JPS6338632B2 - - Google Patents

Info

Publication number
JPS6338632B2
JPS6338632B2 JP10757379A JP10757379A JPS6338632B2 JP S6338632 B2 JPS6338632 B2 JP S6338632B2 JP 10757379 A JP10757379 A JP 10757379A JP 10757379 A JP10757379 A JP 10757379A JP S6338632 B2 JPS6338632 B2 JP S6338632B2
Authority
JP
Japan
Prior art keywords
air
pipe
natural gas
lng
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10757379A
Other languages
Japanese (ja)
Other versions
JPS5634083A (en
Inventor
Hiroshi Ishii
Hidetake Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP10757379A priority Critical patent/JPS5634083A/en
Publication of JPS5634083A publication Critical patent/JPS5634083A/en
Publication of JPS6338632B2 publication Critical patent/JPS6338632B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は液化天然ガス(以下LNGという。)の
寒冷を利用した空気の液化方法に関する。詳しく
はLNGの寒冷を効率良く利用することにより液
体空気をより低コストで製造する方法に関する。 LNGを気化使用する際の寒冷の利用方法は
種々提案されているが、その一つとして液体空気
を製造する際の寒冷利用がある。液体空気の用途
としては冷凍貯蔵用、あるいは冷凍輸送用の寒冷
源として使用する他、例えばガスタービン発電に
於て助燃用空気を常時燃料用LNGの寒冷を利用
して液化貯溜しておき、電力需要のピーク時にそ
の液体空気を集中的に気化使用することにより空
気圧縮機を用いずに発電を行う方法がある。この
方法によるとガスタービン発電に於ける助燃用空
気を供給する圧縮のための動力が節約できるので
高効率で発電できる。 ところで、液体空気を製造する場合その製造コ
ストの大部分は動力費であり空気液化方法に於け
るLNGの寒冷利用もこの動力費の節減するため
のものであるが、本発明はこの空気の液化に於て
LNGの寒冷を更に有効に利用して液体空気製造
コストの大部分を占める電力費の低減化を可能に
した方法である。 LNGを利用して液体空気を製造する際にLNG
を有効に利用する方法として、原料空気を予め
LNGにより冷却して低温圧縮する方法、LNGを
液ポンプにより臨界圧以上に加圧後熱交換により
昇温し、これを膨張タービンにより膨張させて動
力を回収する方法等がある。本発明は上記低温圧
縮に加えLNGと空気との熱交換に於てLNGを大
気圧以下の圧力で熱交換することにより生成液体
空気を過冷し、次の膨張工程に於て生成する気化
空気を最小限とすることにより原料空気圧縮機に
戻るガス量を最小限とし、また空気の圧縮圧力を
遠心式圧縮機の最も効率の良い範囲である15〜25
気圧として低温圧縮を行い、気化天然ガスの再圧
縮も低温圧縮を行う等により圧縮動力を節減し、
電力原単位を低下させた液体空気の製造方法であ
る。 以下本発明方法の一実施例を図によつて詳細に
説明する。 図は本発明方法による液体空気の製造方法の一
例を示した系統図であり、LNG専焼火力発電所
にピークロード用ガスタービン発電設備を附設
し、燃料LNGの寒冷を利用してこのピークロー
ド用ガスタービン発電のための液体空気を製造す
る方法を示したものである。 管1より30℃の大気48000Nm3/hが予圧ブロ
ワー2により吸引され約3ata(絶対気圧、以下同
じ)以下の任意の圧力まで昇圧され管3を経て原
料空気精製部門4に入り水分および炭酸ガスが除
去される。精製部門4は例えば吸着による等通常
行なわれている方法による。また予めLNGの寒
冷により原料空気を0℃近辺迄冷却してから吸着
を行う低温吸着法によつても良いことは勿論であ
る。このように精製された空気は管5を経て予冷
部門6に導入されLNGと熱交換して−150℃まで
冷却されて管7を導出する。原料空気精製部門4
および予冷部門6に於ける空気とLNGの熱交換
には両者の間にフロン等、他の冷媒を介在させて
万一の混入による危険の防止を図ることも有効で
ある。 管7の低温精製空気流48000Nm3/hは管23
を経て来る後記する気液分離器21よりの分離低
温空気と合流して53000Nm3/hとなり管8を通
つて空気圧縮機6に吸入され、圧縮されて20ata、
+30℃となり管10へ吐出される。空気圧縮機9
の吐出圧力は本実施例では20ataであるが、この
圧力に限らず15〜25ataの範囲であれば良い。こ
れは空気が、1〜2ataで気化するLNGの温度
(−152〜−162℃)で液化可能な圧力であり、且
つ遠心式圧縮機の最も効率良い使用範囲である。
次いで管10よりの加圧精製空気は予冷器11に
入り任意圧のLNG、本実施例では10ataのLNG
と熱交換して冷却され約−140℃となつて管12
へ導出する。この場合もLNGと空気の間に他の
冷媒を介在させても良い。管12の低温圧縮空気
流れは空気液化器13に入り、1〜2ataのLNG、
本実施例では1.2ataのLNGと熱交換して−155℃
迄冷却されて液化する。生成した液体空気は管1
4より熱交換器15に入り大気圧以下で気化する
LNG、本実施例では0.2ataのLNGと熱交換し−
177℃迄過冷されて管16より導出される。次い
で熱交換器17に入り分離低温空気と熱交換して
更に−178℃迄過冷された後、管18より導出し
弁19により2ataまで膨張し管20を経て気液分
離器21に導入される。ここで分離された低温気
化空気5000Nm3/hは管22より前記熱交換器1
7に入つて過冷液体空気と熱交換後管23へ導出
し、前記した管7を流れる低温精製空気と合流し
管8を経て圧縮機9に向う。気液分離器21の底
部より導出された液体空気48000Nm3/hは管2
4、弁25、管26を経て液体空気貯槽27に至
りここに貯溜される。貯溜された液体空気は必要
に応じて適宜ポンプ28で加圧・送出され管29
を経てガスタービン発電設備30に供給される。 次に寒冷用LNGはLNG貯槽31より管32に
取り出された後、2分し、その一方の流れ
90000Nm3/hが管33を経てポンプ34に入り
10ataに加圧され、管35に吐出される。管35
に吐出されたLNGは再び2分し、その一方の流
れ25000Nm3/hは管36より前記予冷部門6に
導入されて精製空気に寒冷を与え、次いで管37
より精製部門4に入つてこれの冷却に使用され、
自身は気化し常温附近迄昇温して管38へ流出す
る。 一方管35より管39に2分したLNGの他の
流れ65000Nm3/hは更に第1〜第3の流れに分
岐する。第1の流れ20000Nm3/hは管40を通
つて予冷器11に供給され、精製圧縮空気と熱交
換して気化し10ata、常温の天然ガスとして管4
1へ流出する。第2の流れ35000Nm3/hは管4
2を経、弁43で1.2ataに膨張した後空気液化器
13に入つて管12よりの精製圧縮低温空気を液
化し、自身は気化して管44に導出する。そして
第3の流れ10000Nm3/hは管45、弁46を経
て熱交換器15に入り、ここで0.2ata、−178℃の
条件下で液体空気を過冷し自身は気化して管47
に導出した後真空ポンプ48に吸引され1.2ata、
−100℃の状態で管49へ吐出される。この吐出
天然ガスは、前記管44よりの天然ガスと合流し
て45000Nm3/hとなり管50より1.2ata約−130
℃の状態で天然ガス圧縮機51に吸入され10ata
に圧縮されて管52へ導出する。ついで前記管4
1よりの10ataの天然ガスと合流して管53を経、
更に管38よりの10ataの天然ガスと合流して合
計90000Nm3/hの流れとなり、管54より火力
発電所55へ燃料として供給される。 以上のLNGの流れは空気液化装置に寒冷を与
えつつ火力発電所の燃料となるLNGであり定常
的に供給される流れであるが、前記管32で2分
し管56に分岐されるLNGはポンプ57で圧送
され管58を経て適宜手段で気化後ガスタービン
発電設備30に燃料として供給される。なお、一
般にこのガスタービン発電設備は電力需要のピー
ク時のみ作動するため管56よりのLNGは間欠
的に供給される。 本発明は以上の如く、LNGの寒冷を極めて有
効に利用して所要電力を節減した液体空気の製造
方法である。まず15〜25ataの圧力下で生成した
飽和液体空気を更に大気圧以下の圧力で気化する
LNGとの熱交換によつて過冷却することにより
貯溜圧力に減圧する時の気化損失を減らし、一定
量の製品液体空気を得るために必要な空気圧縮機
の処理空気量を大巾に減らすことによつて所要電
力を節減した。これにより節減される電力は
LNGを減圧する真空ポンプに要する動力増を差
引いても前記実施例の場合で、従来法に比較して
下表の如く約1割にもなる。
