適
していることが証明されている。 In a further embodiment of the method according to the invention, a portion of the nitrogen from the rectifying column is conducted through a first and a second heat exchanger, and a portion of the nitrogen is transferred to an intermediate position of the second heat exchanger. It has proven suitable for the purpose to draw the nitrogen from the tank and introduce it into the nitrogen at an intermediate position in the first heat exchanger.
本発明の方法の種々の実施態様により第二のガ
ス流は分離される空気の部分流となされるか、ま
たは精溜塔の高圧段からのガス流となされる。 According to various embodiments of the process of the invention, the second gas stream is either a partial stream of the air to be separated or a gas stream from the high pressure stage of the rectification column.
前記第一の場合には第二のガス流は第一の熱交
換装置の前で分岐される。第二の場合にはガス流
が高圧段から引出され、これの窒素部分が空気の
窒素部分と同じか、または大きくなされ、両方の
熱交換装置の一方または両方の熱交換装置内を並
列に導かれ、引続き圧縮されるのである。 In the first case, the second gas stream is branched off before the first heat exchanger. In the second case, a gas stream is drawn from the high pressure stage, the nitrogen part of which is equal to or greater than the nitrogen part of the air, and is conducted in parallel through one or both of the heat exchangers. It continues to be compressed.
さらにエネルギーを節約するために、第二及
び/或いは第三のガス流の膨脹の際に得られる仕
事がその後の圧縮に利用されるのである。 In order to further save energy, the work obtained during the expansion of the second and/or third gas stream is utilized for the subsequent compression.
本発明による方法の望ましい構成においては第
三の部分流として第二のガス流の一部が利用さ
れ、その際第二のガス流が二つの部分流に分岐さ
れ、これらの部分流が互に別々にそれぞれ異なる
圧力で第二の熱交換装置内で冷却され、また低圧
の部分流が高圧の部分流よりも高温で熱交換装置
から引出され、仕事をして膨脹され、精溜塔に導
かれるのである。 In a preferred embodiment of the method according to the invention, a portion of the second gas stream is used as the third substream, the second gas stream being split into two substreams, which substreams are mutually exclusive. They are cooled separately in a second heat exchanger, each at a different pressure, and the lower pressure partial stream is withdrawn from the heat exchanger at a higher temperature than the higher pressure partial stream, expanded with work, and led to the rectification column. It will happen.
本発明により、酸素の蒸発に利用される高圧流
は圧力の異なる二つの部分流に分割され、これら
の部分流が互に別々に熱交換装置を通して導かれ
るのである。このような仕方によつて圧縮エネル
ギーの本質的な変化を伴わずに両方の部分流の量
及び圧力を変化させ得るのである。特に低圧の部
分流の圧力及び量は仕事を行う膨脹が膨脹機械へ
の酸素供給圧力によつて決定される入口温度に関
係して最良の条件で行われるように選ばれ、すな
わち最大効率の得られる圧力範囲に選ばれること
ができる。同時に本発明により低圧の部分流を早
期に引出すことによつて第二の熱交換装置の低温
端に存在する過剰の熱、したがつてエネルギー損
失が低減される。高圧に圧縮された部分流の圧力
は広範囲に変化可能であつて、これによつて酸素
供給圧力も広範囲に変化可能である。 According to the invention, the high-pressure stream used for the evaporation of oxygen is divided into two partial streams of different pressures, which are led separately from each other through a heat exchange device. In this way it is possible to vary the volumes and pressures of both partial streams without a substantial change in the compression energy. In particular, the pressure and quantity of the low-pressure partial stream are chosen such that the expansion that does the work takes place under the best conditions in relation to the inlet temperature determined by the oxygen supply pressure to the expansion machine, i.e. the maximum efficiency is obtained. pressure range. At the same time, the invention reduces the excess heat present at the cold end of the second heat exchanger, and thus the energy losses, by early withdrawal of the low-pressure partial stream. The pressure of the highly compressed partial stream can be varied within a wide range, and thereby the oxygen supply pressure can also be varied within a wide range.
本発明の方法の一つの特徴によつて、高圧の部
分流は冷却後に仕事をして膨脹される。その際に
圧縮エネルギーが最大限に利用される。両方の部
分流を別々に膨脹させることによる冷凍能力は熱
交換装置の高温端における温度差を比較的大とな
すことを可能とし、これによつて圧縮された空気
の所要量が少なく保持され得るのである。さらに
寒冷発生のための附加的な空気の圧縮が不要にな
り、すなわち空気の全量が所望の分離生成物に関
係して最少限になされる。その結果として主空気
圧縮機及び浄化段が極めて小さい寸法となるので
ある。 According to one feature of the method of the invention, the high-pressure partial stream is expanded to perform work after cooling. In this case, the compression energy is utilized to the maximum. The refrigeration capacity by expanding both substreams separately makes it possible to achieve a relatively large temperature difference at the hot end of the heat exchange device, so that the compressed air requirements can be kept low. It is. Furthermore, no additional air compression is required for refrigeration generation, ie the total amount of air is minimized in relation to the desired separation product. This results in extremely small dimensions for the main air compressor and purification stage.
低圧の部分流が第一の圧縮段から出た後で冷却
前に圧縮されるのが目的に適している。このこと
は膨脹の際に解放されるエネルギーを最大限に利
用し、これによつて所望の圧力に圧縮するための
エネルギー所要量を低下させる目的を有する。本
発明によつて高圧で熱交換装置を通して導かれる
他方の部分流は引続く圧縮段でさらに圧縮され
る。この場合圧力及び流過量は、圧縮機が最良の
作動状態で作動できるように圧縮機において調節
されることができる。何故ならば空気及び酸素は
互に間接的にしか関連されないからである。この
利点は特に酸素供給圧力を一定の高圧に保つ場合
の部分負荷駆動にも当てはまる。 It is suitable for this purpose that the low-pressure partial stream is compressed after leaving the first compression stage and before cooling. This has the purpose of maximizing the use of the energy released during expansion, thereby reducing the energy requirement for compression to the desired pressure. The other partial stream, which according to the invention is conducted at high pressure through the heat exchanger, is further compressed in a subsequent compression stage. In this case, the pressure and the flow rate can be adjusted in the compressor so that it can operate in the best working conditions. This is because air and oxygen are only indirectly related to each other. This advantage also applies in particular to part-load operation when the oxygen supply pressure is kept at a constant high pressure.
低圧の部分流の圧力は本発明による方法の一つ
の特徴により10バールないし60バールの間に定め
られる。望ましい圧力範囲は20バールないし40バ
ールの間である。それぞれの圧力は酸素の圧力に
関係する。 According to one feature of the method according to the invention, the pressure of the low-pressure partial stream is determined between 10 bar and 60 bar. The preferred pressure range is between 20 bar and 40 bar. Each pressure is related to the pressure of oxygen.
本発明による方法の望ましい構成により低圧の
部分流が高圧の部分流と酸素との間の温度差が最
小の範囲にて第二の熱交換装置から引出される場
合有利であることが証明されている。 According to a preferred embodiment of the process according to the invention, it has proven advantageous if the low-pressure partial stream is withdrawn from the second heat exchange device in an area where the temperature difference between the high-pressure partial stream and the oxygen is minimal. There is.
冒頭に述べた物理的な事実により、第二の熱交
換装置の端部における温度差は比較的大きく、熱
交換装置の中間位置で最小限になる。これが低圧
に圧縮された部分流の望ましい引出し位置であ
る。温いガスを引出すことによつて熱交換装置の
低温端の温度差が小さくなり、したがつてこの方
法におけるエネルギー所要量も小さくなる。 Due to the physical facts mentioned at the outset, the temperature difference at the end of the second heat exchange device is relatively large and is minimal at the middle position of the heat exchange device. This is the desired withdrawal position of the substream compressed to low pressure. By withdrawing hot gas, the temperature difference at the cold end of the heat exchange device is reduced, and therefore the energy requirements of the method are also reduced.
本発明の対象の望ましい構成においては両方の
部分流の一方及び/或いは両方の膨脹の際に行わ
れる仕事は両方の部分流の一方または両方の後の
圧縮に利用されるのである。一方または両方の膨
脹機械の一方または両方の後圧縮機との連結はエ
ネルギー投入量を低減させる。 In a preferred embodiment of the object of the invention, the work carried out during the expansion of one and/or both of the two sub-streams is utilized for the subsequent compression of one or both of the two sub-streams. Coupling one or both expansion machines with one or both after-compressors reduces energy input.
本発明の対象の有利な構成により一方の熱交換
装置の中間位置からの熱が他方の熱交換装置の中
間位置に伝達される。この熱交換は間接的または
ガス流を一方の熱交換装置から他方の熱交換装置
に直接伝達することにより行われる。この仕方は
熱交換装置の温度差を最良の状態になすのに甚だ
効果がある。 An advantageous embodiment of the subject of the invention allows heat from an intermediate location of one heat exchange device to be transferred to an intermediate location of the other heat exchange device. This heat exchange can take place indirectly or by directly transmitting a gas stream from one heat exchange device to another. This method is extremely effective in optimizing the temperature difference in the heat exchange device.
本発明の対象のさらに他の構成においては、圧
縮され、浄化された空気が第一の熱交換装置の中
間位置で分岐され、仕事をして膨脹され、精溜塔
に導かれることが提案される。これによつて中間
圧及び高圧流の膨脹による冷凍能力が充分でない
場合に冷凍能力が向上されるのである。 In a further embodiment of the subject of the invention, it is proposed that the compressed and purified air is branched off at an intermediate position of the first heat exchanger, expanded with work and led to the rectification column. Ru. This increases the refrigeration capacity when the refrigeration capacity due to expansion of the intermediate and high pressure streams is insufficient.
