JPH0240485A - Manufacture of nitrogen - Google Patents

Manufacture of nitrogen

Info

Publication number
JPH0240485A
JPH0240485A JP19256788A JP19256788A JPH0240485A JP H0240485 A JPH0240485 A JP H0240485A JP 19256788 A JP19256788 A JP 19256788A JP 19256788 A JP19256788 A JP 19256788A JP H0240485 A JPH0240485 A JP H0240485A
Authority
JP
Japan
Prior art keywords
exhaust gas
pressure
expansion turbine
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19256788A
Other languages
Japanese (ja)
Inventor
Takashi Tatsumi
高司 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP19256788A priority Critical patent/JPH0240485A/en
Publication of JPH0240485A publication Critical patent/JPH0240485A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/22Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To utilize the energy of waste gas effectively and reduce the power cost for nitrogen by a method wherein the waste gas is introduced into a high- temperature side expansion turbine to utilize the output of the high-temperature side expansion turbine as one part of the compressing power of material air. CONSTITUTION:A high-temperature side expansion turbine 16 is driven by the pressure of waste gas W and the output shaft of the turbine 16 is connected to the driving shaft of a compressor 1 through a power transmitting means 17 whereby power, generated in the turbine 16, is transmitted to the driving shaft of the compressor 1. The waste gas W having a pressure is introduced into a low-temperature side expansion turbine 10 to expand it and the pressure is retrieved by the turbine 16 to utilize it as one part of the compressing power of material air A. According to this method, a power necessary for the compressor 1 may be reduced. The temperature of the waste gas is risen in a pre-cooler 15 and is risen further by cooling the material air A in a preheater 2 while the waste gas drives the turbine 16 subsequently while becoming one part of the power for the compressor 1. Accordingly, a cost for the power may be reduced remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料空気を圧縮し、低温で液化分離して窒素
を製造する窒素製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing nitrogen by compressing raw air and liquefying and separating it at low temperatures.

(従来の技術) 第3図は、従来の一般的な窒素製造方法を示す系統図で
あって、比較的少量の液化窒素を併産する自圧式(製品
窒素ガスの必要圧力を窒素圧縮機を用いずに直接発生さ
せる方式)のものを示し℃いる。
(Prior art) Fig. 3 is a system diagram showing a conventional general nitrogen production method, which is an autostatic method that co-produces a relatively small amount of liquefied nitrogen. This shows a method in which the temperature is directly generated without the use of heat.

圧縮礪1で9.35kg/ciAに圧縮されて高温(1
30℃)となった10000 Nイ/Hの原料空気△は
、予熱器2で後述の再生ガスRと熱交換して113℃に
降温し、次いでアフタークーラ3で40℃に冷却される
。さらに原料空気Aは、フロン冷却器4で5℃まで冷却
された後に、複数基が切替使用される吸;?i V55
 aに導入され、水分や炭酸ガス等の不純物を除去され
て精製される。
It is compressed to 9.35 kg/ciA in compression chamber 1 and heated to high temperature (1
The 10,000 N/H raw air Δ, which has reached a temperature of 30°C, exchanges heat with the regeneration gas R described below in the preheater 2 to lower its temperature to 113°C, and then is cooled to 40°C in the aftercooler 3. Furthermore, the raw air A is cooled down to 5°C by the Freon cooler 4, and then the air is sucked by multiple units. i V55
a, and is purified by removing impurities such as water and carbon dioxide.

精製された原料空気Aは、主熱交換器6に導入されて後
述の製品窒素ガスPNや排ガスWと熱交換を行い液化点
近くまで冷却され、圧力9.0kg/ ci Aで精留
塔7の底部に導入される。原料空気へは、精留塔7内で
精留されて塔上部の窒素ガスGNと塔底部の酸素富化液
化空気LAとに分離する。
The purified raw material air A is introduced into the main heat exchanger 6, where it exchanges heat with the product nitrogen gas PN and exhaust gas W, which will be described later, and is cooled to near the liquefaction point. is introduced at the bottom of the The raw air is rectified in a rectification column 7 and separated into nitrogen gas GN at the top of the column and oxygen-enriched liquefied air LA at the bottom of the column.