The present invention relates to a method for liquefying air using the cooling of liquefied natural gas (hereinafter referred to as LNG). The details relate to a method of producing liquid air at a lower cost by efficiently utilizing the refrigeration of LNG. Various methods have been proposed for utilizing refrigeration when vaporizing LNG, one of which is the use of refrigeration when producing liquid air. Liquid air can be used for refrigerated storage or as a cold source for refrigerated transportation.For example, in gas turbine power generation, the auxiliary combustion air is constantly stored as a liquefied fuel using the cold temperature of LNG. There is a method of generating electricity without using an air compressor by intensively vaporizing the liquid air during peak demand times. According to this method, power for compression for supplying auxiliary combustion air in gas turbine power generation can be saved, so power can be generated with high efficiency. By the way, when producing liquid air, most of the production cost is power cost, and the use of cold LNG in the air liquefaction method is also intended to reduce this power cost. In
This method makes more effective use of the refrigeration of LNG, making it possible to reduce electricity costs, which account for the majority of liquid air production costs. When producing liquid air using LNG, LNG
As a way to effectively utilize raw air,
There are methods such as cooling with LNG and compressing it at a low temperature, and methods of pressurizing LNG above the critical pressure with a liquid pump, raising the temperature through heat exchange, and expanding it with an expansion turbine to recover power. In addition to the above-mentioned low-temperature compression, the present invention subcools the produced liquid air by exchanging heat between LNG and air at a pressure below atmospheric pressure, and then converts it into vaporized air produced in the next expansion process. By minimizing the amount of gas returned to the raw air compressor, the air compression pressure can be kept within the most efficient range of 15 to 25% for centrifugal compressors.
We save compression power by performing low-temperature compression as air pressure, and performing low-temperature compression for recompressing vaporized natural gas.
This is a method for producing liquid air that reduces the power consumption rate. Hereinafter, one embodiment of the method of the present invention will be explained in detail with reference to the drawings. The figure is a system diagram showing an example of the method for producing liquid air according to the method of the present invention, in which a peak-load gas turbine power generation facility is attached to an LNG-only thermal power plant, and the cooling of fuel LNG is used to generate a peak-load This shows a method for producing liquid air for gas turbine power generation. 48,000 Nm 3 /h of atmospheric air at 30°C is sucked from pipe 1 by pre-pressure blower 2, and the pressure is increased to an arbitrary pressure of about 3 ata (absolute atmospheric pressure, the same applies hereinafter) or less, and it passes through pipe 3 and enters raw air purification section 4, where it enters moisture and carbon dioxide gas. is removed. The purification section 4 uses conventional methods such as adsorption. It goes without saying that a low-temperature adsorption method may also be used in which the feed air is cooled to around 0° C. by cooling LNG before adsorption is performed. The air purified in this manner is introduced into a precooling section 6 through a pipe 5, exchanges heat with LNG, is cooled to -150°C, and is discharged through a pipe 7. Raw air purification department 4
In the heat exchange between air and LNG in the pre-cooling section 6, it is also effective to interpose another refrigerant, such as fluorocarbon, between the two to prevent danger due to contamination. The low-temperature purified air flow of pipe 7 is 48000Nm 3 /h, and the pipe 23
It merges with the separated low-temperature air from the gas-liquid separator 21 (described later) to produce 53000Nm 3 /h, which is sucked into the air compressor 6 through the pipe 8 and compressed to 20ata.
The temperature reaches +30°C and is discharged into the tube 10. air compressor 9
The discharge pressure is 20 ata in this embodiment, but it is not limited to this pressure and may be in the range of 15 to 25 ata. This is the pressure at which air can be liquefied at the temperature of LNG (-152 to -162°C), which vaporizes at 1 to 2 ata, and is the most efficient operating range for centrifugal compressors.
Next, the pressurized purified air from the pipe 10 enters the precooler 11 and is converted into LNG at an arbitrary pressure, in this example 10ata LNG.
It is cooled by exchanging heat with the tube 12 to a temperature of approximately -140℃.
Derived to. In this case as well, another refrigerant may be interposed between LNG and air. The cold compressed air stream in pipe 12 enters the air liquefier 13, where 1~2 ata of LNG,
In this example, heat exchange with 1.2ata LNG is carried out to -155℃.
It is cooled until it liquefies. The generated liquid air is transferred to pipe 1