特にこの場合空気の分岐された部分が冷却の前
に圧縮されるのが有利である。 In particular in this case it is advantageous if the branched part of the air is compressed before cooling.
第二のガス流を流入空気の部分流となすのが望
ましい。 Preferably, the second gas stream is a partial stream of the incoming air.
本発明の対象のさらに他の有利な構成により、
第二のガス流が高圧段から引出され、分岐される
前に加熱されて圧縮されるのである。このガス流
は空気のような組成を有する高圧段の下方の範囲
からのガス流か、または高圧段の上方の範囲から
の窒素に富んだガス流となされる。 According to a further advantageous embodiment of the subject of the invention,
A second gas stream is withdrawn from the high pressure stage and heated and compressed before being split. This gas stream can be either a gas stream from the area below the high pressure stage having an air-like composition or a nitrogen-rich gas stream from the area above the high pressure stage.
本発明による方法の最後に述べた構成のさらに
他の特徴によれば、第二のガス流の一部が圧縮の
前に二次圧縮を行われ、熱交換装置の内の一方で
冷却され、これの中間位置から引出され、仕事を
して膨脹され、精溜塔に導かれるのである。 According to a further feature of the last-mentioned embodiment of the method according to the invention, a portion of the second gas stream is subjected to a secondary compression prior to compression and is cooled in one of the heat exchange devices; It is pulled out from an intermediate position, expanded by doing work, and led to the rectification tower.
本発明の方法を実施する装置は主空気圧縮機
と、二段の精溜塔と、二つの熱交換装置を有し、
主空気圧縮機が第一の熱交換装置を経て精溜塔の
高圧段に連結されていて、第二のガス導管に第二
の圧縮機が配置され、この圧縮機が第二の熱交換
装置及び膨脹機械を経て高圧段に連結され、その
際低圧段からの酸素引出導管がポンプを経て第二
の熱交換装置を通して導かれていて、第二のガス
導管が二つの別々の流過断面にて第二の熱交換装
置に連結され、これらの流過断面の内少なくとも
一方がさらに他の圧縮機を含んでいて、他方が第
二の熱交換装置の中間位置にてこれから導出され
て膨脹機械に連結され、膨脹機械の出口が精溜塔
に連結されていることを特徴とする。 The apparatus for carrying out the method of the present invention has a main air compressor, a two-stage rectification column, and two heat exchange devices,
A main air compressor is connected to the high pressure stage of the rectification column via a first heat exchange device, a second compressor is arranged in the second gas conduit, and this compressor is connected to the second heat exchange device. and an expansion machine to the high-pressure stage, the oxygen withdrawal line from the low-pressure stage being led via a pump through a second heat exchange device, and the second gas line being connected to two separate flow sections. at least one of these flow cross sections further includes another compressor, and the other is connected to an expansion machine at an intermediate position of the second heat exchange device. and an outlet of the expansion machine is connected to a rectification column.
この装置のさらに詳細構成は、第二の熱交換装
置が互に別個の多数の熱交換装置ブロツクを有
し、これらの内の一つの熱交換装置ブロツクが酸
素及び第二のガス流の高圧に圧縮された部分のた
めの流過断面を含み、第二の熱交換装置ブロツク
が第二のガス流の高圧に圧縮された部分の一つの
部分流及び精溜塔からの窒素のための流過断面を
含み、また第三の熱交換装置ブロツクが第二の熱
交換装置ブロツクからの窒素及び第二のガス流の
低圧に圧縮された部分のための流過断面を含んで
いることを特徴とする。 A more detailed configuration of the device is such that the second heat exchanger has a number of separate heat exchanger blocks, one of which is exposed to the high pressure of the oxygen and the second gas stream. A second heat exchanger block includes a flow cross section for the compressed portion and a flow cross section for one partial stream of the high pressure compressed portion of the second gas stream and nitrogen from the rectification column. and wherein the third heat exchanger block includes a flow cross section for a compressed portion of the nitrogen and second gas streams from the second heat exchanger block to a low pressure. do.
このような構成は、第二の熱交換装置を通して
導かれるガス流が著しく相互に関連を持つように
なり、これにより個々の熱交換装置ブロツク内の
温度の関係が互に影響を与え合うようになされる
利点が得られる。このようにして圧縮機、膨脹機
械及び熱交換装置における温度差が互に無関係に
最良の条件になされるのである。 Such an arrangement causes the gas flows directed through the second heat exchanger to be highly correlated, such that the temperature relationships within the individual heat exchanger blocks influence each other. Benefits can be obtained. In this way, the temperature differences in the compressor, expansion machine and heat exchanger are optimally adjusted independently of each other.
本発明による方法によつて、酸素の内部圧縮に
おけるエネルギー消費を量的に外部圧縮における
エネルギー消費まで低減することが可能となるの
である。 The method according to the invention makes it possible to reduce the energy consumption in the internal compression of oxygen quantitatively to the energy consumption in the external compression.
本発明及び本発明のさらに詳細な事項は添付図
面に示される種々の実施例を参照して以下に説明
される。 The invention and further details thereof will be explained below with reference to various embodiments illustrated in the accompanying drawings.
図面中第1図ないし第12図は本発明による方
法の種々の実施形態を示している。 1 to 12 of the drawings show various embodiments of the method according to the invention.
さて第1図による本発明の方法の実施形態にお
いては、空気1は約6バールの圧力で作動される
高圧段7及び約1.5バールの圧力で作動する低圧
段15を有する二段の精溜塔内で導管16により
液状で引出される約99.5%の純度の酸素と、低圧
段15の頭部から引出される不純窒素17と、高
圧段7の頭部から引出される純窒素18とに分離
される。これらの両方の分離段は共通の凝結器−
蒸発器及び連結導管19,20によつて互に連結
されている。導管16の酸素はポンプ21によつ
て液状にて所望の供給圧力例えば70バールに圧縮
される。 Now, in the embodiment of the process according to the invention according to FIG. 1, the air 1 is fed into a two-stage rectification column having a high pressure stage 7 operated at a pressure of about 6 bar and a low pressure stage 15 operated at a pressure of about 1.5 bar. Oxygen of approximately 99.5% purity is drawn out in liquid form through conduit 16, impure nitrogen 17 is drawn out from the head of low pressure stage 15, and pure nitrogen 18 is drawn out from the head of high pressure stage 7. be done. Both of these separation stages have a common condenser
They are interconnected by evaporators and connecting conduits 19,20. The oxygen in conduit 16 is compressed in liquid form by pump 21 to the desired supply pressure, for example 70 bar.
空気1は先ず主空気圧縮機2内で約6ないし7
バールに圧縮され、スプレー冷却器3内で冷却さ
れ、一対の切換可能の分子篩吸着装置4内でCO2
及びH2Oを解放される。引続いて空気は三つの
部分流に分割され、最大の流量の第一の部分流5
は第一の熱交換器6内で純窒素18及び予め熱交
換装置22,23内で予備分離生成物19,20
との熱交換によつて予備加熱されている不純窒素
17との熱交換によつて約100Kに冷却され、高
圧段7に導入される。 Air 1 is first compressed in the main air compressor 2 by about 6 to 7
The CO 2 is compressed into a bar, cooled in a spray cooler 3, and cooled in a pair of switchable molecular sieve adsorption devices 4.
and H2O is released. Subsequently, the air is divided into three substreams, the first substream 5 having the highest flow rate.
is pure nitrogen 18 in the first heat exchanger 6 and pre-separated products 19, 20 in the heat exchanger 22, 23.
It is cooled to about 100K by heat exchange with impure nitrogen 17 which has been preheated by heat exchange with impure nitrogen 17, and then introduced into high pressure stage 7.
第二の部分流8は圧縮機9内で約75バールに圧
力に圧縮されて圧縮熱を放出した後に第二の熱交
換装置10内で、蒸発する生成酸素16との熱交
換により冷却される。第二の部分流8の圧力は蒸
発する酸素の圧力に関係する。第一の熱交換装置
6の高温端における過大な温度差を回避するため
の熱平衡の点で、酸素に加えてさらに不純窒素1
7の一部が分岐されて第二の熱交換装置10内で
加熱されるようになされている。次に第二の部分
流8は膨脹タービン11内で仕事をして高圧段7
の圧力まで膨脹されて高圧段7に導入される。 The second partial stream 8 is compressed to a pressure of approximately 75 bar in a compressor 9 and, after releasing the heat of compression, is cooled in a second heat exchanger 10 by heat exchange with the evaporating product oxygen 16. . The pressure of the second partial stream 8 is related to the pressure of the evaporating oxygen. In addition to oxygen, in addition to oxygen, impure nitrogen 1
A part of the heat exchanger 7 is branched off and heated within the second heat exchange device 10. The second partial stream 8 then performs work in the expansion turbine 11 and passes through the high pressure stage 7.
It is expanded to a pressure of , and introduced into the high pressure stage 7.
本発明により第三の部分流12として浄化空気
の一部が圧縮機13内で約8ないし10バールの圧
力に二次圧縮され、圧縮熱を放出した後に第一の
熱交換装置6内で冷却される。第三の部分流12
の一部は第一の熱交換装置6の中間位置から約
140ないし150Kの温度で引出され、膨脹タービン
14にて仕事をして膨脹されて精溜作用を改善す
るために全部または一部低圧段15に導入され
る。膨脹タービン14の仕事を利用するように圧
縮機13は膨脹タービン14に連結されている。
膨脹タービン14を出た前記第三の部分流の全部
を低圧段15に導入しない時は一部不純窒素17
に合流されて混合される。この混合は図示される
ように熱交換装置22,23の後流側で行われる
が、しかし必要の場合これらの熱交換装置の上流
側または中間にて行うこともできる。また或る条
件においては膨脹タービン14からの流れを不純
窒素17に混入することも好都合となることがあ
る。 According to the invention, a portion of the purified air as a third partial stream 12 is secondarily compressed in a compressor 13 to a pressure of approximately 8 to 10 bar and, after releasing the heat of compression, is cooled in a first heat exchange device 6. be done. Third substream 12
is approximately from the intermediate position of the first heat exchanger 6.