窒素ガスGNは、精留塔7の頂部から導出され、その一
部(3800N−rr?/H)が主熱交換器6に尋人さ
れて前記原料空気へと熱交換を行い、5℃まで温度回復
して8.8kM−への圧力で製品窒素ガスPNとして送
出される。また″残部の窒素ガスGNは、凝縮蒸発器8
に尋人されて、塔底部から該凝縮蒸発器8に導入される
液化空気LAと熱交換を行い、凝縮して液化窒素LNと
なる。この液化窒素LNは、少fit (80Nm/H
)が製品液化窒素PLとして採取され、大部分の液化窒
素LNが精留塔7の還流液として精留塔7の上部に導入
される。
Nitrogen gas GN is led out from the top of the rectification column 7, and a part of it (3800N-rr?/H) is transferred to the main heat exchanger 6 to exchange heat with the raw material air, and is heated to 5°C. After the temperature is recovered, the pressure is increased to 8.8 km and the product nitrogen gas PN is sent out. In addition, the remaining nitrogen gas GN is sent to the condenser evaporator 8.
It exchanges heat with the liquefied air LA introduced from the bottom of the tower into the condensing evaporator 8, and is condensed to become liquefied nitrogen LN. This liquefied nitrogen LN has a small fit (80Nm/H
) is collected as a product liquefied nitrogen PL, and most of the liquefied nitrogen LN is introduced into the upper part of the rectification column 7 as a reflux liquid from the rectification column 7.

一方、精留塔7底部の液化空気LAは、弁って膨張した
後に前記凝縮蒸発器8に導入され、窒素ガスGNと熱交
換を行い蒸発して圧力4.7kg/−への排ガスW(6
1208イ/H)となる。この排ガスWは、一部Wa 
(2300NTI+’/+1)が前記主熱交換器6に導
入されて数十度昇温した後に膨張タービン10に導入さ
れ、圧力1.28k(1/cm^まで膨張して寒冷を発
生する。この排ガスの一部Waは、弁11で略同じ圧力
に膨張した排ガスの残部Wb (3820NTI+’/
+1)と合流して主熱交換器6に導入され、原料空気A
と熱交換を行い原石空気△を冷却する。
On the other hand, the liquefied air LA at the bottom of the rectification column 7 is introduced into the condensing evaporator 8 after expanding through a valve, where it exchanges heat with the nitrogen gas GN, evaporates, and becomes an exhaust gas W (with a pressure of 4.7 kg/-). 6
1208 I/H). This exhaust gas W is partly Wa
(2300NTI+'/+1) is introduced into the main heat exchanger 6 and heated up by several tens of degrees, and then introduced into the expansion turbine 10, where it expands to a pressure of 1.28k (1/cm^) and generates cold. Part Wa of the exhaust gas is expanded to approximately the same pressure by the valve 11, and the remaining part Wb (3820NTI+'/
+1) and is introduced into the main heat exchanger 6, and the raw air A
Heat exchange is performed with the raw stone air △ to cool it.

主熱交換器6で常温(5℃)まで昇温しで圧力1.2k
O/Cri^で導出された排ガスWは、その−部Wc 
(1500thn’/fl)が前記吸着器5a、5bの
再生ガスRとして用いられ、大多伍の残部Wd (46
20NTI+’/+1)が弁12から大気中に放出され
る。一方の吸着器5bを加熱再生する時の再生ガスRは
、前記予熱器2で高温の原料空気Aにより加熱され、さ
らにヒーター13で加熱された後に再生工程にある吸着
器5bに導入される。また吸着器5bの冷却時の再生ガ
スRは、予熱器2等を経由せずに弁14から再生工程を
終えた吸着器5b1.:導入される。
The main heat exchanger 6 raises the temperature to room temperature (5℃) and the pressure is 1.2k.
The exhaust gas W derived from O/Cri^ is its − part Wc
(1500thn'/fl) is used as the regeneration gas R of the adsorbers 5a and 5b, and the remainder Wd (46
20NTI+'/+1) is released from valve 12 into the atmosphere. The regenerating gas R used to heat and regenerate one of the adsorbers 5b is heated by the high-temperature raw air A in the preheater 2, further heated by the heater 13, and then introduced into the adsorber 5b in the regeneration process. Furthermore, the regeneration gas R during cooling of the adsorber 5b is delivered from the valve 14 to the adsorber 5b1. :be introduced.

(発明が解決しようとする課題) しかしながら、上述のものでは、凝縮蒸発器8で気化し
て導出された圧力を有する排ガスWの多くを主熱交換器
64入前に弁11で単に膨張させているため、排ガスW
の持つエネルギーが無駄にされており、窒素製造装置の
原単位を悪化させていた。
(Problem to be Solved by the Invention) However, in the above-mentioned method, most of the exhaust gas W having a pressure that is vaporized and led out in the condenser evaporator 8 is simply expanded in the valve 11 before entering the main heat exchanger 64. Because of this, exhaust gas W
The energy of nitrogen production equipment was being wasted, which worsened the unit consumption of nitrogen production equipment.

さらに、主熱交換器6から導出される排ガスWは、5℃
程度の低温であるが、大多吊がそのエネルギーを有効に
利用することなく弁12から大気中に放出されている。
Furthermore, the exhaust gas W derived from the main heat exchanger 6 is 5°C
Although the temperature is relatively low, most of the energy is released into the atmosphere from the valve 12 without using its energy effectively.

そこで、本発明は、上記初ガスの持つ圧力、温度等のエ
ネルギーを有効に利用して窒N ?J ’>’24装置
の原単位を低減さぜることのできる窒素¥J造方法を記
供することを目的とする。
Therefore, the present invention effectively utilizes the energy such as pressure and temperature of the above-mentioned initial gas to produce nitrogen-N? The purpose of this study is to describe a nitrogen production method that can reduce the unit consumption of J'>'24 equipment.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明は、凝縮蒸発器
で気化した圧力を有する排ガスの略全Mを低温側膨張タ
ービンに導入して、該排ガスの圧力と大気圧との中間の
圧力で、かつ装置の運転に必要な寒冷を得るのに十分な
圧力にまで膨張させて寒冷を発生させ、次いで主熱交換
器に導入して前記原料空気と熱交換させて稈温し、この
圧力を有する昇温した拮ガスを前記圧縮から¥iI製に
至る間の常温以上の原料空気と熱交換させてさらに昇温
さ「た後に、高温側膨張タービンに導入して大気圧まで
膨張させて排出するとともに、該高温側膨張タービンの
出力を原料空気の圧縮動力の一部として用いることを特
徴と覆る窒素ll造方法、及び凝縮蒸発器で気化した圧
力を有する排ガスの一部を低温側膨張タービンに導入し
て大気圧まで膨張させ、装置の運転に必要な寒冷を発生
させて熱交換器に導入して前記原料空気と熱交換させた
後に排出し、一方前記排ガスの残部を膨張させることな
く主熱交換器に導入して前記原料空気と熱交換させて昇
温し、この圧力を有する昇温した排ガスを前記圧縮から
精製に至る間の常温以上の原料空気と熱交換さ「てざら
に昇温させた侵に、高温側膨張タービンに導入して大気
圧まで膨張させてlJj出するとともに、該高温側膨張
タービンの出力を原料空気の圧縮動力の一部として用い
ることを特徴とする窒素製造方法を提供するものである
In order to achieve the above-mentioned object, the present invention introduces substantially all M of exhaust gas having a pressure vaporized in a condenser evaporator into a low temperature side expansion turbine, and has a pressure intermediate between the pressure of the exhaust gas and atmospheric pressure. , and is expanded to a pressure sufficient to obtain the refrigeration necessary for the operation of the equipment to generate refrigeration, which is then introduced into the main heat exchanger to exchange heat with the feed air to heat the culm, and this pressure is reduced. The heated gas is further heated by exchanging heat with the raw material air at room temperature or higher during the process from compression to production, and then introduced into the high-temperature side expansion turbine where it is expanded to atmospheric pressure and discharged. At the same time, the nitrogen production method is characterized in that the output of the high-temperature side expansion turbine is used as part of the power for compressing raw air, and a part of the pressured exhaust gas vaporized in the condenser evaporator is used in the low-temperature side expansion turbine. The exhaust gas is introduced into the air and expanded to atmospheric pressure to generate the refrigeration required for the operation of the equipment, and introduced into a heat exchanger to exchange heat with the raw material air before being discharged, while the remainder of the exhaust gas is not expanded. It is introduced into the main heat exchanger and heated by exchanging heat with the raw material air, and the heated exhaust gas having this pressure is heat exchanged with the raw material air at room temperature or higher during the process from compression to purification. Nitrogen is introduced into a high-temperature side expansion turbine to be expanded to atmospheric pressure and then outputted after the temperature has been raised, and the output of the high-temperature side expansion turbine is used as part of the power for compressing the raw material air. A manufacturing method is provided.

〔作 用〕[For production]

上記のごとく構成し、排ガスの持つ圧力で従来の低温領
域で作動する膨張タービンの他に、常温付近から常温以
上の温度領域で作動するts温開側膨張タービン駆動し
て、この出力を原料空気の圧縮動力として用いることに
より、圧縮機の動力費を低減させることができる。また
低温の排ガスの全て、あるいは大部分で吸着器等の精製
工程に導入する前の常温以上の原料空気と熱交換させて
原料空気を冷却することにより、精製工程性の冷却設備
の動力費等を低減さUることができる。
With the above configuration, in addition to the conventional expansion turbine that operates in a low temperature range using the pressure of exhaust gas, a TS warm open side expansion turbine that operates in a temperature range from around room temperature to above room temperature is driven, and this output is transferred to the raw material air. By using the compressor as compression power, the power cost of the compressor can be reduced. In addition, all or most of the low-temperature exhaust gas is cooled by exchanging heat with raw air at room temperature or higher before being introduced into the purification process such as an adsorber, reducing the power cost of cooling equipment for the purification process. can be reduced.

