JP3551397B2 - Gas liquefaction method - Google Patents

Gas liquefaction method Download PDF

Info

Publication number
JP3551397B2
JP3551397B2 JP20250495A JP20250495A JP3551397B2 JP 3551397 B2 JP3551397 B2 JP 3551397B2 JP 20250495 A JP20250495 A JP 20250495A JP 20250495 A JP20250495 A JP 20250495A JP 3551397 B2 JP3551397 B2 JP 3551397B2
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
cooling
pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20250495A
Other languages
Japanese (ja)
Other versions
JPH0949685A (en
Inventor
康浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP20250495A priority Critical patent/JP3551397B2/en
Publication of JPH0949685A publication Critical patent/JPH0949685A/en
Application granted granted Critical
Publication of JP3551397B2 publication Critical patent/JP3551397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスの液化方法に関し、詳しくは、各種ガス、例えば、酸素,窒素,メタン等を臨界圧力以上に圧縮した後、冷却して液化する方法に関する。
【0002】
【従来の技術】
従来から各種ガスを液化する方法として様々な方法が用いられている。図4はその一例を示すものであり、以下、窒素ガスを液化する手順に従って説明する。
【0003】
配管1から原料窒素ガスが導入され、多段圧縮機2で、例えば28kg/cmabsまで圧縮される。この多段圧縮機2には、その途中に後述する配管3を通る例えば6kg/cmabsの窒素ガスが導入され、原料窒素ガスと共に圧縮される。
【0004】
この圧縮された窒素ガスは、アフタークーラー4で冷却された後、配管5を通り、配管6と配管7とに分岐し、それぞれ膨張タービン8,9に直結した昇圧ブロワー10,11に導入され、臨界圧力以上の圧力に昇圧される。
【0005】
一方の配管6を通る圧縮窒素ガスは、昇圧ブロワー10で昇圧され、アフタークーラー12で冷却された後、例えば、42kg/cmabsの臨界圧力以上の昇圧窒素ガスとなり、配管13を通ってコールドボックス14に導入される。この昇圧窒素ガスは、熱交換器15の液化ライン16に導入されて冷却され、一部が配管17に分岐し、残りの窒素ガスは、配管18を通って臨界温度の−147.1℃以下(例えば−173.0℃、42kg/cmabs)に冷却される。この冷却された窒素ガスは、熱交換器15から配管19に導出された後、膨張弁20にて必要な圧力(例えば6kg/cmabs)にJT膨張(等エンタルピー膨張)した後、配管21を通って気液分離器(図示せず)に導入され、フラッシュガスと液化窒素とに分離し、フラッシュガスは、例えば、後述の配管26を流れる窒素ガスに合流し、液化窒素は製品として採取される。
【0006】
液化ライン16から分岐した配管17を通る窒素ガスは、例えば42kg/cmabsの圧力から膨張タービン8で、例えば6kg/cmabsに等エントロピー膨張して降温する。
【0007】
他方の、昇圧ブロワー11で昇圧された昇圧窒素ガスは、アフタークーラー22で冷却され、例えば38kg/cmabsの臨界圧力以上の昇圧窒素ガスとなり、配管23を通って前記コールドボックス14に導入される。この昇圧窒素ガスは、前記熱交換器15の冷却ライン24で冷却された後、配管25を通って膨張タービン9で、例えば6kg/cmabsに等エントロピー膨張して降温する。この膨張降温した窒素ガスは、配管26を通って熱交換器15に冷却源ガスとして導入され、配管27を通って液化ライン16及び冷却ライン24の温流体と熱交換することにより昇温し、さらに前記膨張タービン8で膨張降温した配管28を通る窒素ガスと合流し、昇温して前記配管3に導出され、前記多段圧縮機2の圧力が適当な段に戻され、再圧縮されて循環する。
【0008】
【発明が解決しようとする課題】
このようなプロセスを含む従来のガスの液化方法は、主に製品液化ガスの単位流量当たりの動力(動力原単位)を削減することを目的として設計されているが、この動力原単位は、回転機(膨張タービン,圧縮機等)の効率や熱交換器の効率等によって変化し、これらの効率は、ガスを液化するためのプロセスに依存する。
【0009】