It is withdrawn at a temperature of 140 to 150 K, expanded by work in an expansion turbine 14 and introduced in whole or in part into a low pressure stage 15 to improve the rectifying action. The compressor 13 is connected to the expansion turbine 14 so as to utilize the work of the expansion turbine 14.
When not all of the third partial stream exiting the expansion turbine 14 is introduced into the low pressure stage 15, a portion of the third partial stream is introduced into the low pressure stage 15.
are combined and mixed. This mixing takes place downstream of the heat exchangers 22, 23 as shown, but it can also take place upstream or in between these heat exchangers if desired. It may also be advantageous under certain conditions to mix the flow from the expansion turbine 14 with the impure nitrogen 17.
臨界点以下における空気の比熱が大きいことに
より第二の熱交換装置10の低温端において大量
の熱が対応する量の不純窒素17を加熱するため
に得られるのである。第二の熱交換装置10の下
方の1/3の部分において加熱された後で本発明の
さらに他の特徴によつて窒素17の一部を導管2
4に分岐させることによつて第二の熱交換装置1
0からの熱が第一の熱交換装置6の中間位置に伝
達されるのである。導管24を通して導かれるガ
ス流は図示の例におけるように第一の熱交換装置
6を通して導かれる不純窒素17の部分流に混入
され、これと一緒に、または図示されないか、こ
れとは別個に加熱されるのである。 Due to the large specific heat of the air below the critical point, a large amount of heat is available at the cold end of the second heat exchanger 10 to heat a corresponding amount of impure nitrogen 17. In accordance with yet another feature of the invention, a portion of the nitrogen 17 is transferred to the conduit 2 after being heated in the lower third of the second heat exchanger 10.
The second heat exchange device 1 by branching into 4
0 is transferred to the intermediate position of the first heat exchange device 6. The gas stream conducted through the conduit 24 is admixed, as in the illustrated example, with a partial stream of impure nitrogen 17 conducted through the first heat exchange device 6 and heated either together with this or not shown or separately. It will be done.
第二の熱交換装置10内で加熱される窒素17
の量が小さい程圧縮機9内で圧縮される空気の量
は少なくなされなければならない。同時にこの熱
の伝達は膨脹タービン14内で寒冷を発生するた
めに第三の部分流12の引出しを可能となすが、
この第三の部分流12の引出しはこれに熱が与え
られる第一の熱交換装置6の位置で行われるので
ある。第一の熱交換装置6内では加熱される窒素
流17,18が過剰な場合には端部において温度
差が大きく、中央部で温度差が小さい。第一の熱
交換装置6内の分離生成物の加熱が増大されるこ
とによつて圧縮機9内で圧縮される空気の量は減
少される。 Nitrogen 17 heated in second heat exchange device 10
The smaller the amount of air, the smaller the amount of air compressed within the compressor 9. At the same time, this heat transfer makes it possible to withdraw the third substream 12 to generate refrigeration within the expansion turbine 14.
The withdrawal of this third partial stream 12 takes place at the location of the first heat exchange device 6, where it is supplied with heat. If there is an excess of heated nitrogen streams 17, 18 in the first heat exchange device 6, the temperature difference will be large at the ends and small in the center. By increasing the heating of the separation product in the first heat exchange device 6, the amount of air compressed in the compressor 9 is reduced.
第2図による本発明の方法の実施形態において
は、その他の図面に示されたものと同様に同じ装
置部分は同じ符号で示されているが、第1図に示
されたものと異なつて、両方の熱交換装置6,1
0の間で直接の熱の伝達を行う代りに熱交換装置
25内で間接的な熱交換が行われるようになつて
いる。この場合第二の熱交換装置10の下方の1/
3の部分で部分流26が第二の部分流8から引出
され、熱交換装置25内で窒素17の部分流27
と熱交換を行われ、この部分流27は引続いて第
一の熱交換装置6の中間位置に導入されて窒素1
7に混入される。部分流26は膨脹タービン11
によつて膨脹される前に第二の熱交換装置10を
通つた第二の部分流8に導入されて膨脹タービン
11を出た後で高圧段7に導入されるか、または
図示されていないが直接に高圧段7に導入される
のである。部分流27は窒素17に混入されてと
もに熱交換装置6の高温端に導かれるかまたは図
示されていないが窒素17とは別個に熱交換装置
6の高温端に導かれるのである。 In the embodiment of the method according to the invention according to FIG. 2, the same parts of the device are designated with the same reference numerals as in the other figures, but, unlike those shown in FIG. Both heat exchange devices 6,1
Instead of direct heat transfer between the two, indirect heat exchange takes place within the heat exchange device 25. In this case, the lower part of the second heat exchanger 10
In part 3, a partial stream 26 is withdrawn from the second partial stream 8 and in a heat exchanger 25 a partial stream 27 of nitrogen 17 is drawn off.
This partial stream 27 is subsequently introduced into the intermediate position of the first heat exchanger 6 to absorb nitrogen 1
7. The partial flow 26 is connected to the expansion turbine 11
is introduced into the second partial stream 8 which passes through the second heat exchange device 10 before being expanded by the expansion turbine 11 and is introduced into the high pressure stage 7 or not shown. is introduced directly into the high pressure stage 7. The partial stream 27 is either admixed with the nitrogen 17 and led to the hot end of the heat exchange device 6 or, although not shown, separately from the nitrogen 17 to the hot end of the heat exchange device 6.
第3図は第1図と同様に直接の熱の伝達が導管
24によつて行われるようになされた本発明によ
る方法の実施形態を示している。第1図のものと
は異なり、第二の部分流8は圧縮機9a及び9b
による二段の圧縮を受ける。圧縮機9aの出口の
圧力は約30ないし40バールで、圧縮機9bの出口
の圧力は約75バールである。圧縮機9a及び9b
の間から部分流28が分岐されて、第二の熱交換
装置10の一部を通つて導かれ、下方の1/3の中
間位置でこの熱交換装置10から引出される。こ
の部分流28は膨脹タービン29にて仕事を行つ
て膨脹され、膨脹タービン11にて膨脹される前
述の高圧に圧縮された熱交換装置10を流過した
第二の部分流8の残余の部分とともに、または図
示されていないがこれとは別個に高圧段7に導入
される。膨脹タービン29は膨脹タービン11よ
りも高い入口温度にて作動される。したがつて膨
脹タービン29はさらに良好な冷凍能力を有し、
さらに濡つた蒸気範囲外で作動する。さらに他の
利点として第二の熱交換装置10の低温端におけ
る温度差が低減され、熱交換の際のエネルギー損
失が少ない。 FIG. 3 shows an embodiment of the method according to the invention, similar to FIG. 1, in which the direct heat transfer takes place by a conduit 24. Unlike the one in FIG.
undergoes two stages of compression. The pressure at the outlet of compressor 9a is approximately 30 to 40 bar and the pressure at the outlet of compressor 9b is approximately 75 bar. Compressors 9a and 9b
A substream 28 is branched off from between and led through a part of the second heat exchange device 10 and withdrawn from this heat exchange device 10 in the middle of the lower third. This partial stream 28 is expanded by performing work in an expansion turbine 29, and the remaining portion of the second partial stream 8 that has passed through the aforementioned high-pressure compressed heat exchange device 10 is expanded in the expansion turbine 11. Together with this, or separately (not shown), it is introduced into the high-pressure stage 7. Expansion turbine 29 is operated at a higher inlet temperature than expansion turbine 11. Therefore, the expansion turbine 29 has better refrigeration capacity,
Additionally, it operates outside the wet steam range. A further advantage is that the temperature difference at the cold end of the second heat exchange device 10 is reduced, resulting in less energy loss during heat exchange.
第4図に示された本発明による方法の実施形態
は第二の部分流8の一部が第3図のもののように
圧縮機9a,9bの中間の圧力から膨脹されるの
でなく圧縮機9による最終的圧力から膨脹される
点で第1図のものと異なる。第二の部分流8から
部分流30が第二の熱交換装置10の中間位置で
分岐されて膨脹タービン31で仕事を行つて膨脹
される。引続きこの部分流30は膨脹タービン1
1で膨脹された残余の第二の部分流8とともに、
またはこれとは別個に高圧段7に導入されるよう
になつている。 The embodiment of the method according to the invention shown in FIG. It differs from the one in FIG. 1 in that it is expanded from the final pressure of . A partial stream 30 from the second partial stream 8 is branched off at an intermediate position of the second heat exchange device 10 and is expanded by performing work in an expansion turbine 31 . Subsequently, this partial stream 30 is passed through the expansion turbine 1
With a second substream 8 of the remainder expanded in 1,
Alternatively, it is introduced into the high pressure stage 7 separately from this.