〔実施例〕〔Example〕

以下、本発明を図面に示寸実施例に基づいて詳しく説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below based on exemplary embodiments shown in the drawings.

まず第1図は、請求項1記載の窒素製造方法を適用した
窒素製造装置の一実施例を示すしのであって、木実流側
装置は、前記従来例で示した窒素製造装置の系統を改良
して予冷器15と高温側膨張タービン16とを付加した
ものである。尚、前記第3図に示した従来例と同一要素
のものには同一符号を付して詳細な説明を省略でる。但
し、従来例と同様に低温側で用いられる膨張タービンは
、上記高温側膨張タービンと混同しないように低温側膨
張タービンという。
First of all, FIG. 1 shows an embodiment of the nitrogen production apparatus to which the nitrogen production method according to claim 1 is applied, and the tree fruit downstream apparatus is similar to the system of the nitrogen production apparatus shown in the conventional example. This is an improved version in which a precooler 15 and a high temperature side expansion turbine 16 are added. Incidentally, the same elements as those in the conventional example shown in FIG. However, similarly to the conventional example, the expansion turbine used on the low temperature side is referred to as the low temperature side expansion turbine so as not to be confused with the above-mentioned high temperature side expansion turbine.

上記予冷器15は、アフタークーラ3とフロン冷7J]
器4との間に設けられており、主熱交換器6から導出さ
れた低温の排ガスW及び製品窒素ガスPNと、原料空気
Aとを熱交換させ、フロン冷却器4に導入する原料空気
へを冷却する。また排ガスWの排出系統の最終段に設け
られる上記高温側膨張タービン16は、排ガスWの圧力
により駆動され回゛転するもので、その出力軸と原料空
気Aの圧縮機1の駆動軸とが、同軸あるいはギア等の動
力伝達子g217により接続されており、高温側膨張タ
ービン16で発生した動力が圧縮機1の駆動軸に伝達さ
れている。ざらに上記予冷器15と高温側膨張タービン
76には、この窒素製造装置で発生する排ガスWの略全
吊(吸着器5a、5bの再生用ガスを除いた全量)を尋
人するように構成されている。
The above precooler 15 includes an aftercooler 3 and a fluorocarbon cooling 7J]
It exchanges heat between the low-temperature exhaust gas W and product nitrogen gas PN derived from the main heat exchanger 6 and the feed air A, and converts it into the feed air introduced into the Freon cooler 4. to cool down. The high-temperature side expansion turbine 16 provided at the final stage of the exhaust gas W exhaust system is driven by the pressure of the exhaust gas W to rotate, and its output shaft is connected to the drive shaft of the compressor 1 for the raw air A. , are connected by a power transmitter g217 such as coaxial or gear, and the power generated by the high temperature side expansion turbine 16 is transmitted to the drive shaft of the compressor 1. Roughly speaking, the precooler 15 and the high-temperature side expansion turbine 76 are configured to absorb almost the entire exhaust gas W generated in this nitrogen production device (the entire amount excluding the regeneration gas of the adsorbers 5a and 5b). has been done.

次に本実施例装置で、na記第3・4に示す従来装置と
同圧、同舟の製品窒素ガスを製造する場合について説明
する。
Next, a case will be described in which the apparatus of this embodiment is used to produce nitrogen gas at the same pressure and at the same level as the conventional apparatus shown in Sections 3 and 4 of Na.

まず圧縮機1で9.4ka/dAに圧縮されて高W(1
30℃)となった100008Tn’/11の原料空気
Aは、予熱器2で従来に比べて大間の排ガスWと熱交換
することにより95℃に降温し、次いでアフタークーラ
3で40℃に冷却され、前記予冷器15に導入される。
First, it is compressed to 9.4 ka/dA by compressor 1, and the
The raw air A of 100008Tn'/11, which has reached a temperature of 30°C), is lowered in temperature to 95°C by exchanging heat with Oma's exhaust gas W in the preheater 2 compared to the conventional method, and then cooled to 40°C in the aftercooler 3. , is introduced into the precooler 15.

原料空気Aは、この予冷器15で排ガスWと製品窒素ガ
スPNと熱交換することで22℃に冷却され、さらにフ
ロン冷却器4で5℃まで冷却されて吸着器5aに導入さ
れる。
The raw air A is cooled to 22° C. by exchanging heat with the exhaust gas W and the product nitrogen gas PN in the precooler 15, and further cooled to 5° C. in the freon cooler 4, and then introduced into the adsorber 5a.

そして従来と同様に、吸着Vfs 5 aで精製された
原料空気Aは、主熱交換器6に導入されて冷却され、圧
力9.0ko/cIi八で精留塔7に導入されて窒素ガ
スGNと液化空気LAとに精留分離する。
Then, as in the past, the feed air A purified by the adsorption Vfs 5a is introduced into the main heat exchanger 6, cooled, and introduced into the rectification column 7 at a pressure of 9.0 ko/cIi, where it is converted into nitrogen gas GN. and liquefied air LA.