It enters the heat exchanger 15 from 4 and is vaporized below atmospheric pressure.
LNG, in this example, heat exchanged with 0.2ata LNG.
It is subcooled to 177°C and discharged through pipe 16. Next, it enters the heat exchanger 17 and exchanges heat with separated low-temperature air to be further cooled down to -178°C, and then is led out through a pipe 18, expanded to 2ata by a valve 19, and introduced into a gas-liquid separator 21 through a pipe 20. Ru. The 5000Nm 3 /h of low-temperature vaporized air separated here is transferred to the heat exchanger 1 from the pipe 22.
7, and after heat exchange with supercooled liquid air, it is led out to pipe 23, where it joins with the low-temperature purified air flowing through pipe 7, and goes through pipe 8 to compressor 9. 48000Nm 3 /h of liquid air led out from the bottom of the gas-liquid separator 21 is pipe 2.
4, the liquid air passes through the valve 25 and the pipe 26 to the liquid air storage tank 27, where it is stored. The stored liquid air is pressurized and sent out by a pump 28 as needed, and is sent to a pipe 29.
The gas is supplied to the gas turbine power generation equipment 30 through the. Next, LNG for cold use is taken out from the LNG storage tank 31 into the pipe 32, divided into two parts, and one of the streams is
90000Nm 3 /h enters the pump 34 through the pipe 33
It is pressurized to 10ata and discharged into the pipe 35. tube 35
The LNG discharged into the air is divided into two parts again, and one of the flows, 25000Nm 3 /h, is introduced into the precooling section 6 through pipe 36 to cool the purified air, and then into pipe 37.
It enters refining department 4 and is used for cooling.
It vaporizes, heats up to around room temperature, and flows out into the pipe 38. On the other hand, the other LNG flow of 65000 Nm 3 /h divided into two from the pipe 35 to the pipe 39 is further branched into first to third flows. The first flow of 20,000 Nm 3 /h is supplied to the precooler 11 through the pipe 40, where it is vaporized by heat exchange with purified compressed air, and is then transferred to the pipe 4 as normal temperature natural gas.
Flows into 1. The second flow 35000Nm 3 /h is pipe 4
2, the air is expanded to 1.2 ata by a valve 43, and then enters an air liquefier 13, where the purified compressed low-temperature air from the pipe 12 is liquefied, and the purified compressed low-temperature air itself is vaporized and led out to a pipe 44. The third flow of 10,000 Nm 3 /h enters the heat exchanger 15 through a pipe 45 and a valve 46, where the liquid air is supercooled under conditions of 0.2 ata and -178°C, and the liquid air itself is vaporized.
After being drawn out to 1.2ata, it is sucked by the vacuum pump 48,
It is discharged into the pipe 49 at -100°C. This discharged natural gas merges with the natural gas from the pipe 44 and becomes 45000Nm 3 /h, and from the pipe 50 about 1.2ata -130
The natural gas is sucked into the compressor 51 at a temperature of 10 ata.
It is compressed and led out to the pipe 52. Then the tube 4
It merges with 10ata of natural gas from 1 and passes through pipe 53.
Furthermore, it merges with 10 ata of natural gas from the pipe 38, resulting in a total flow of 90,000 Nm 3 /h, and is supplied as fuel to the thermal power plant 55 through the pipe 54. The above-mentioned flow of LNG is LNG that cools the air liquefaction equipment and serves as fuel for the thermal power plant, and is a constantly supplied flow. The fuel is pumped by a pump 57 and vaporized by an appropriate means through a pipe 58 and then supplied to the gas turbine power generation equipment 30 as fuel. Note that since this gas turbine power generation equipment generally operates only during peak power demand times, LNG from the pipe 56 is supplied intermittently. As described above, the present invention is a method for producing liquid air that utilizes the refrigeration of LNG extremely effectively to reduce the amount of power required. First, saturated liquid air generated under a pressure of 15 to 25 ata is further vaporized at a pressure below atmospheric pressure.
By supercooling through heat exchange with LNG, the vaporization loss when reducing the pressure to the storage pressure is reduced, and the amount of air processed by the air compressor required to obtain a certain amount of product liquid air is greatly reduced. This reduced the amount of electricity required. The power saved by this is
Even after subtracting the power increase required for the vacuum pump that decompresses the LNG, in the case of the above example, the increase is about 10% compared to the conventional method as shown in the table below.