第5図は、第1図と同様の実施形態を示すが、
異なる点は、圧縮機9によつて高圧に圧縮される
第二の部分流が高圧段7の上方の部分から引出さ
る窒素に富んだガス流32となされることであ
る。この窒素に富んだガス流32はそれぞれ二つ
の部分流に分岐されて両方の熱交換装置6,10
内で加熱され、引続き両方の部分流がともに圧縮
機9で圧縮され、第二の熱交換装置10内で液状
の酸素16との熱交換により冷却され、膨脹ター
ビン11にて仕事を行つて膨脹され、前述の窒素
に富んだガス流32が高圧段7から引出された位
置の上方で高圧段7に戻されるようになつている
ことである。本発明の特徴によりこの場合にも熱
が第二の熱交換装置10から第一の熱交換装置6
に伝達されるのであるが、これが窒素流33によ
つて行われ、この窒素流33は第二の熱交換装置
10の中間位置でこの第二の熱交換装置10に導
入された窒素に富んだガス流32から分岐されて
第一の熱交換装置6に導入されたガス流32にこ
の熱交換装置6の中間位置で混入されるのであ
る。このようにする代りに、図示しないが、窒素
流33はガス流32とは無関係に第一の熱交換装
置6の高温端側に導かれることができる。さらに
他の窒素流36が低圧段15の上方の部分から引
出され、第一の熱交換装置6にて加熱されるよう
になつている。 FIG. 5 shows an embodiment similar to FIG. 1, but
The difference is that the second partial stream compressed to high pressure by the compressor 9 is a nitrogen-rich gas stream 32 drawn off from the upper part of the high-pressure stage 7. This nitrogen-enriched gas stream 32 is in each case split into two sub-streams and connected to both heat exchangers 6, 10.
Subsequently, both partial streams are compressed together in a compressor 9, cooled in a second heat exchanger 10 by heat exchange with liquid oxygen 16, and expanded by performing work in an expansion turbine 11. and is adapted to be returned to the high-pressure stage 7 above the location from which the aforementioned nitrogen-rich gas stream 32 is withdrawn from the high-pressure stage 7. Due to the features of the invention, heat is also transferred from the second heat exchange device 10 to the first heat exchange device 6 in this case.
This is carried out by means of a nitrogen stream 33, which contains a nitrogen-enriched gas introduced into the second heat exchanger 10 at an intermediate position. It is mixed into the gas stream 32 branched off from the gas stream 32 and introduced into the first heat exchange device 6 at an intermediate position of this heat exchange device 6 . Alternatively, although not shown, the nitrogen stream 33 can be directed to the hot end of the first heat exchange device 6 independently of the gas stream 32. A further nitrogen stream 36 is withdrawn from the upper part of the low pressure stage 15 and is adapted to be heated in the first heat exchange device 6.
第6図による実施形態は第2図のものと同様で
あるが、この場合第二の部分流8に相当するガス
流は第5図の実施例と同様に高圧段7からの窒素
に富んだガス流32となされている。本発明によ
る第二の熱交換装置10からの第一の熱交換装置
6への熱の伝達は熱交換装置25内での間接の熱
交換によつて行われる。高圧段7から引出されて
第一の熱交換装置6を通過した後で圧縮機9で圧
縮された窒素に富んだガス流32の部分流34が
第二の熱交換装置10の中間位置にて分岐され、
熱交換装置25内で冷却され、第二の熱交換装置
10の低温端から出て来る残余のガス流32と混
合され、膨張タービン11にて膨張されて高圧段
7に導入される。この代りに図示しないが部分流
34は残余のガス流32とは無関係に膨脹されて
高圧段7に導入されることができる。第一の熱交
換装置6内で加熱されるガス流32が第一の熱交
換装置6に導入される前にこのガス流の部分から
部分流35が分岐され、この部分流35が熱交換
装置25内で熱を部分流34から受取り、引続い
て熱交換装置6の中間位置にて第一の熱交換装置
6内を導かれるガス流32の部分に混入される。
上述の代りにこの部分流35は図示しないが別個
に熱交換装置6の高温端に導かれることができ
る。 The embodiment according to FIG. 6 is similar to the one in FIG. A gas flow 32 is formed. The transfer of heat from the second heat exchange device 10 to the first heat exchange device 6 according to the invention takes place by indirect heat exchange within the heat exchange device 25. A partial stream 34 of the nitrogen-rich gas stream 32 drawn off from the high pressure stage 7 and compressed in the compressor 9 after passing through the first heat exchanger 6 is placed at an intermediate location in the second heat exchanger 10. branched out,
It is cooled in the heat exchange device 25, mixed with the residual gas stream 32 emerging from the cold end of the second heat exchange device 10, expanded in the expansion turbine 11 and introduced into the high pressure stage 7. Alternatively, although not shown, the partial stream 34 can be expanded independently of the remaining gas stream 32 and introduced into the high-pressure stage 7 . Before the gas stream 32 heated in the first heat exchange device 6 is introduced into the first heat exchange device 6, a substream 35 is branched off from a portion of this gas stream, and this substream 35 is split into the heat exchange device. In 25 heat is received from the partial stream 34 and is subsequently mixed into the portion of the gas stream 32 conducted through the first heat exchanger 6 at an intermediate position of the heat exchanger 6 .
As an alternative to the above, this substream 35 can be led separately to the hot end of the heat exchanger device 6 (not shown).
第7図は第2図のものと異なつて第三の部分流
12が全部膨脹タービン14内で膨脹される本発
明による方法の変形形態を示す。さらに他の相違
点として低圧段15の頭部からの窒素17が第一
の熱交換装置6のみを通して導かれ、窒素17の
一部27が熱交換装置6に導入される前に分岐さ
れて熱交換装置25内で熱交換を行つた後に熱交
換装置6の中間位置で残余の窒素17に導入され
てともにさらに加熱されるようになつている。部
分流27は図示されないが窒素17とは別個に熱
交換装置6の高温端に導かれることができる。 FIG. 7 shows a variant of the method according to the invention, in contrast to that in FIG. 2, in which the third partial stream 12 is entirely expanded in the expansion turbine 14. Yet another difference is that the nitrogen 17 from the head of the low pressure stage 15 is conducted only through the first heat exchanger 6, and a portion 27 of the nitrogen 17 is branched off before being introduced into the heat exchanger 6 to heat the heat exchanger 6. After heat exchange is performed within the exchanger 25, the remaining nitrogen 17 is introduced into the intermediate position of the heat exchanger 6 and further heated together. Part stream 27, which is not shown, can be led separately from nitrogen 17 to the hot end of heat exchange device 6.
第8図による実施形態は第7図のものと単に第
二の部分流8が高圧段7から引出される窒素に富
んだガス流32となされている点で異なるだけで
ある。さらにこの第二の部分流8は圧縮機9a,
9bにより二段に圧縮されるようになつている。 The embodiment according to FIG. 8 differs from that of FIG. 7 only in that the second partial stream 8 is a nitrogen-rich gas stream 32 withdrawn from the high-pressure stage 7. Furthermore, this second partial flow 8 is supplied to a compressor 9a,
9b, it is compressed in two stages.
第9図による実施形態においては空気101は
主空気圧縮機102により約6バールに圧縮さ
れ、スプレー冷却器103にて冷却されて、切換
可能の分子篩吸着装置104により炭酸ガス及び
水を解放される。浄化された空気は引続いて二つ
の部分流105及び106に分岐される。流量の
大きい方の第一の部分流105は第一の熱交換装
置107内で高圧段108及び低圧段113より
成る二段の精溜塔からの窒素120,119との
熱交換によつて冷却され、精溜塔に導入される。
第二の部分流106は二個の圧縮機109,11
0によつて約75バールの高圧に圧縮されて第二の
熱交換装置111にて精溜塔からの窒素119及
び酸素114との熱交換により冷却され、引続き
膨脹タービン112にて仕事を行つて高圧段10
8の圧力(約5.9バール)まで膨脹され、その際
例えば90%以上液体を生じ、高圧段108に導入
される。精溜塔の低圧段113から例えば99.5%
の純度の酸素が液状にて導管114により引出さ
れ、ポンプ137によつて所望の圧力に圧縮され
て第二の熱交換装置111に導入されて蒸発され
加熱される。この供給圧力は図示の例では約70バ
ールである。 In the embodiment according to FIG. 9, air 101 is compressed to approximately 6 bar by a main air compressor 102, cooled in a spray cooler 103 and liberated from carbon dioxide and water by a switchable molecular sieve adsorption device 104. . The purified air is subsequently split into two sub-streams 105 and 106. The first partial stream 105 with a larger flow rate is cooled in a first heat exchanger 107 by heat exchange with nitrogen 120, 119 from a two-stage rectification column consisting of a high pressure stage 108 and a low pressure stage 113. and introduced into the rectification column.
The second partial stream 106 is supplied to two compressors 109, 11
0 to a high pressure of approximately 75 bar, and is cooled in a second heat exchanger 111 by heat exchange with nitrogen 119 and oxygen 114 from the rectification column, and then works in an expansion turbine 112. High pressure stage 10
8 (approx. 5.9 bar), producing, for example, more than 90% liquid, which is introduced into the high-pressure stage 108. For example, 99.5% from the low pressure stage 113 of the rectification column
Oxygen having a purity of 100% is withdrawn in liquid form through conduit 114, compressed to the desired pressure by pump 137, and introduced into second heat exchanger 111 where it is evaporated and heated. This supply pressure is approximately 70 bar in the example shown.
精溜塔の両方の段は連結導管115,116に
よつて互に連結されている。低圧段113の頭部
からの窒素119は二つの熱交換装置117,1
18内で予備分離生成物115,116との熱交
換によつて加熱され、その際予備生成物は同時に
過冷却される。窒素119はそれぞれ一部第一及
び第二の熱交換装置107,111を通して導か
れ、加熱される。高圧段108の頭部からの窒素
120は第一の熱交換装置107内で加熱され
る。 Both stages of the rectification column are connected to each other by connecting conduits 115,116. Nitrogen 119 from the head of the low pressure stage 113 is transferred to two heat exchangers 117,1
18 by heat exchange with the pre-separation products 115, 116, the pre-separation products being simultaneously supercooled. Nitrogen 119 is led in part through first and second heat exchange devices 107, 111, respectively, and heated. Nitrogen 120 from the head of high pressure stage 108 is heated in first heat exchanger 107 .