精dI塔7の頂部から導出された窒素ガスGNの一部(
3800117I+’/H)は、製品窒素ガスPNとし
て主熱交換器6に導入され、また残部の窒素ガスGNは
、凝縮蒸発器8に導入されて液化窒素1−Nとなり、少
量(80NTI+’/II)が製品液化窒素PLとして
採取され、残部が精留塔7の還流液となる。
Part of the nitrogen gas GN derived from the top of the refined dI column 7 (
3800117I+'/H) is introduced into the main heat exchanger 6 as product nitrogen gas PN, and the remaining nitrogen gas GN is introduced into the condensing evaporator 8 to become liquefied nitrogen 1-N. ) is collected as product liquefied nitrogen PL, and the remainder becomes the reflux liquid of the rectification column 7.

一方、精留塔7底部の液化空気LAは、前記凝給蒸発器
8で蒸発して圧力4.7k(1/cjAの排ガスW (
6120N−+y+’/H)となる。この誹ガスWは、
略全聞(6100Nm”/II)が主熱交換器6に導入
されて数十度昇温した後に低温側膨張タービン10に導
入される。この排ガスWは、該排ガスWの圧力と大気圧
との中間の圧力で、かつ装置の運転に必要な寒冷を得る
のに十分な圧力、即ち本実施例においては2 、7 k
a/ ai Aにまで膨張する。そして弁11で同じ圧
力に膨張した排ガスの一部We (20Nゴ/H)と合
流して主熱交換器6に導入される。
On the other hand, the liquefied air LA at the bottom of the rectification column 7 is evaporated in the condensing evaporator 8 to produce exhaust gas W (
6120N-+y+'/H). This slanderous gas W is
Almost the entire exhaust gas (6100 Nm''/II) is introduced into the main heat exchanger 6 and heated by several tens of degrees before being introduced into the low-temperature side expansion turbine 10. at a pressure intermediate between
a/ ai Expands to A. Then, at the valve 11, it merges with a portion of the exhaust gas expanded to the same pressure We (20N/H) and is introduced into the main heat exchanger 6.

主熱交換器6で原石空気Aと熱交換を行い、圧力8 、
8 kQ/mA 、温度5℃で導出された製品窒素ガス
PNと、圧力2.6klJ/cIi^、温度5℃で導出
されたlJ1ガスWとは、前記予冷器15に導入され、
原料空気へと熱交換を行い、前述のごとく原料空気Aを
冷lJI して、それぞれ36℃に昇湿する。昇温侵の
製品窒素ガスPNは、その圧力のまま使用先に送出され
る。
The main heat exchanger 6 exchanges heat with the rough air A, and the pressure is 8.
The product nitrogen gas PN derived at 8 kQ/mA and a temperature of 5° C. and the lJ1 gas W derived at a pressure of 2.6 klJ/cIi^ and a temperature of 5° C. are introduced into the precooler 15,
Heat exchange is performed to the raw material air, and the raw material air A is cooled and humidified to 36° C. as described above. The product nitrogen gas PN, which is heated and eroded, is sent to the user at the same pressure.

一方、予冷器15から導出された排ガスWは、前記予熱
器2で高温の原料空気Aと熱交換を行い120℃に加熱
される。そして、その大多聞(46201hn”/H)
が高温側膨張タービン16に導入され、該タービン16
を回転駆動し、動力伝達手段17を介して圧縮I11を
駆動し、略大気圧(1゜03k(J/ci^)に膨張し
た後に大気中に放出される。また排ガスWの一部(15
008m’/II)は、前記吸着器5a、5bの再生ガ
スRとして従来と同様に用いられる。
On the other hand, the exhaust gas W led out from the precooler 15 exchanges heat with the high temperature raw material air A in the preheater 2 and is heated to 120°C. And that large number (46201hn”/H)
is introduced into the high temperature side expansion turbine 16, and the turbine 16
is rotated, the compressor I11 is driven via the power transmission means 17, and after being expanded to approximately atmospheric pressure (1°03k (J/ci^)), it is released into the atmosphere.
008m'/II) is used as the regeneration gas R of the adsorbers 5a and 5b in the same manner as in the past.