【表】 10500/11500×100=91.3% なお前記実施例はピークロード用ガスタービン
発電に使用される液体空気を製造する場合の説明
についてであるが、冷凍貯蔵用、冷凍輸送用等、
他の目的のための液体空気の製造法にも適用でき
ることは言うまでもない。
[Table] 10500/11500×100=91.3% The above example describes the production of liquid air used for peak-load gas turbine power generation, but it can also be used for frozen storage, frozen transportation, etc.
It goes without saying that the present invention can also be applied to methods for producing liquid air for other purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法による実施例を示す系統図であ
る。 2は予圧ブロワー、4は精製部門、6は予冷部
門、9は空気圧縮機、11は予冷器、13は空気
液化器、15,17は熱交換器、19は弁、21
は気液分離器、27は液体空気貯槽、31は
LNG貯槽、34はポンプ、48は真空ポンプ、
51は天然ガス圧縮機である。
The figure is a system diagram showing an embodiment of the method of the present invention. 2 is a preload blower, 4 is a refining section, 6 is a precooling section, 9 is an air compressor, 11 is a precooler, 13 is an air liquefier, 15 and 17 are heat exchangers, 19 is a valve, 21
is a gas-liquid separator, 27 is a liquid air storage tank, and 31 is a gas-liquid separator.
LNG storage tank, 34 is a pump, 48 is a vacuum pump,
51 is a natural gas compressor.