本発明により、第二の部分流106は圧力の異
なる二つの部分流121,122すなわち第二の
圧縮機110によりさらに高圧に圧縮された高圧
の第二の部分流122及びそれよりも圧力の低い
第三の部分流121に分岐される。第三の部分流
121は二つの圧縮機109,110の間で分岐
されたガス流より成つている。部分流121は圧
縮機123にて約25バールから圧縮機110によ
つて高圧に圧縮された部分流122よりも低い約
33バールの圧力まで圧縮され、第二の熱交換装置
111にて冷却される。部分流121は第二の熱
交換装置111から引出される部分流122の引
出し温度よりも高い温度で熱交換装置111の中
間位置から引出され、膨脹タービン124にて仕
事を行つて膨脹され、第一の熱交換装置107か
ら引出された第一の部分流105に混入されて高
圧段108に導入される。この部分流121の熱
交換熱置111からの引出位置は第二の熱交換装
置111内の低温の流れと高温の流れの温度差が
小さい位置の下方で行われる。膨脹タービン12
4の入口側の温度は例えば149kで膨脹タービン
112では例えば103kである。膨脹タービン1
24はその仕事を圧縮機123に与えてこれを駆
動する。 According to the invention, the second partial stream 106 has two partial streams 121, 122 with different pressures, namely a high-pressure second partial stream 122 compressed to a higher pressure by the second compressor 110 and a lower-pressure second partial stream 122. It is branched into a third substream 121 . The third substream 121 consists of a gas stream split between the two compressors 109, 110. Partial stream 121 is compressed in compressor 123 from about 25 bar to a high pressure by compressor 110, which is approximately lower than partial stream 122.
It is compressed to a pressure of 33 bar and cooled in a second heat exchanger 111. Partial stream 121 is drawn out from an intermediate position of heat exchanger 111 at a temperature higher than the drawing temperature of partial stream 122 drawn out from second heat exchanger 111, and is expanded by performing work in expansion turbine 124. It is mixed with the first partial stream 105 drawn out from the one heat exchanger 107 and introduced into the high pressure stage 108 . The extraction position of this partial stream 121 from the heat exchange heat exchanger 111 is performed below a position in the second heat exchanger 111 where the temperature difference between the low temperature flow and the high temperature flow is small. Expansion turbine 12
The temperature on the inlet side of the expansion turbine 112 is, for example, 149K, and the temperature at the expansion turbine 112 is, for example, 103K. Expansion turbine 1
24 gives its work to the compressor 123 to drive it.
膨脹タービン124の冷凍能力は本発明の装置
の寒冷所要量の約80ないし90%を占め、残りは膨
脹タービン112が受持つ。 The refrigeration capacity of expansion turbine 124 accounts for approximately 80 to 90% of the refrigeration requirements of the system of the present invention, with expansion turbine 112 providing the remainder.
本発明のさらに他の特徴により、窒素119の
一部が第二の熱交換装置111の中間位置で、こ
れから分岐され、第一の熱交換装置107の中間
位置で導管125によつてこの熱交換装置107
を通して導かれる窒素に導入される。このように
なすことによつて熱が第二の熱交換装置111か
ら第一の熱交換装置107に伝達されるのであ
る。 According to a further feature of the invention, a portion of the nitrogen 119 is branched off from the second heat exchange device 111 at an intermediate location and is exchanged with this heat by a conduit 125 at an intermediate location of the first heat exchange device 107. device 107
Nitrogen is introduced through. By doing so, heat is transferred from the second heat exchange device 111 to the first heat exchange device 107.
第10図による実施形態は第9図のものとは両
方の部分流121及び122の導き方が異なる。
その他は以下の図面に示されるものと同様に同じ
部分は第9図のものと同じ符号で示されている。 The embodiment according to FIG. 10 differs from that of FIG. 9 in the manner in which the two partial flows 121 and 122 are guided.
Otherwise, the same parts are designated by the same reference numerals as in FIG. 9, similar to those shown in the following drawings.
圧縮機109で約52バールに圧縮された第二の
部分流106は一部同じ圧力の第三の部分流12
1として第二の熱交換装置111に導入されて冷
却され、中間位置で引出されて膨脹タービン12
4にて仕事を行つて高圧段108の圧力まで膨脹
され、部分流121は第一の熱交換装置107を
出た第一の部分流105とともに高圧段108内
に導入される。第二の部分流122は圧縮機11
0にてさらに高圧(約65バール)に圧縮されて、
第二の熱交換装置111内で冷却される。第二の
熱交換装置111の低温端にて第二の部分流12
2が引出されて膨脹タービン112にて高圧段1
08の圧力まで膨脹され、高圧段108に導入さ
れる。膨脹タービン124は圧縮機110に連結
されて、これを駆動する。 The second partial stream 106, compressed to approximately 52 bar in the compressor 109, is partially compressed to a third partial stream 12 at the same pressure.
1 into the second heat exchanger 111, where it is cooled, and which is pulled out at an intermediate position and connected to the expansion turbine 12.
4 to the pressure of the high-pressure stage 108 , and the partial stream 121 is introduced into the high-pressure stage 108 together with the first partial stream 105 leaving the first heat exchanger 107 . The second partial stream 122 is supplied to the compressor 11
At 0, it is further compressed to a higher pressure (approximately 65 bar),
It is cooled within the second heat exchange device 111. The second partial stream 12 at the cold end of the second heat exchanger 111
2 is pulled out and the high pressure stage 1 is passed through the expansion turbine 112.
08 pressure and introduced into the high pressure stage 108. Expansion turbine 124 is coupled to and drives compressor 110.
第11図は第二の部分流として役立つガス流と
して循環ガスが設けられている本発明による実施
形態を示す。循環ガスとしてガス流126が精溜
塔から引出される。図示の例では精溜塔からの引
出しは高圧段108の下方の部分で行われ、すな
わちこの循環ガス流126は空気と同様の組成を
有する。しかし原理的には例えば窒素に富んだガ
スを高圧段108の上方の部分から循環ガスとし
て引出して利用できる。この態様は第11図に破
線で示してある。 FIG. 11 shows an embodiment according to the invention in which a circulating gas is provided as the gas stream serving as the second partial stream. A gas stream 126 is withdrawn from the rectification column as recycle gas. In the illustrated example, withdrawal from the rectification column takes place in the lower part of the high-pressure stage 108, ie this recycle gas stream 126 has a composition similar to that of air. However, in principle, for example, nitrogen-rich gas can be withdrawn from the upper part of the high-pressure stage 108 and used as circulating gas. This aspect is shown in dashed lines in FIG.
循環ガス流126は第一の熱交換装置107内
で大体周囲温度まで加熱されて二つの圧縮機10
9,110にて圧縮され、第二の熱交換装置11
1内で蒸発する酸素との熱交換により冷却され、
その後で膨脹タービン112内で仕事を行つて膨
脹され、高圧段108に導入される。圧縮機10
9の上流側で第二の部分流127が循環ガス流1
26から分岐され、圧縮機128にて約6ないし
10バールの圧力に圧縮され、第一の熱交換装置1
07の一部に導入されて冷却される。この部分流
127は第一の熱交換装置107の中間位置でこ
れから引出されて圧縮機128に連結されてこれ
を駆動する膨脹タービン129にて低圧段113
の圧力まで膨脹され、低圧段113に導入され
る。この部分流127は寒冷の発生に役立つ。 The circulating gas stream 126 is heated to approximately ambient temperature in the first heat exchanger 107 and transferred to the two compressors 10.
9,110, and the second heat exchanger 11
It is cooled by heat exchange with the oxygen that evaporates in 1,
It is then expanded by performing work in expansion turbine 112 and introduced into high pressure stage 108 . Compressor 10
Upstream of 9, a second partial stream 127 is connected to the circulating gas stream 1.
26, and the compressor 128
The first heat exchanger 1 is compressed to a pressure of 10 bar.
07 and is cooled. This partial stream 127 is extracted from the first heat exchanger 107 at an intermediate position and is passed through the low pressure stage 113 in an expansion turbine 129 connected to and driving a compressor 128.
is expanded to a pressure of , and introduced into the low pressure stage 113. This partial flow 127 serves to generate refrigeration.
二つの圧縮機109,110の間から第三の部
分流121が分岐され、圧縮機123で二次圧縮
され、第二の熱交換装置111の一部で冷却され
る。この熱交換装置111の中間位置から部分流
121は第二の熱交換装置111の低温端より高
い温度で引出され、圧縮機123に連結されてこ
れを駆動する膨脹タービン124で高圧段108
の圧力まで膨脹されて循環ガス流126に混入さ
れるようになつている。 A third partial stream 121 is branched between the two compressors 109 and 110, subjected to secondary compression in the compressor 123, and cooled in a part of the second heat exchange device 111. From this intermediate position of the heat exchanger 111 a partial stream 121 is withdrawn at a temperature higher than the cold end of the second heat exchanger 111 and is passed through the high pressure stage 108 in an expansion turbine 124 connected to and driving a compressor 123.
The gas is expanded to a pressure of 0 and is mixed into the circulating gas stream 126.
第12図は第9図のものと似た実施形態を示し
ているが、第12図のものは第二の熱交換装置が
それぞれ別個の熱交換装置ブロツク130,13
1,132によつて構成されている点が第9図の
ものと異なる。さらに他の相違点は連結導管12
5が無いことである。 FIG. 12 shows an embodiment similar to that of FIG. 9, except that the second heat exchanger is comprised of separate heat exchanger blocks 130, 13, respectively.
1,132, which is different from that shown in FIG. Another difference is the connecting conduit 12.
There is no 5.