このように、圧力を有する排ガスWを低温側膨張タービ
ン10に導入して、該排ガスWの圧力と大気圧との中間
の圧力で、かつ装置の運転に必要な寒冷を得るのに十分
な圧力にまで膨張さV、この圧力をr4温側膨張タービ
ン16で回収して原料空気への圧縮動力の一部として用
いることにより、前記第3図に示す従来例と同じ吊の製
品窒素ガスPNを同じ圧力で得る場合で、圧縮機1の所
要動力を1l100kから990 kwに低減させるこ
とができる。
In this way, the exhaust gas W having a pressure is introduced into the low-temperature side expansion turbine 10, and the pressure is intermediate between the pressure of the exhaust gas W and the atmospheric pressure, and the pressure is sufficient to obtain the refrigeration necessary for operating the device. By recovering this pressure in the r4 hot side expansion turbine 16 and using it as part of the power to compress the raw material air, the product nitrogen gas PN with the same suspension as the conventional example shown in FIG. When obtaining the same pressure, the required power of the compressor 1 can be reduced from 1l100k to 990kw.

さらに主熱交換器6から導出された低温(5℃)の排ガ
スW及び製品窒素ガスPNを冷却源として圧縮t11か
ら蹟装用の吸着器5a、5bに至る間の常温の原石空気
Δを冷却することにより、フロン冷却器4の所要動力を
48kwから21 kwに低減することができる。従っ
て、他の所要動力を含めて仝休で約11.5%のfh力
低減を図ることができ、予冷器15やi:S湯側膨張タ
ービン16等の初期設備費を必要としても、運転動力費
が大幅に低減することで製品窒素ガスPNの動力原単位
を低減させることができる。また本発明方法は、上記実
施例からも明らかなように、従来装置を僅かに改良する
のみで実流することができ、装置も大型化することがな
い。さらに本実施例のごとく、排ガスWと共に製品窒素
ガスPNを予冷器15に導入することにより、原料空気
Aの冷却効果を向上させることができるが、製品窒素ガ
スPNを低温のまま使用先に送出して、排ガスWのみを
予冷器15に導入しても充分な効果を得ることができる
Furthermore, using the low temperature (5° C.) exhaust gas W and product nitrogen gas PN derived from the main heat exchanger 6 as a cooling source, the room temperature rough air Δ between the compression t11 and the adsorbers 5a and 5b for dressing is cooled. As a result, the power required for the Freon cooler 4 can be reduced from 48 kW to 21 kW. Therefore, including other required power, it is possible to reduce the fh power by approximately 11.5% during the rest period, and even if initial equipment costs such as the precooler 15 and the i:S hot water side expansion turbine 16 are required, By significantly reducing the power cost, the power consumption rate of the product nitrogen gas PN can be reduced. Furthermore, as is clear from the above embodiments, the method of the present invention can be put into practical use with only slight improvements to conventional equipment, and the equipment does not need to be enlarged. Furthermore, as in this embodiment, by introducing the product nitrogen gas PN into the precooler 15 together with the exhaust gas W, the cooling effect of the raw air A can be improved, but the product nitrogen gas PN is sent to the user at a low temperature. Even if only the exhaust gas W is introduced into the precooler 15, a sufficient effect can be obtained.

次に第2図は、請求項2記載の窒素製造方法を適用した
窒素製造装置の一実施例を示すものであって、本実施例
装置は、上記第1図に示す実施例装置と同様の予冷器1
5とB湯側膨張タービン16とを付加するとともに、排
ガスWを2系統に分割したものである。尚、前記第1図
、第3図に示すものと同一要素のものには同一符号を付
して詳細な説明を省略する。
Next, FIG. 2 shows an embodiment of a nitrogen production apparatus to which the nitrogen production method according to claim 2 is applied, and this embodiment apparatus is similar to the embodiment apparatus shown in FIG. 1 above. Precooler 1
5 and a B hot water side expansion turbine 16 are added, and the exhaust gas W is divided into two systems. Incidentally, the same elements as those shown in FIGS. 1 and 3 are given the same reference numerals and detailed explanations will be omitted.

凝縮蒸発器8から導出された2 7751hn’/+1
の排ガスWは、その一部(1100NT11’/II)
 Wfが装置に必要な寒冷を得るために低温側膨張ター
ビン10に導入されて大気圧迫< (1、2k(+/c
mA )まで膨張して寒冷を発生し、原料空気へを冷I
りする。この排ガスの一部Wfは、従来と同様の経路に
より、吸W2S5a、5bの再生ガスRとして用いられ
る。再生ガスRとして過剰となるガスWgは、弁12か
ら放出される。
2 7751hn'/+1 derived from condenser evaporator 8
The exhaust gas W is a part of it (1100NT11'/II)
Wf is introduced into the low-temperature side expansion turbine 10 to obtain the cooling required for the device, and atmospheric pressure < (1, 2k (+/c
mA ) to generate cold and cool the feed air.
I will A part of this exhaust gas Wf is used as regeneration gas R for the suction W2S5a, 5b through the same route as in the conventional case. Excess gas Wg as regeneration gas R is discharged from valve 12.