Claims (1)

【特許請求の範囲】[Claims] 1 液化天然ガスの寒冷を利用して空気を液化す
る方法に於て、原料空気を3気圧以下に圧縮し、
加圧液化天然ガスにより精製予冷した後15〜25気
圧に圧縮する工程と、該圧縮空気を加圧液化天然
ガスにより冷却、液化した後大気圧以下の液化天
然ガスおよび分離低温空気により過冷却した上膨
張せしめ、ついで気液分離する工程と、分離液体
空気を貯蔵すると共に分離低温空気を前記液体空
気と熱交換せしめ昇温した上前記精製、予冷後の
原料空気に合流せしめる工程と、液化天然ガスを
加圧後その一部を前記原料空気の精製、予冷と冷
却、液化のため供給し、気化せしめる工程と、加
圧液化天然ガスの他部を大気圧以下に減圧した
上、前記液体空気を過冷却して気化せしめた後低
温で加圧する工程とからなることを特徴とする液
化天然ガスの寒冷を利用した空気液化方法。
1 In a method of liquefying air using the cold of liquefied natural gas, raw air is compressed to 3 atmospheres or less,
The compressed air is purified and pre-cooled with pressurized liquefied natural gas and then compressed to 15 to 25 atmospheres, and the compressed air is cooled and liquefied with pressurized liquefied natural gas, and then supercooled with liquefied natural gas below atmospheric pressure and separated low-temperature air. A step of upward expansion and then gas-liquid separation, a step of storing the separated liquid air and exchanging heat with the liquid air to raise the temperature of the separated low-temperature air, and then making it join the purified and pre-cooled feed air; After pressurizing the gas, a part of the gas is supplied for purification, pre-cooling, cooling, and liquefaction of the raw material air, and is vaporized, and the other part of the pressurized liquefied natural gas is depressurized to below atmospheric pressure, and then the liquid air is An air liquefaction method using the cooling of liquefied natural gas, which comprises the steps of supercooling and vaporizing liquefied natural gas, and then pressurizing it at a low temperature.
JP10757379A 1979-08-23 1979-08-23 Method of liquefying air by low temperature of liquefied natural gas Granted JPS5634083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10757379A JPS5634083A (en) 1979-08-23 1979-08-23 Method of liquefying air by low temperature of liquefied natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10757379A JPS5634083A (en) 1979-08-23 1979-08-23 Method of liquefying air by low temperature of liquefied natural gas