圧縮機110によつてさらに高圧に圧縮された
第二の部分流122は熱交換装置ブロツク130
内で蒸発する酸素との熱交換によつて冷却され
る。この部分流122の一部133は熱交換装置
ブロツク130の中間位置から引出されて熱交換
装置ブロツク131内で低圧段113の頭部から
の窒素119の一部との熱交換によつて冷却さ
れ、引続き熱交換装置ブロツク130内で冷却さ
れた残余の部分流122とともに膨脹タービン1
12で仕事を行つて膨脹され、高圧段108に導
入される。 The second partial stream 122 compressed to a higher pressure by the compressor 110 is transferred to a heat exchanger block 130.
It is cooled by heat exchange with oxygen that evaporates inside. A portion 133 of this partial stream 122 is withdrawn from an intermediate position of the heat exchanger block 130 and cooled in the heat exchanger block 131 by heat exchange with a portion of the nitrogen 119 from the head of the low pressure stage 113. , the expansion turbine 1 with the remaining partial stream 122 subsequently cooled in the heat exchanger block 130.
It performs work at 12, expands it, and introduces it into the high pressure stage 108.
両方の圧縮機109,110の間から分岐され
た第三の部分流121は圧縮機123で圧縮され
た後熱交換装置ブロツク132内にて、熱交換装
置ブロツク131で予備加熱された窒素119の
部分流との熱交換により冷却され、引続き膨脹タ
ービン124で仕事をして膨脹され、第一の部分
流105とともに高圧段108に導入される。こ
れと異なり、作動条件特に酸素供給圧力に関係し
て膨脹タービン124内で膨脹される空気は破線
で示されるように低圧段113に導入されること
もできる。 A third partial stream 121 branched from between both compressors 109 and 110 is compressed by a compressor 123 and then transferred to a heat exchanger block 132 where nitrogen 119, which has been preheated in the heat exchanger block 131, is compressed. It is cooled by heat exchange with the partial stream, then expanded by the expansion turbine 124 and introduced together with the first partial stream 105 into the high-pressure stage 108 . Alternatively, depending on the operating conditions, in particular the oxygen supply pressure, the air expanded in the expansion turbine 124 can also be introduced into the low-pressure stage 113, as indicated by the dashed line.
このように第二の熱交換装置111を三個の別
別の熱交換装置ブロツク130,131,132
に分離することは酸素供給圧力が予め定められた
場合に第二及び第三の部分流122,121の圧
力、流量及び温度を大巾に互に関連させて変化さ
せて、これにより圧縮機及び膨脹タービンの最良
の作動状態を選ぶことを可能になす。特に膨脹タ
ービン124の入口温度が酸素を蒸発させるため
に正しく保持しなければならない温度差とは無関
係に選択できるのである。 In this way, the second heat exchanger 111 is divided into three separate heat exchanger blocks 130, 131, 132.
Separating into two means varying the pressure, flow rate and temperature of the second and third partial streams 122, 121 over a wide range relative to each other for a predetermined oxygen supply pressure, thereby causing the compressor and Allows to choose the best operating conditions of the expansion turbine. In particular, the inlet temperature of the expansion turbine 124 can be selected independently of the temperature differential that must be maintained correctly in order to evaporate the oxygen.
第12図はさらに鎖線で示すように本発明によ
る方法の附加的な構成を可能となすが、これにお
いては圧縮されて浄化された後の空気101の一
部134が圧縮機135で二次圧縮され、第一の
熱交換装置107に導入されて、これの中間位置
から引出され、膨脹タービン136で仕事を行つ
て膨脹されて、低圧段113に導入されるように
なつている。 FIG. 12 also allows for an additional configuration of the method according to the invention, as shown in dashed lines, in which a portion 134 of the air 101 after being compressed and purified is subjected to secondary compression in a compressor 135. The heat exchanger is introduced into the first heat exchanger 107 and drawn out from an intermediate position thereof, is expanded by performing work in the expansion turbine 136, and is introduced into the low pressure stage 113.
上述のような本発明による方法によつて、危険
が少ないが従来はエネルギー消費が高価となる不
利を有していた酸素の内部圧縮による酸素ガス回
収におけるエネルギー消費量を、危険が伴うがエ
ネルギー消費量の少ない利点のある酸素の外部圧
縮による酸素ガス回収のエネルギー消費量と量的
に同程度に減少させることが可能となるのであ
る。 By the method according to the present invention as described above, the energy consumption in oxygen gas recovery by internal compression of oxygen, which is less dangerous but conventionally had the disadvantage of high energy consumption, can be reduced to a dangerous but energy consuming method. This makes it possible to reduce the energy consumption to the same level as the energy consumption of oxygen gas recovery by external compression of oxygen, which has the advantage of being small in quantity.
第1図ないし第12図は何れも本発明による方
法の種々の実施形態をそれぞれ示す回路図。
1,101……空気、2,102……主空気圧
縮機、3,103……スプレー冷却器、4,10
4……分子篩吸着装置、5,105……第一の部
分流、6,107……第一の熱交換装置、7,1
08……高圧段、8,106,122,126…
…第二の部分流、9,9a,9b,13,10
9,110,123,128,135……圧縮
機、10,111……第二の熱交換装置、12,
121……第三の部分流、11,14,29,3
1,112,124,129,136……膨脹タ
ービン、15,113……低圧段、16,114
……酸素、17,18,119,120……窒
素、21,137……ポンプ、22,23,2
5,117,118……熱交換装置、32……窒
素に富んだガス流、130,131,132……
熱交換装置ブロツク。
1 to 12 are circuit diagrams respectively illustrating various embodiments of the method according to the invention. 1,101...Air, 2,102...Main air compressor, 3,103...Spray cooler, 4,10
4... Molecular sieve adsorption device, 5,105... First partial stream, 6,107... First heat exchange device, 7,1
08...High pressure stage, 8, 106, 122, 126...
...Second partial flow, 9, 9a, 9b, 13, 10
9,110,123,128,135...Compressor, 10,111...Second heat exchange device, 12,
121...Third partial flow, 11, 14, 29, 3
1,112,124,129,136... Expansion turbine, 15,113... Low pressure stage, 16,114
...Oxygen, 17,18,119,120...Nitrogen, 21,137...Pump, 22,23,2
5,117,118...heat exchange device, 32...nitrogen-rich gas stream, 130,131,132...
Heat exchanger block.
Claims (1)
ルギー要求量を低減させるようにしてガス状酸素
を回収する方法に於て、空気1,10を圧縮2,
102し、浄化4,104し、少なくともその一
部を第一の熱交換装置6,107内で分離生成物
17,18,36,119,112との熱交換に
より冷却し、この空気を精溜塔7,15,10
8,113に通し、第二のガス流8,32,10
6,126を高圧に圧縮9,9a,9b,10
9,110し、圧縮された後で前記第二のガス流
を第二の熱交換装置10,111内で分離生成物
16,17,32,114,119との熱交換に
より冷却し、前記第二の熱交換装置に沿う中間位
置にて熱を取出し、これにより前記第二の熱交換
装置の低温端における温度差を減少させ、前記取
出された熱を前記第一の熱交換装置に加え、これ
により前記第一の熱交換装置の低温端において加
熱に必要な空気量を減少させ、前記第二のガス流
を冷却した後で膨張11,29,31,112さ
せ、この第二のガス流を膨張の後で前記精溜塔
7,15,108,113に導き、分岐される第
三のガス流12,121,127,134を分離
生成物17,18,36,114,119,12
0との熱交換により冷却し、液体酸素16,11
4を前記精溜塔15,113から取出して所望の
圧力に昇圧21,137し、これを前記高圧に圧
縮9,9a,9b,109,110されたガス流
10,111,130との熱交換10,111,
130により蒸発させ、加熱し、これにより酸素
の製造に必要なエネルギーを低減可能になしたこ
とを特徴とするガス状酸素の回収方法。 2 前記第三のガス流12として圧縮された浄化
空気1の一部を前記第一の熱交換装置6内で冷却
し、少なくとも一部を第一の熱交換装置6の中間
位置から引出し、仕事をさせて膨張14させ、ま
た前記第二の熱交換装置10の中間位置から熱を
前記第一の熱交換装置6の中間位置に伝達するこ
とを特徴とする特許請求の範囲第1項記載の方
法。 3 前記第三のガス流12を冷却する前にさらに
圧縮13することを特徴とする特許請求の範囲第
1項または第2項の何れか一つに記載の方法。 4 前記第三のガス流12を膨張14後に精溜塔
に、及び/或いは精溜塔から引出される窒素17
に導入することを特徴とする特許請求の範囲第1
項ないし第3項の何れか一つに記載の方法。 5 前記第三のガス流12を実質的に熱の導入を
行う位置にて前記第一の熱交換装置6から引出す
ことを特徴とする特許請求の範囲第1項ないし第
4項の何れか一つに記載の方法。 6 前記第二の部分流8,32を仕事をさせて膨
張11させることを特徴とする特許請求の範囲第
1項ないし第5項の何れか一つに記載の方法。 7 熱を伝達させるために前記圧縮された第二の
ガス流8の一部26,34を冷却の完了前に前記
第一の熱交換装置6内で加熱される精溜塔からの
ガス流17,32の一部との熱交換により冷却す
ることを特徴とする特許請求の範囲第1項ないし
第6項の何れか一つに記載の方法。 8 前記第二のガス流8の圧縮を二つの段階9
a,9bにて行い、その際前記二つの段階の間に
て部分流28を分岐させ、前記第二の熱交換装置
10内で冷却し、熱交換の完了前に仕事をさせて
膨張させ、精溜塔に導入することを特徴とする特
許請求の範囲第1項ないし第7項の何れか一つに
記載の方法。 9 最終的な圧力まで圧縮された前記第二のガス
流8の一部30を熱交換の完了前に分岐させ、仕
事させて膨張させ、精溜塔に導入することを特徴
とする特許請求の範囲第1項ないし第8項の何れ
か一つに記載の方法。 10 精溜塔からの窒素17をそれぞれ一部前記
第一及び第二の熱交換装置を通して導き、第二の
熱交換装置10の中間位置からの窒素の一部24
を第一の熱交換装置6の中間位置にある窒素に流
入することを特徴とする特許請求の範囲第1項な
いし第9項の何れか一つに記載の方法。 11 前記第二のガス流を、分離される空気の部
分流8または高圧段7からのガス流32となした
ことを特徴とする特許請求の範囲第1項ないし第