一方フロン冷却器4に導入する原料空気Δを冷Wする予
冷器15には、膨張することなく主熱交換器6に導入さ
れて5℃に昇温した排ガスの残部Wh (2、7kCI
/mA 、  1675  Nvn’/11)と製品窒
素ガスPNとが導入され、原料空気へを冷却する。予冷
器15で36℃に昇温した排ガスwhは、さらに予熱器
2で原料空気Aを冷却して105℃に胃温し、次いで高
温側膨張タービン16に導入され、該タービン16を駆
動して圧縮機1の動力の一部となる。
On the other hand, the precooler 15 that cools the raw material air Δ introduced into the freon cooler 4 is supplied with the remaining part of the exhaust gas Wh (2.7 kCI
/mA, 1675 Nvn'/11) and product nitrogen gas PN are introduced to cool the raw material air. The exhaust gas wh heated to 36°C in the precooler 15 further cools the raw air A in the preheater 2 to reach a temperature of 105°C, and then is introduced into the high temperature side expansion turbine 16 to drive the turbine 16. It becomes part of the power of the compressor 1.

本実施例の方法においても、前記実施例と同様に、圧縮
機1及びフロン冷却器4の所要動力の大幅な低減を図る
ことができる。また本実施例の方法は、製品窒素ガスP
Nの必要圧力が低い装置で、凝縮蒸発器8から専用され
る排ガスWの圧力が比較的低く、令聞を低温側膨張ター
ビン10で膨張させた際に、膨張後の排ガスWの圧力が
高温側膨張タービン16を駆動するのに十分確保できな
い場合等に特に有効である。
In the method of this embodiment as well, the power required for the compressor 1 and the fluorocarbon cooler 4 can be significantly reduced, as in the previous embodiment. In addition, the method of this example uses the product nitrogen gas P
This is a device with a low required pressure of N, and the pressure of the exhaust gas W exclusively from the condenser evaporator 8 is relatively low, and when the exhaust gas W is expanded in the low temperature side expansion turbine 10, the pressure of the expanded exhaust gas W is high. This is particularly effective when sufficient power is not available to drive the side expansion turbine 16.

尚、本発明の方法は、上記実施例に示した窒素¥J造装
置に限らず、各種の窒素製造装置に適用することができ
る。
The method of the present invention is not limited to the nitrogen production apparatus shown in the above embodiment, but can be applied to various nitrogen production apparatuses.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、窒素製造装置から排出
される排ガスの圧力や温度等のエネルギーを、原料空気
の圧縮や冷却に有効に用いるようにしたから、原料空気
圧縮用の圧縮機の動力費や冷W用のフロン冷却器等の動
力費を大幅に低減させることができ、製品窒素ガスの動
力源単位を低減させることができる。
As explained above, the present invention effectively uses the energy such as the pressure and temperature of the exhaust gas discharged from the nitrogen production equipment for compressing and cooling the raw material air. The power cost and the power cost of the Freon cooler for cold W can be significantly reduced, and the unit of power source for product nitrogen gas can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した窒素製造装置の一実施例を示
す系統図、第2図は同じく他の実施例を示す系統図、第
3図は従来の窒素製造方法を示す系統図である。
Fig. 1 is a system diagram showing one embodiment of a nitrogen production device to which the present invention is applied, Fig. 2 is a system diagram showing another embodiment, and Fig. 3 is a system diagram showing a conventional nitrogen production method. .

Claims (1)