そこで本発明は、臨界圧力以上のガスを臨界温度より低い温度まで冷却する手段として、膨張タービンと冷凍機とを組合わせたプロセスにおいて、膨張タービンの出口でガスの一部を液化させることなく動力原単位を削減できるガスの液化方法を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明のガスの液化方法は、臨界圧力以上に圧縮したガスを臨界温度以下に冷却して液化する方法において、原料ガスを圧縮機で圧縮する工程と、圧縮ガスを冷膨張タービンに直結したブロワーに導入して昇圧する工程と、昇圧ガスを分岐し、その一方を熱交換器の冷却ラインに導入して冷却する工程と、冷却ガスを前記冷膨張タービンに導入して該冷膨張タービンの出口で液化させずに膨張降温させた後、前記熱交換器に冷却源ガスとして導入し、熱交換器から導出した昇温後の冷却源ガスを前記圧縮機の相当する圧力段に導入して再圧縮する工程と、前記昇圧ガスの分岐した他方の昇圧ガスを温膨張タービンに直結するに導入して臨界圧力以上に昇圧する工程と、更に昇圧したガスを更に分岐し、その一方を前記熱交換器の液化ラインに導入して冷却する工程と、前記更に昇圧したガスの分岐した他方のガスを冷凍機で冷却した後、前記熱交換器の液化ライン中の相当温度部分に導入して合流させるか、又は前記熱交換器で寒冷回収後に前記圧縮機の相当する圧力段に導入する工程と、液化ラインの途中から一部のガスを抜き出して前記温膨張タービンに導入し、膨張降温させた後、前記熱交換器の冷却源ガスに相当温度部分で合流させる工程と、前記熱交換器の液化ラインで臨界温度以下まで冷却したガスを膨脹弁でJT膨張させて液化ガスとして取り出す工程と、を含むことを特徴としている。
【0011】
さらに、本発明は、前記圧縮ガスを冷膨張タービンに直結する前記ブロワーで臨界圧力以上に昇圧することを特徴としている。
【0012】
【発明の実施の形態】
以下、本発明を、図面を参照してさらに詳細に説明する。図1は、本発明を適用した窒素ガス液化プロセスの一例を示すものである。なお、前記図4に示した従来例と同一要素のものには同一符号を付して、その詳細な説明は省略する。
【0013】
配管1から、例えば10℃、1.1kg/cmabs、10000Nm/hの原料窒素ガスが導入され、多段圧縮機2で例えば26kg/cmabsまで圧縮される。この多段圧縮機2は、1台以上の圧縮機を用い、その途中に後述する配管3を通る例えば6kg/cmabsの循環窒素ガスが導入され、原料窒素ガスと共に圧縮される。
【0014】
この圧縮された窒素ガスは、アフタークーラー4,配管5を通り、低温側の膨張タービン、即ち冷膨張タービン9に直結した昇圧ブロワー11で、例えば31kg/cmabsに昇圧され、アフタークーラー22で冷却された後、配管51から配管52と配管53とに分岐する。
【0015】
一方の配管52に分岐した昇圧窒素ガス、例えば約60%の昇圧窒素ガスは、高温側の膨張タービン、即ち温膨張タービン8に直結した昇圧ブロワー10に導入され、臨界圧力以上の圧力に更に昇圧される。この更に昇圧された窒素ガスは、アフタークーラー12で冷却された後、配管54から配管55と配管56とに分岐される。配管55に分岐した一方の窒素ガス、通常は50%以上の窒素ガスは、弁57で減圧された後、配管58を通ってコールドボックス14に導入され、熱交換器15の液化ライン16に流入する。一方、前記配管56に分岐した窒素ガスは、冷凍機59で冷却された後、配管60を通ってコールドボックス14に導入され、熱交換器15の液化ライン16を流れる前記窒素ガスと温度が一致する位置で合流する。
【0016】
この液化ライン16を流れる臨界圧力以上の窒素ガスは、その一部が熱交換器15の途中で配管17に分岐し、残りの窒素ガスが配管18を通り、臨界温度の−147.1℃以下(例えば−173.0℃、42kg/cmabs)に冷却される。この冷却された窒素ガスは、配管19を通って膨張弁20にて必要な圧力(例えば6kg/cmabs)に等エンタルピー膨張(JT膨張)した後、配管21を通って気液分離器(図示せず)に導入され、フラッシュガスと液化窒素とに分離し、フラッシュガスは、例えば、配管26を流れる窒素ガスに合流させて再循環させ、液化窒素は、10000Nm/hが製品として採取される。また、配管17に分岐した窒素ガスは、例えば42kg/cmabsの圧力から温膨張タービン8で、例えば6kg/cmabsに等エントロピー膨張して降温する。
【0017】
一方、前記配管53に分岐した昇圧窒素ガスは、前記熱交換器15の冷却ライン24に導入されて冷却された後、熱交換器15の途中までの配管25に導出され、冷膨張タービン9で、例えば6kg/cmabsに等エントロピー膨張して降温する。この膨張降温した窒素ガスは、配管26を通って熱交換器15の配管27に冷却源ガスとして導入される。さらに、前記液化ライン16から配管17に分岐した窒素ガスは、前記温膨張タービン8で例えば6kg/cmabsに等エントロピー膨張して降温した後、配管28を通って前記配管27を流れる窒素ガスと温度が一致する位置で合流し、熱交換器15で前記液化ライン16及び冷却ライン24の窒素ガスと熱交換することにより昇温し、前記配管3に導出された後、多段圧縮機2の圧力が適当な段に戻され、再圧縮されて循環する。また、上記配管28を流れる膨張降温後の窒素ガスは、上記のように配管27に合流させずに、破線で示す配管29を通して寒冷を回収した後、前記多段圧縮機2の相当する圧力段に導入するようにしてもよい。
【0018】
このように、臨界圧力以上に圧縮したガスを臨界温度以下に冷却して液化する方法において、原料ガスを多段圧縮機2で圧縮する工程と、圧縮ガスを冷膨張タービン9に直結した昇圧ブロワー11に導入して臨界圧力以下に昇圧する工程と、昇圧ガスを配管52と配管53とに分岐し、配管53に分岐した一方の昇圧ガスを熱交換器15の冷却ライン24に導入して冷却する工程と、冷却ライン24から導出した冷却ガスを前記冷膨張タービン9に導入して膨張降温させた後、前記熱交換器15の配管27に冷却源ガスとして導入し、熱交換器15から配管3に導出した昇温後の冷却源ガスを前記多段圧縮機2の相当する圧力段に導入して再圧縮する工程と、前記昇圧ガスの配管52に分岐した他方の昇圧ガスを温膨張タービン8に直結する他の昇圧ブロワー10に導入して臨界圧力以上の圧力に更に昇圧する工程と、臨界圧力以上に昇圧したガスを配管55と配管56とに更に分岐し、配管55に分岐した一方のガスを前記熱交換器15の液化ライン16に導入して冷却する工程と、前記配管56に分岐した他方の臨界圧力以上のガスを冷凍機59で冷却した後、前記熱交換器15の液化ライン16中の相当温度部分に導入して合流させる工程と、液化ライン16の途中から配管17に一部のガスを抜き出して前記温膨張タービン8に導入し、膨張降温させた後、配管28を介して前記熱交換器15の配管27を流れる冷却源ガスに相当温度部分で合流させるか、又は合流させずに前記熱交換器15の配管29で寒冷回収後に前記多段圧縮機2の相当する圧力段に導入する工程と、前記熱交換器15の液化ライン16で臨界温度以下まで冷却したガスを膨張弁20でJT膨張させて液化ガスとして取り出す工程とを行うことにより、図2に示すように、熱交換器15における温流体と冷流体との温度差を、図3に示す従来のものに比べて全体的に接近させることができる。
【0019】
一般に、熱交換器の効率は、温流体と冷流体との温度差が近い方が高くなるため、本発明方法を適用することにより、温流体と冷流体との熱交換を効率よく行うことができる。また、冷膨張タービン9に従来より低い圧力のガスを導入することにより、タービン出口でガスの一部を液化させることなく、タービン効率を向上させることができる。
【0020】
したがって、熱交換効率及びタービン効率の向上により、ガスの液化効率を大幅に向上させることができ、例えば、上述の10000Nm/hの液化窒素を製造するプロセスにおいては、従来に比べて動力原単位を約4.2%削減することが可能となる。
【0021】
なお、上記例では、冷膨張タービン9に導入するガスの圧力、すなわち、該冷膨張タービン9に直結した昇圧ブロワー11で昇圧されたガスの圧力を臨界圧力以下に設定したが、該昇圧ブロワー11により臨界圧力以上に昇圧するようにしてもよく、冷膨張タービン9における入口温度や膨張比を適当に設定してタービン出口でガスが液化しないようにすればよい。
【0022】
【発明の効果】
以上説明したように、本発明のガスの液化方法は、所定圧力に圧縮昇圧した原料ガスを膨張タービンに直結したブロワーで臨界圧力以下あるいは以上に昇圧し、さらにこの昇圧ガスを膨張タービンに直結したブロワーで臨界圧力以上に昇圧するとともに、温膨張タービンに直結した該ブロワーで臨界圧力以上に昇圧した高圧側のガスを熱交換器の液化用の冷却経路に導入し、その一部を液化ガスとして取り出すようにするとともに、その残部を中間温度で膨張タービンに導入して膨張降温させ、冷却源ガスの一部とし、かつ、冷膨張タービンに直結した前記ブロワーで昇圧した低圧側のガスを熱交換器で所定温度まで冷却後、膨張タービン出口で液化しないように膨張降温させて液化するガスを臨界温度以下に冷却する冷却源として用いることにより、従来より高い効率でガスを熱交換させることができ、ガスの液化に要する動力原単位を削減することができる。
【図面の簡単な説明】
【図1】本発明を適用したガス液化装置の一例を示す系統図である。
【図2】本発明を適用したガス液化装置における熱交換器のQーT線図である。
【図3】従来のガス液化装置における熱交換器のQーT線図である。
【図4】従来のガス液化装置の一例を示す系統図である。
【符号の説明】
2…多段圧縮機、8…温膨張タービン、9…冷膨張タービン、10,11…昇圧ブロワー、14…コールドボックス、15…熱交換器、16…液化ライン、20…膨張弁、24…冷却ライン、59…冷凍機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas liquefaction method, and more particularly, to a method of compressing various gases, for example, oxygen, nitrogen, methane, etc., to a critical pressure or higher and then cooling and liquefying the same.
[0002]
[Prior art]
Conventionally, various methods have been used as a method for liquefying various gases. FIG. 4 shows an example of this, which will be described below in accordance with a procedure for liquefying nitrogen gas.
[0003]
Raw material nitrogen gas is introduced from a pipe 1 and compressed by a multi-stage compressor 2 to, for example, 28 kg / cm 2 abs. Into the multistage compressor 2, for example, nitrogen gas of 6 kg / cm 2 abs passing through a pipe 3 described later is introduced and compressed together with the raw material nitrogen gas.
[0004]
After the compressed nitrogen gas is cooled by the aftercooler 4, it passes through a pipe 5, branches into a pipe 6 and a pipe 7, and is introduced into pressurizing blowers 10 and 11 directly connected to expansion turbines 8 and 9, respectively. The pressure is raised to a pressure higher than the critical pressure.