10項の何れか一つに記載の方法。 12 前記第二及び/或いは第三のガス流の膨張
の際に得られた仕事をその後の圧縮に使用するこ
とを特徴とする特許請求の範囲第1項ないし第1
1項の何れか一つに記載の方法。 13 前記第三の部分流として前記第二のガス流
の一部を使用し、その際第二のガス流106,1
26を二つの部分流121,122に分割し、こ
れらの部分流121,122を互いに別々に異な
る圧力で第二の熱交換装置122よりも低い圧力
の部分流121をさらに高い温度で熱交換装置1
11から引出し、仕事をさせて膨張124させ、
少なくとも一部精溜塔に導入することを特徴とす
る特許請求の範囲第1項記載の方法。 14 前記さらに高圧状態の部分流122を冷却
後に仕事をさせて膨張112させることを特徴と
する特許請求の範囲第13項記載の方法。 15 前記低い圧力の部分流121を前記第一の
圧縮段109から出た後で冷却する前に圧縮する
ことを特徴とする特許請求の範囲第13項または
第14項の何れか一つに記載の方法。 16 前記低い圧力の部分流121の圧力を10バ
ールないし60バールの間になすことを特徴とする
特許請求の範囲第13項ないし第15項の何れか
一つに記載の方法。 17 前記2つの部分流低い圧力の部分流121
を前記さらに高い圧力の部分流122と前記第二
の熱交換装置111からの酸素114との最小の
温度差の範囲内で引出すことを特徴とする特許請
求の範囲第13項ないし第16項の何れか一つに
記載の方法。 18 前記二つの部分流121,122の一方ま
たは両方の膨張112,124の際に行われる仕
事を前記二つの部分流の一方または両方の後圧縮
に使用することを特徴とする特許請求の範囲第1
3項ないし第17項の何れか一つに記載の方法。 19 一方の熱交換装置の中間位置すらの熱を他
方の熱交換装置の中間位置に伝達することを特徴
とする特許請求の範囲第13項ないし第18項の
何れか一つに記載の方法。 20 前記圧縮され、浄化された空気101の一
部134を前記第一の熱交換装置107の中間位
置にて分岐させ、仕事をさせて膨張させ、精溜塔
に導入することを特徴とする許請求の範囲第13
項ないし第19項の何れか一つに記載の方法。 21 前記分岐された空気の一部を冷却前に圧縮
することを特徴とする特許請求の範囲第20項記
載の方法。 22 前記第二のガス流106を、流入された空
気の部分流となしたことを特徴とする特許請求の
範囲第13項ないし第21項の何れか一つに記載
の方法。 23 前記第二のガス流126を高圧段108か
ら引出し、分割する前に加熱し、圧縮することを
特徴とする特許請求の範囲第13項ないし第22
項の何れか一つに記載の方法。 24 圧縮工程の前の前記第二のガス流126の
一部127を圧縮128し、熱交換装置107,
111の一方内で冷却し、この熱交換装置の中間
位置から引出し、仕事をさせて膨張129させ、
精溜塔に導入することを特徴とする特許請求の範
囲第23項記載の方法。 25 主空気圧縮機102と、二段の精溜塔10
8,113と、二個の熱交換装置107,111
とを有し、前記主空気圧縮機102が空気の第一
の部分流のための第一のガス導管105によつて
第一の熱交換装置107を経て前記精溜塔の高圧
段108に連結されているとともに空気の第二の
部分流のための第二のガス導管106,126に
第二の圧縮機109が配置されていて、この第二
の圧縮機が第二の熱交換装置111及び膨張機械
112を経て前記高圧段108に連結され、その
際低圧段113から導かれる酸素引出導管114
がポンプ137を経て前記第二の熱交換装置11
1を通して導かれるようになされている高圧状態
で空気を低温精溜してガス状酸素を回収する装置
において、空気の第三の部分流のための第三のガ
ス導管121が前記第二のガス導管106,12
6から分岐され、この第三のガス導管が前記第二
の熱交換装置111に導かれていて、その際前記
第二及び第三のガス導管122,121の内の少
なくとも一つがさらに他の圧縮機110,123
を含んでいるとともに他方121が前記第二の熱
交換装置111の中間位置でこれから外部に導か
れて膨張機械124に連結され、この膨張機械の
出口が前記高圧段108に連結されていて、さら
にまた導管125が設けられ、この導管を通して
前記低圧段113からの窒素の一部分が前記第二
の熱交換装置111内の中間位置で分岐されて取
出され、前記第一の熱交換装置107内の中間位
置で前記低圧段113からの窒素に混入されるよ
うになされていることを特徴とするガス状酸素の
回収装置。 26 前記第二の熱交換装置111が互いに分離
された複数の熱交換装置ブロツク130,13
1,132より成つていて、これらの内の一つの
熱交換装置ブロツク130が酸素114及び前記
第二の部分流の高圧に圧縮された部分110のた
めのガス導管を有し、第二の熱交換装置ブロツク
131が前記第二の部分流の前記高圧に圧縮され
た部分110の部分流123及び前記精溜塔から
の窒素119のためのガス導管を有し、第三の熱
交換装置ブロツク132が前記第二の熱交換装置
ブロツク131からの窒素119及び前記第三の
部分流121のためのガス導管を有することを特
徴とする特許請求の範囲第25項記載の装置。[Claims] 1. In a method for recovering gaseous oxygen by low-temperature rectification of air at high pressure to reduce the energy requirement for oxygen production, air 1, 10 is compressed 2,
102, purified 4,104, at least a part of which is cooled by heat exchange with separated products 17, 18, 36, 119, 112 in a first heat exchanger 6,107, and this air is rectified. Tower 7, 15, 10
8,113 and a second gas stream 8,32,10
Compress 6,126 to high pressure9,9a,9b,10
9,110 and after being compressed said second gas stream is cooled by heat exchange with the separation product 16, 17, 32, 114, 119 in a second heat exchange device 10, 111, extracting heat at an intermediate location along a second heat exchange device, thereby reducing the temperature difference at the cold end of the second heat exchange device, and applying the extracted heat to the first heat exchange device; This reduces the amount of air required for heating at the cold end of the first heat exchanger, causing the second gas stream to expand 11, 29, 31, 112 after cooling, and is passed to said rectification column 7, 15, 108, 113 after expansion and the third gas stream 12, 121, 127, 134 which is branched off is separated into separated products 17, 18, 36, 114, 119, 12
Cooled by heat exchange with 0, liquid oxygen 16,11
4 is taken out from the rectification column 15, 113 and boosted to a desired pressure 21, 137, and then heat exchanged with the gas stream 10, 111, 130 compressed to the high pressure 9, 9a, 9b, 109, 110. 10,111,
1. A method for recovering gaseous oxygen, characterized in that the energy required for producing oxygen can be reduced by evaporating and heating the oxygen using a 130. 2. A portion of the compressed purified air 1 as said third gas stream 12 is cooled in said first heat exchange device 6 and at least a portion is withdrawn from an intermediate position of the first heat exchange device 6 to perform work. The heat exchanger according to claim 1 is characterized in that the heat exchanger is caused to expand (14), and heat is transmitted from an intermediate position of the second heat exchanger (10) to an intermediate position of the first heat exchanger (6). Method. 3. A method according to claim 1 or 2, characterized in that the third gas stream 12 is further compressed 13 before being cooled. 4 nitrogen 17 drawn into and/or from the rectification column after expansion 14 of said third gas stream 12;
Claim 1 characterized in that it is introduced into
The method described in any one of Items 3 to 3. 5. Any one of claims 1 to 4, characterized in that the third gas stream 12 is withdrawn from the first heat exchange device 6 at a location that substantially introduces heat. The method described in. 6. A method according to any one of claims 1 to 5, characterized in that the second partial flow 8, 32 is subjected to work and expanded 11. 7 a gas stream 17 from the rectification column in which a portion 26, 34 of said compressed second gas stream 8 is heated in said first heat exchange device 6 before completion of cooling to transfer heat; , 32. The method according to any one of claims 1 to 6, characterized in that the cooling is performed by heat exchange with a part of . 8 compression of said second gas stream 8 in two stages 9;
a, 9b, in which the substream 28 is branched between the two stages, cooled in the second heat exchange device 10 and expanded by work before the completion of the heat exchange; 8. The method according to any one of claims 1 to 7, characterized in that it is introduced into a rectification column. 9. The part 30 of the second gas stream 8 compressed to the final pressure is branched off before the completion of the heat exchange, expanded by work and introduced into the rectification column. The method according to any one of Range 1 to 8. 10 a portion of the nitrogen 17 from the rectification column is each conducted through said first and second heat exchanger, and a portion 24 of the nitrogen from an intermediate location of the second heat exchanger 10;
10. A method as claimed in claim 1, characterized in that the nitrogen gas is introduced into the nitrogen at an intermediate position of the first heat exchange device (6). 11. Any one of claims 1 to 10, characterized in that the second gas stream is a partial stream 8 of the air to be separated or a gas stream 32 from the high-pressure stage 7. The method described in. 12. Claims 1 to 1, characterized in that the work obtained during expansion of the second and/or third gas stream is used for subsequent compression.