【特許請求の範囲】 1、原料空気を圧縮、精製、冷却して低温で液化分離す
る窒素製造方法において、精留塔で分離して凝縮蒸発器
で気化した圧力を有する排ガスの略全量を低温側膨張タ
ービンに導入して、該排ガスの圧力と大気圧との中間の
圧力で、かつ装置の運転に必要な寒冷を得るのに十分な
圧力にまで膨張させて寒冷を発生させ、次いで主熱交換
器に導入して前記原料空気と熱交換させて昇温し、この
圧力を有する排ガスを前記圧縮から精製に至る間の常温
以上の原料空気と熱交換させてさらに昇温させた後に、
高温側膨張タービンに導入して大気圧まで膨張させて排
出するとともに、該高温側膨張タービンの出力を原料空
気の圧縮動力の一部として用いることを特徴とする窒素
製造方法。 2、原料空気を圧縮、精製、冷却して低温で液化分離す
る窒素製造方法において、精留塔で分離して凝縮蒸発器
で気化した圧力を有する排ガスの一部を低温側膨張ター
ビンに導入して大気圧まで膨張させ、装置の運転に必要
な寒冷を発生させて熱交換器に導入して前記原料空気と
熱交換させた後に排出し、一方前記排ガスの残部を膨張
させることなく主熱交換器に導入して前記原料空気と熱
交換させて昇温し、この圧力を有する排ガスを前記圧縮
から精製に至る間の常温以上の原料空気と熱交換させて
さらに昇温させた後に、高温側膨張タービンに導入して
大気圧まで膨張させて排出するとともに、該高温側膨張
タービンの出力を原料空気の圧縮動力の一部として用い
ることを特徴とする窒素製造方法。
[Claims] 1. In a nitrogen production method in which raw air is compressed, purified, cooled, and liquefied and separated at a low temperature, substantially the entire amount of pressured exhaust gas separated in a rectification column and vaporized in a condensing evaporator is liquefied at a low temperature. refrigeration is produced by introducing it into a side expansion turbine and expanding it to a pressure intermediate between the pressure of the exhaust gas and atmospheric pressure, but sufficient to provide the refrigeration required for operation of the equipment, and then generating refrigeration. After introducing the exhaust gas into an exchanger and exchanging heat with the raw material air to raise the temperature, and exchanging heat with the raw material air at room temperature or higher during the compression to purification process, the exhaust gas having this pressure is further raised in temperature.
A method for producing nitrogen, which comprises introducing nitrogen into a high-temperature side expansion turbine, expanding it to atmospheric pressure, and discharging it, and using the output of the high-temperature side expansion turbine as part of the power for compressing raw material air. 2. In a nitrogen production method in which raw air is compressed, purified, and cooled to liquefy and separate at a low temperature, a part of the high-pressure exhaust gas separated in a rectifier and vaporized in a condensing evaporator is introduced into a low-temperature side expansion turbine. The air is expanded to atmospheric pressure to generate the refrigeration necessary for the operation of the equipment, which is introduced into a heat exchanger to exchange heat with the raw material air and then discharged, while the remaining part of the exhaust gas is subjected to main heat exchange without expansion. The exhaust gas having this pressure is introduced into the reactor and heated by exchanging heat with the raw material air, and the exhaust gas having this pressure is further heated by exchanging heat with the raw material air at room temperature or higher during the process from compression to purification, and then the high temperature side A method for producing nitrogen, which comprises introducing nitrogen into an expansion turbine, expanding it to atmospheric pressure, and discharging it, and using the output of the high-temperature side expansion turbine as part of the power for compressing raw air.
JP19256788A 1988-08-01 1988-08-01 Manufacture of nitrogen Pending JPH0240485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19256788A JPH0240485A (en) 1988-08-01 1988-08-01 Manufacture of nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19256788A JPH0240485A (en) 1988-08-01 1988-08-01 Manufacture of nitrogen

Publications (1)

Publication Number Publication Date
JPH0240485A true JPH0240485A (en) 1990-02-09

Family

ID=16293432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19256788A Pending JPH0240485A (en) 1988-08-01 1988-08-01 Manufacture of nitrogen

Country Status (1)

Country Link
JP (1) JPH0240485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982356A1 (en) * 2011-11-09 2013-05-10 Air Liquide Method for separating air by cryogenic distillation in turbine of turbo compressor of e.g. car, involves heating oxygen-enriched stream, and sending oxygen-enriched stream to heat exchanger for cooling air upstream purification
EP2873938A1 (en) * 2013-11-14 2015-05-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982356A1 (en) * 2011-11-09 2013-05-10 Air Liquide Method for separating air by cryogenic distillation in turbine of turbo compressor of e.g. car, involves heating oxygen-enriched stream, and sending oxygen-enriched stream to heat exchanger for cooling air upstream purification
EP2873938A1 (en) * 2013-11-14 2015-05-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Similar Documents

Publication Publication Date Title
US4575388A (en) Process for recovering argon
JPH02245201A (en) Air decomposition by rectification and its apparatus
CN110307694B (en) Nitrogen production method and nitrogen production apparatus
JPH0875349A (en) Air separation method for obtaining gaseous oxygen product at supply pressure
JP2000337767A (en) Air separating method and air separating facility
JPH09132404A (en) Method and apparatus for producing nitrogen by separating air as component
JP3063030B2 (en) Pressurized air separation method with use of waste expansion for compression of process streams
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JPH0240485A (en) Manufacture of nitrogen
JP2001141359A (en) Air separator
JPH10170144A (en) Device and method for cleaning raw air of air liquefaction and separation device
JP2001133143A (en) Air separating facility
EP0713068A2 (en) Air separation method and apparatus
JPH1163812A (en) Manufacture and device for low-purity oxygen
JPH0792326B2 (en) Air liquefaction separation method
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH1163811A (en) Method and device for manufacturing low impurity oxygen
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JP2873381B2 (en) Air liquefaction separation method and apparatus
JPH0710226Y2 (en) Air liquefaction separation device
JP2005351579A (en) Nitrogen manufacturing method and its device
JPS6338632B2 (en)
JPS6357713B2 (en)
JP2917033B2 (en) Air liquefaction separation method and apparatus
JP4698989B2 (en) Oxygen production equipment