[0005]
The pressurized nitrogen gas passing through one pipe 6 is pressurized by a pressurizing blower 10 and cooled by an aftercooler 12, and then becomes a pressurized nitrogen gas having a critical pressure of, for example, 42 kg / cm 2 abs or more. Introduced into box 14. This pressurized nitrogen gas is introduced into the liquefaction line 16 of the heat exchanger 15 and cooled, and a part of the nitrogen gas is branched to the pipe 17, and the remaining nitrogen gas passes through the pipe 18 and reaches a critical temperature of -147.1 ° C. or lower. (For example, -173.0 ° C., 42 kg / cm 2 abs). After the cooled nitrogen gas is led out of the heat exchanger 15 to the pipe 19, it is subjected to JT expansion (equal enthalpy expansion) to a required pressure (for example, 6 kg / cm 2 abs) at the expansion valve 20, and then to the pipe 21. Through a gas-liquid separator (not shown), and is separated into flash gas and liquefied nitrogen. The flash gas merges with, for example, nitrogen gas flowing through a pipe 26 described later, and liquefied nitrogen is collected as a product. Is done.
[0006]
The nitrogen gas passing through the pipe 17 branched from the liquefaction line 16 is isentropically expanded to, for example, 6 kg / cm 2 abs from a pressure of, for example, 42 kg / cm 2 abs by the expansion turbine 8 and then cooled.
[0007]
On the other hand, the pressurized nitrogen gas pressurized by the pressurized blower 11 is cooled by the after cooler 22, becomes a pressurized nitrogen gas having a critical pressure of, for example, 38 kg / cm 2 abs or more, and is introduced into the cold box 14 through the pipe 23. You. The pressurized nitrogen gas is cooled by the cooling line 24 of the heat exchanger 15, and then isentropically expanded to, for example, 6 kg / cm 2 abs in the expansion turbine 9 through the pipe 25 to lower the temperature. The expanded and cooled nitrogen gas is introduced as a cooling source gas into the heat exchanger 15 through the pipe 26, and heat-exchanges with the warm fluid in the liquefaction line 16 and the cooling line 24 through the pipe 27 to increase the temperature. Further, it joins with the nitrogen gas passing through the pipe 28 expanded and cooled by the expansion turbine 8, and the temperature is raised to the pipe 3 and the pressure of the multi-stage compressor 2 is returned to an appropriate stage, recompressed and circulated. I do.