The method described in any one of paragraph 1. 13 using a part of the second gas stream as the third substream, with the second gas stream 106,1
26 into two partial streams 121, 122, and separate these partial streams 121, 122 from each other at different pressures into a second heat exchange device 122.The partial stream 121 at a lower pressure than the second heat exchange device 122 is transferred to a heat exchange device at a higher temperature. 1
11, do work and expand 124,
2. A method according to claim 1, characterized in that at least a portion of the method is introduced into a rectification column. 14. A method according to claim 13, characterized in that said partial stream 122 in a higher pressure state is expanded 112 by performing work after cooling. 15. According to claim 13 or 14, the low pressure partial stream 121 is compressed after leaving the first compression stage 109 and before being cooled. the method of. 16. Method according to any one of claims 13 to 15, characterized in that the pressure of the low-pressure partial stream 121 is between 10 bar and 60 bar. 17 Said two partial streams lower pressure partial streams 121
is withdrawn within a minimum temperature difference between the higher pressure partial stream 122 and the oxygen 114 from the second heat exchanger 111. Any one of the methods described. 18. Claim 18, characterized in that the work performed during the expansion 112, 124 of one or both of the two partial streams 121, 122 is used for the subsequent compression of one or both of the two partial streams. 1
The method described in any one of Items 3 to 17. 19. A method according to any one of claims 13 to 18, characterized in that heat from even an intermediate location of one heat exchange device is transferred to an intermediate location of the other heat exchange device. 20 A part 134 of the compressed and purified air 101 is branched at an intermediate position of the first heat exchange device 107, is expanded by performing work, and is introduced into a rectification column. Claim No. 13
The method described in any one of Items 1 to 19. 21. A method according to claim 20, characterized in that a portion of the branched air is compressed before cooling. 22. A method according to any of claims 13 to 21, characterized in that the second gas stream 106 is a partial stream of the incoming air. 23. Claims 13-22, wherein the second gas stream 126 is withdrawn from the high pressure stage 108 and heated and compressed before being split.
The method described in any one of the sections. 24 compressing 128 a portion 127 of said second gas stream 126 before the compression step,
111 and withdrawn from an intermediate position of this heat exchanger to perform work and expand 129;
24. The method according to claim 23, characterized in that it is introduced into a rectification column. 25 Main air compressor 102 and two-stage rectification column 10
8,113 and two heat exchange devices 107,111
said main air compressor 102 is connected by a first gas conduit 105 for a first partial stream of air to a high pressure stage 108 of said rectification column via a first heat exchange device 107. and a second compressor 109 is arranged in the second gas conduit 106, 126 for the second partial flow of air, which second compressor 109 is connected to the second heat exchange device 111 and An oxygen withdrawal conduit 114 is connected to the high pressure stage 108 via an expansion machine 112 and leads from the low pressure stage 113.
passes through the pump 137 to the second heat exchange device 11
1, in which a third gas conduit 121 for a third partial stream of air is adapted to be conducted through said second gas Conduits 106, 12
6, and this third gas conduit is led to the second heat exchange device 111, in which case at least one of the second and third gas conduits 122, 121 is further connected to another compressor. Machine 110, 123
and the other 121 is led to the outside at an intermediate position of the second heat exchange device 111 and connected to an expansion machine 124, the outlet of this expansion machine is connected to the high pressure stage 108, and further A conduit 125 is also provided, through which a portion of the nitrogen from the low pressure stage 113 is branched off at an intermediate location in the second heat exchange device 111 and taken out intermediate in the first heat exchange device 107. A gaseous oxygen recovery device characterized in that the gaseous oxygen is mixed with nitrogen from the low pressure stage 113 at a point. 26 The second heat exchange device 111 is a plurality of heat exchange device blocks 130, 13 separated from each other.
1,132, one of which has a heat exchanger block 130 having gas conduits for oxygen 114 and a highly compressed portion 110 of said second partial stream; A heat exchanger block 131 has gas conduits for a substream 123 of the highly compressed portion 110 of the second substream and nitrogen 119 from the rectification column; 26. Apparatus according to claim 25, characterized in that 132 comprises gas conduits for nitrogen 119 from said second heat exchanger block 131 and for said third partial stream 121.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3216502.1 | 1982-05-03 | ||
DE3216510.2 | 1982-05-03 | ||
DE19823216510 DE3216510A1 (en) | 1982-05-03 | 1982-05-03 | Process for recovery of gaseous oxygen under elevated pressure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58194711A JPS58194711A (en) | 1983-11-12 |
JPH0140269B2 true JPH0140269B2 (en) | 1989-08-28 |
Family
ID=6162593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58074138A Granted JPS58194711A (en) | 1982-05-03 | 1983-04-28 | Method and device for recovering gaseous oxygen under high pressure state |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS58194711A (en) |
DE (1) | DE3216510A1 (en) |
IN (1) | IN157040B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009529648A (en) * | 2006-03-15 | 2009-08-20 | リンデ アクチエンゲゼルシヤフト | Cryogenic air separation method and apparatus |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6085054A (en) * | 1983-10-18 | 1985-05-14 | Nissin Kogyo Kk | Hydraulic booster for tandem type master cylinder |
DE3344033A1 (en) * | 1983-12-06 | 1985-06-13 | Hans Dr. 4235 Schermbeck Remstedt | Process for the recovery of water from air moisture by a compressor with connected cooling apparatus |
JPS6237676A (en) * | 1985-08-12 | 1987-02-18 | 株式会社神戸製鋼所 | Nitrogen generator |
JPS63143482A (en) * | 1986-12-05 | 1988-06-15 | 株式会社日立製作所 | Tsa adsorption type air low-temperature separator |
JP2685483B2 (en) * | 1988-04-11 | 1997-12-03 | 株式会社日立製作所 | Air separation device |
JP2909678B2 (en) * | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and apparatus for producing gaseous oxygen under pressure |
FR2865024B3 (en) * | 2004-01-12 | 2006-05-05 | Air Liquide | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP1952081A1 (en) * | 2005-11-17 | 2008-08-06 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
US9222725B2 (en) | 2007-06-15 | 2015-12-29 | Praxair Technology, Inc. | Air separation method and apparatus |
JP4594360B2 (en) * | 2007-08-27 | 2010-12-08 | 神鋼エア・ウォーター・クライオプラント株式会社 | Cryogenic air liquefaction separation device and operation method thereof |
JP5688784B2 (en) * | 2008-07-31 | 2015-03-25 | 千代田化工建設株式会社 | Heating module |
PL2770286T3 (en) * | 2013-02-21 | 2017-10-31 | Linde Ag | Method and apparatus for the production of high pressure oxygen and high pressure nitrogen |
JP5692709B2 (en) * | 2013-05-01 | 2015-04-01 | 千代田化工建設株式会社 | Cooling module |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5632541A (en) * | 1979-07-25 | 1981-04-02 | Gen Electric | Semisphere filled polycarbonate composition |
JPS5741565A (en) * | 1980-07-22 | 1982-03-08 | Air Prod & Chem | Production of gaseous oxygen and low temperature plant used therefor |
-
1982
- 1982-05-03 DE DE19823216510 patent/DE3216510A1/en not_active Withdrawn
-
1983
- 1983-04-28 JP JP58074138A patent/JPS58194711A/en active Granted
- 1983-05-03 IN IN537/CAL/83A patent/IN157040B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5632541A (en) * | 1979-07-25 | 1981-04-02 | Gen Electric | Semisphere filled polycarbonate composition |
JPS5741565A (en) * | 1980-07-22 | 1982-03-08 | Air Prod & Chem | Production of gaseous oxygen and low temperature plant used therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009529648A (en) * | 2006-03-15 | 2009-08-20 | リンデ アクチエンゲゼルシヤフト | Cryogenic air separation method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
IN157040B (en) | 1986-01-04 |
JPS58194711A (en) | 1983-11-12 |
DE3216510A1 (en) | 1983-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4555256A (en) | Process and device for the production of gaseous oxygen at elevated pressure | |
CA2063928C (en) | Process for low-temperature air fractionation | |
US3083544A (en) | Rectification of gases | |
US5845517A (en) | Process and device for air separation by low-temperature rectification | |
US4279631A (en) | Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air | |
CN109690215A (en) | Industrial gasses place produces integrated with liquid hydrogen | |
CN101883963B (en) | Method and apparatus for the production of gas from air in highly flexible gaseous and liquid form by cryogenic distillation | |
KR102389110B1 (en) | Cryogenic distillation method and apparatus for producing pressurized air by an expander booster connected to a nitrogen expander for braking | |
JPH08175806A (en) | Method and plant for manufacturing gaseous oxygen under pressure | |
JPS581350B2 (en) | Gaseous oxygen production method and low temperature plant for implementing the production method | |
CN104755360B (en) | Method and apparatus for carrying out air separation by low temperature distillation | |
JPH0579753A (en) | Method and device to manufacture gas-state oxygen under pressure | |
CN113405318B (en) | Application method of device for producing pure nitrogen by using single rectifying tower | |
JPH0132433B2 (en) | ||
JPH05203348A (en) | Air separation by refining and its apparatus | |
JPH0140269B2 (en) | ||
CN108731379A (en) | A kind of amount of liquid is adjustable and produces the air separation plant and production method of more specification oxygen products simultaneously | |
US6196023B1 (en) | Method and device for producing compressed nitrogen | |
JPH07260343A (en) | Cryogenic rectification system using hybrid product boiler | |
JPH05231765A (en) | Air separation | |
JP2690915B2 (en) | Air separation method and plant for implementing the method | |
JP2000193365A (en) | Method of separating gas from air at low temperature | |
CN105378411B (en) | Produce method, the air separation plant, the method and apparatus produced electricl energy of at least one air products | |
CA2000595A1 (en) | Process for the production of crude argon | |
JP3190016B2 (en) | Low-temperature distillation method for feed air producing high-pressure nitrogen |