Publications (2)

Publication Number Publication Date
JPS5634083A JPS5634083A (en) 1981-04-06
JPS6338632B2 true JPS6338632B2 (en) 1988-08-01

Family

ID=14462592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10757379A Granted JPS5634083A (en) 1979-08-23 1979-08-23 Method of liquefying air by low temperature of liquefied natural gas

Country Status (1)

Country Link
JP (1) JPS5634083A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466437B2 (en) * 1997-09-24 2003-11-10 ジャパン・エア・ガシズ株式会社 Air separation equipment
JP5070515B2 (en) 2007-03-08 2012-11-14 兵神装備株式会社 Rotor drive mechanism and pump device
JP5781487B2 (en) * 2012-10-30 2015-09-24 株式会社神戸製鋼所 Oxygen-enriched air production system
JP6159285B2 (en) * 2014-04-17 2017-07-05 株式会社神戸製鋼所 Oxygen enrichment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140881A (en) * 1975-05-30 1976-12-04 Nippon Sanso Kk A process for production of liquid air using the coldness of liquefied natural gas
JPS5216479A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquid air using chilling of liquefied natur al gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140881A (en) * 1975-05-30 1976-12-04 Nippon Sanso Kk A process for production of liquid air using the coldness of liquefied natural gas
JPS5216479A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquid air using chilling of liquefied natur al gas

Also Published As

Publication number Publication date
JPS5634083A (en) 1981-04-06

Similar Documents

Publication Publication Date Title
JP4521833B2 (en) Cryogenic refrigeration method and apparatus
US10928127B2 (en) Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP3368630B1 (en) Low-temperature mixed--refrigerant for hydrogen precooling in large scale
US5157926A (en) Process for refrigerating, corresponding refrigerating cycle and their application to the distillation of air
JP3947565B2 (en) Method and apparatus for variable generation of pressurized product gas
US20130118204A1 (en) Integrated liquid storage
CN110701870B (en) Air separation device and method utilizing LNG cold energy
JPH0587558B2 (en)
JP2009504838A (en) Natural gas liquefaction method for LNG
US20180313604A1 (en) Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
JPH06241649A (en) Method and device for manufacturing gaseous product under at least one pressure and at least one liquid by air rectification
JP2001526376A (en) Liquefaction process and equipment
EP3163235A1 (en) Novel cascade process for cooling and liquefying hydrogen in large-scale
CN105378411B (en) Produce method, the air separation plant, the method and apparatus produced electricl energy of at least one air products
JP7393607B2 (en) Gas liquefaction method and gas liquefaction device
US10612842B2 (en) LNG integration with cryogenic unit
CN102149998B (en) Air separation refrigeration supply method
JPS6338632B2 (en)
JP3222325U (en) Nitrogen liquefier
JP7291472B2 (en) Nitrogen gas production equipment
JP2023531232A (en) Equipment and method for hydrogen cooling
JP2001133143A (en) Air separating facility
JPH0914830A (en) Oxygen and nitrogen liquefying device
US11359858B2 (en) Method for liquefying ammonia
EP3828487A1 (en) Process and apparatus for the production of liquid nitrogen