[0008]
[Problems to be solved by the invention]
The conventional gas liquefaction method including such a process is mainly designed to reduce the power per unit flow rate of the product liquefied gas (power consumption unit). The efficiency varies depending on the efficiency of the gas turbine (expansion turbine, compressor, etc.), the efficiency of the heat exchanger, etc., and these efficiencies depend on the process for liquefying gas.
[0009]
Accordingly, the present invention provides a method of cooling a gas having a critical pressure or higher to a temperature lower than a critical temperature, in a process in which an expansion turbine and a refrigerator are combined, without power liquefaction of a part of the gas at an outlet of the expansion turbine. It is an object of the present invention to provide a gas liquefaction method capable of reducing the basic unit.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a gas liquefaction method of the present invention is a method of liquefying a gas compressed to a critical pressure or higher by cooling the gas to a critical temperature or lower. A step of introducing pressure into a blower directly connected to a cold expansion turbine , increasing the pressure, branching the pressurized gas, and introducing one of the gases into a cooling line of a heat exchanger to cool, and introducing a cooling gas into the cold expansion turbine. after expansion cooling without liquefied at the outlet of the cold expansion turbine Te, introduced as a cooling source gas into the heat exchanger, corresponding to the cooling source gas after heating derived from the heat exchanger the compressor A step of introducing the gas into the pressure stage to recompress it, a step of introducing the other pressurized gas branched from the pressurized gas to be directly connected to the thermal expansion turbine and increasing the pressure above the critical pressure , and further branching the gas further pressurized. Before one of them A step of introducing and cooling into a liquefaction line of the heat exchanger, and cooling the other branched gas of the further pressurized gas with a refrigerator, and then introducing the gas into an equivalent temperature portion in the liquefaction line of the heat exchanger. Merging, or introducing into the corresponding pressure stage of the compressor after the cold recovery in the heat exchanger, withdrawing a part of the gas from the middle of the liquefaction line and introducing it to the thermal expansion turbine , expand and lower the temperature After that, a step of merging with a cooling source gas of the heat exchanger at a substantial temperature portion, and a step of extracting the gas cooled to a critical temperature or lower in a liquefaction line of the heat exchanger by JT expansion with an expansion valve and extracting it as a liquefied gas. , Are included.
[0011]
Furthermore, the present invention is characterized and Turkey be boosted above the critical pressure before Symbol compressed gas in the blower to be directly connected to the cold expansion turbine.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows an example of a nitrogen gas liquefaction process to which the present invention is applied. The same elements as those in the conventional example shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0013]
A raw material nitrogen gas of, for example, 10 ° C., 1.1 kg / cm 2 abs, and 10,000 Nm 3 / h is introduced from the pipe 1, and compressed by the multi-stage compressor 2 to, for example, 26 kg / cm 2 abs. The multi-stage compressor 2 uses one or more compressors, and for example, a circulating nitrogen gas of, for example, 6 kg / cm 2 abs passing through a pipe 3 described later is introduced into the multi-stage compressor 2 and compressed together with the raw material nitrogen gas.
[0014]
The compressed nitrogen gas passes through the aftercooler 4 and the pipe 5, and is pressurized to, for example, 31 kg / cm 2 abs by the booster blower 11 directly connected to the low-temperature side expansion turbine, that is, the cold expansion turbine 9, and the after-cooler 22. After being cooled, it branches from the pipe 51 to a pipe 52 and a pipe 53.
[0015]
The pressurized nitrogen gas branched to one pipe 52, for example, a pressurized nitrogen gas of about 60%, is introduced into a high-temperature side expansion turbine, that is, a pressurization blower 10 directly connected to the thermal expansion turbine 8, and further pressurized to a pressure equal to or higher than the critical pressure. Is done. This further pressurized nitrogen gas is cooled by the aftercooler 12 and then branched from the pipe 54 into a pipe 55 and a pipe 56. One nitrogen gas, usually 50% or more, branched into the pipe 55 is decompressed by the valve 57, introduced into the cold box 14 through the pipe 58, and flows into the liquefaction line 16 of the heat exchanger 15. I do. On the other hand, the nitrogen gas branched to the pipe 56 is cooled by the refrigerator 59, then introduced into the cold box 14 through the pipe 60, and the temperature of the nitrogen gas coincides with the nitrogen gas flowing through the liquefaction line 16 of the heat exchanger 15. Join at a location where
[0016]
A portion of the nitrogen gas having a pressure equal to or higher than the critical pressure flowing through the liquefaction line 16 branches into the pipe 17 in the middle of the heat exchanger 15, and the remaining nitrogen gas passes through the pipe 18, and has a critical temperature of -147.1 ° C or lower. (For example, -173.0 ° C., 42 kg / cm 2 abs). The cooled nitrogen gas undergoes isenthalpy expansion (JT expansion) to a required pressure (for example, 6 kg / cm 2 abs) at an expansion valve 20 through a pipe 19, and then passes through a pipe 21 to a gas-liquid separator ( (Not shown), is separated into flash gas and liquefied nitrogen, and the flash gas is recirculated by, for example, merging with the nitrogen gas flowing through the pipe 26, and 10,000 Nm 3 / h of liquefied nitrogen is collected as a product. Is done. Further, the nitrogen gas branched to the pipe 17 isentropically expanded to, for example, 6 kg / cm 2 abs from a pressure of, for example, 42 kg / cm 2 abs by the thermal expansion turbine 8 to lower the temperature.
[0017]
On the other hand, the pressurized nitrogen gas branched to the pipe 53 is introduced into the cooling line 24 of the heat exchanger 15, cooled, and then led out to the pipe 25 halfway through the heat exchanger 15, where it is cooled by the cold expansion turbine 9. For example, the temperature is reduced by isentropic expansion to 6 kg / cm 2 abs. The expanded and cooled nitrogen gas is introduced as a cooling source gas into a pipe 27 of the heat exchanger 15 through a pipe 26. Further, the nitrogen gas branched from the liquefaction line 16 to the pipe 17 isentropically expanded to, for example, 6 kg / cm 2 abs in the thermal expansion turbine 8 to lower the temperature, and then the nitrogen gas flowing through the pipe 27 through the pipe 28 At a position where the temperature and the temperature coincide with each other, the temperature is increased by exchanging heat with the nitrogen gas in the liquefaction line 16 and the cooling line 24 in the heat exchanger 15, and the temperature is led out to the pipe 3. The pressure is returned to the appropriate stage, recompressed and circulated. Further, the nitrogen gas after expansion and cooling flowing through the pipe 28 is not merged with the pipe 27 as described above, but after collecting the cold through the pipe 29 indicated by the broken line, the nitrogen gas is returned to the corresponding pressure stage of the multi-stage compressor 2. It may be introduced.
[0018]
Thus, in the method of cooling and liquefying a gas compressed above the critical pressure to below the critical temperature, a step of compressing the raw material gas by the multi-stage compressor 2 and a step-up blower 11 directly connecting the compressed gas to the cold expansion turbine 9 And pressurized gas below the critical pressure, the pressurized gas is branched into a pipe 52 and a pipe 53, and one pressurized gas branched into the pipe 53 is introduced into the cooling line 24 of the heat exchanger 15 to be cooled. After the process and the cooling gas derived from the cooling line 24 are introduced into the cold expansion turbine 9 to expand and lower the temperature, the cooling gas is introduced into the pipe 27 of the heat exchanger 15 as a cooling source gas. Introducing the cooling source gas after the temperature rise derived to the above to the corresponding pressure stage of the multi-stage compressor 2 to recompress it, and supplying the other pressurized gas branched to the pressurized gas pipe 52 to the thermal expansion turbine 8. Directly connected A step of further increasing the pressure to a pressure higher than the critical pressure by introducing the gas into the pressure increasing blower 10; A step of introducing the gas into the liquefaction line 16 of the exchanger 15 for cooling, and a step of cooling the gas having a pressure equal to or higher than the other critical pressure branched to the pipe 56 by the refrigerator 59, A step of introducing the gas into the temperature portion and joining it, and extracting a part of the gas into the pipe 17 from the middle of the liquefaction line 16 and introducing the gas into the thermal expansion turbine 8 to expand and lower the temperature. Of joining the cooling source gas flowing through the pipe 27 of the heat exchanger 15 at a corresponding temperature portion, or introducing the cooling gas into the corresponding pressure stage of the multi-stage compressor 2 after collecting the cold in the pipe 29 of the heat exchanger 15 without merging. When As shown in FIG. 2, the temperature of the gas cooled in the heat exchanger 15 is reduced by performing JT expansion of the gas cooled to a critical temperature or lower in the liquefaction line 16 of the heat exchanger 15 by the expansion valve 20 and extracting the liquefied gas. The temperature difference between the fluid and the cold fluid can be made closer overall as compared with the conventional one shown in FIG.
[0019]
In general, the efficiency of the heat exchanger is higher when the temperature difference between the hot fluid and the cold fluid is closer.Therefore, by applying the method of the present invention, heat exchange between the hot fluid and the cold fluid can be performed efficiently. it can. Further, by introducing a gas having a pressure lower than that of the conventional gas into the cold expansion turbine 9, the turbine efficiency can be improved without liquefying a part of the gas at the turbine outlet.
[0020]
Therefore, the gas liquefaction efficiency can be greatly improved by improving the heat exchange efficiency and the turbine efficiency. For example, in the above-described process of producing 10000 Nm 3 / h of liquefied nitrogen, the unit power consumption is lower than in the past. Can be reduced by about 4.2%.
[0021]
In the above example, the pressure of the gas introduced into the cold expansion turbine 9, that is, the pressure of the gas pressurized by the pressure booster 11 directly connected to the cold expansion turbine 9 is set to be equal to or lower than the critical pressure. The pressure may be raised to a pressure higher than the critical pressure, and the inlet temperature and expansion ratio of the cold expansion turbine 9 may be set appropriately so that the gas does not liquefy at the turbine outlet.
[0022]
【The invention's effect】
As described above, in the gas liquefaction method of the present invention, the raw material gas compressed and pressurized to a predetermined pressure is raised to a critical pressure or lower by a blower directly connected to a cold expansion turbine, and the pressurized gas is further supplied to a thermal expansion turbine. While the pressure is raised above the critical pressure by a directly connected blower, the gas on the high pressure side, which is raised above the critical pressure by the blower directly connected to the thermal expansion turbine, is introduced into the liquefaction cooling path of the heat exchanger, and part of it is liquefied. While taking out as a gas, the remainder is introduced into a warm expansion turbine at an intermediate temperature to expand and lower the temperature, as a part of a cooling source gas, and a low-pressure side gas which is pressurized by the blower directly connected to the cold expansion turbine. the cooled in the heat exchanger to a predetermined temperature, the gas to be liquefied by expansion cooling to not liquefied in the cold expansion turbine outlet as a cooling source for cooling below the critical temperature By there, the gas at higher than conventional efficiency can be heat exchange, it is possible to reduce the power consumption rate required for the liquefaction of the gas.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of a gas liquefaction apparatus to which the present invention is applied.
FIG. 2 is a QT diagram of a heat exchanger in a gas liquefaction apparatus to which the present invention is applied.
FIG. 3 is a QT diagram of a heat exchanger in a conventional gas liquefaction apparatus.
FIG. 4 is a system diagram showing an example of a conventional gas liquefaction apparatus.
[Explanation of symbols]
2: Multistage compressor, 8: Hot expansion turbine, 9: Cold expansion turbine, 10, 11: Booster blower, 14: Cold box, 15: Heat exchanger, 16: Liquefaction line, 20: Expansion valve, 24: Cooling line , 59… Refrigerator

Claims (2)

臨界圧力以上に圧縮したガスを臨界温度以下に冷却して液化する方法において、原料ガスを圧縮機(2)で圧縮する工程と、圧縮ガスを冷膨張タービン(9)に直結したブロワー(11)に導入して昇圧する工程と、昇圧ガスを分岐し、その一方を熱交換器(15)の冷却ライン(24)に導入して冷却する工程と、冷却ガスを前記冷膨張タービン(9)に導入して該冷膨張タービン(9)の出口で液化させずに膨張降温させた後、前記熱交換器(15)に冷却源ガスとして導入し、熱交換器(15)から導出した昇温後の冷却源ガスを前記圧縮機(2)の相当する圧力段に導入して再圧縮する工程と、前記昇圧ガスの分岐した他方の昇圧ガスを温膨張タービン(8)に直結するブロワー(10)に導入して臨界圧力以上に昇圧する工程と、更に昇圧したガスを更に分岐し、その一方を前記熱交換器(15)の液化ライン(16)に導入して冷却する工程と、前記更に昇圧したガスの分岐した他方のガスを冷凍機(59)で冷却した後、前記熱交換器(15)の液化ライン(16)中の相当温度部分に導入して合流させるか、又は前記熱交換器(15)で寒冷回収後に前記圧縮機(2)の相当する圧力段に導入する工程と、液化ライン(16)の途中から一部のガスを抜き出して前記温膨張タービン(8)に導入し、膨張降温させた後、前記熱交換器(15)の冷却源ガスに相当温度部分で合流させる工程と、前記熱交換器(15)の液化ライン(16)で臨界温度以下まで冷却したガスを膨脹弁(20)でJT膨張させて液化ガスとして取り出す工程と、を含むことを特徴とするガスの液化方法。In a method of cooling and liquefying a gas compressed above a critical pressure below a critical temperature, a step of compressing a raw material gas with a compressor (2) and a blower (11) directly connecting the compressed gas to a cold expansion turbine (9 ) And pressurizing the gas, branching the pressurized gas, introducing one of the gas into a cooling line (24) of a heat exchanger (15) to cool the gas, and supplying the cooling gas to the cold expansion turbine (9) . after expansion cooling without liquefied at the outlet of the cold expansion turbine is introduced (9), introduced as a cooling source gas to said heat exchanger (15), heat exchanger (15) the derived temperature was raised from Introducing the cooling source gas into the corresponding pressure stage of the compressor (2) to recompress it, and a blower (10) for directly connecting the other pressurized gas branched from the pressurized gas to the thermal expansion turbine (8 ). a step of boosting the critical pressure or higher is introduced, the Further branching the boosted gas, while the heat exchanger (15) a step of cooling by introducing the liquefied line (16) of the refrigerator the branched other gas of said and further boosted gas (59 ) , The mixture is introduced into the liquefaction line (16 ) of the heat exchanger (15) at a corresponding temperature and merged, or after the cold recovery in the heat exchanger (15) , the compressor (2) is cooled. And a step of extracting a part of the gas from the middle of the liquefaction line (16) , introducing the gas into the thermal expansion turbine (8) , and expanding and lowering the temperature. Then, the heat exchanger (15) And a gas cooled to a critical temperature or lower in a liquefaction line (16) of the heat exchanger (15) is expanded by JT with an expansion valve (20) and taken out as a liquefied gas. And a process. Scan method of liquefaction. 前記圧縮ガスを前記ブロワー(11)で臨界圧力以上に昇圧することを特徴とする請求項1記載のガスの液化方法。The gas liquefaction method according to claim 1 , wherein the pressure of the compressed gas is raised to a critical pressure or higher by the blower (11) .
JP20250495A 1995-08-08 1995-08-08 Gas liquefaction method Expired - Fee Related JP3551397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20250495A JP3551397B2 (en) 1995-08-08 1995-08-08 Gas liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20250495A JP3551397B2 (en) 1995-08-08 1995-08-08 Gas liquefaction method

Publications (2)

Publication Number Publication Date
JPH0949685A JPH0949685A (en) 1997-02-18
JP3551397B2 true JP3551397B2 (en) 2004-08-04

Family

ID=16458586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20250495A Expired - Fee Related JP3551397B2 (en) 1995-08-08 1995-08-08 Gas liquefaction method

Country Status (1)

Country Link
JP (1) JP3551397B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486028B (en) * 2016-01-08 2019-03-19 上海穗杉实业股份有限公司 A kind of oxygen supply of fleet, for nitrogen support method and system
JP7436980B2 (en) * 2020-01-22 2024-02-22 日本エア・リキード合同会社 liquefaction equipment

Also Published As

Publication number Publication date
JPH0949685A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
JP4620328B2 (en) Production of LNG using an independent dual expander refrigeration cycle
US3677019A (en) Gas liquefaction process and apparatus
JP3694263B2 (en) Gas liquefaction method and apparatus for producing liquid cryogen
US4638639A (en) Gas refrigeration method and apparatus
CN109690215A (en) Industrial gasses place produces integrated with liquid hydrogen
JP7291157B2 (en) Systems and methods for power generation using carbon dioxide working fluid
JP2015501410A (en) Multiple nitrogen expansion process for LNG production
GB2288868A (en) Liquefaction of natural gas by expansion and refrigeration
JP2000065471A (en) Gas liquefaction process
KR940000732B1 (en) Method and apparatus for producing a liquefied permanent gas stream
JPH07324857A (en) Method and plant for liquefying gas
JPS63129290A (en) Method of liquefying gas
JP3551397B2 (en) Gas liquefaction method
JP4142559B2 (en) Gas liquefaction apparatus and gas liquefaction method
JPH11316059A (en) Refrigeration process and plant using heat cycle of low boiling point fluid
JP3303101B2 (en) Supercritical gas liquefaction method and apparatus
JP7355979B2 (en) gas liquefaction equipment
JP3660748B2 (en) Method and apparatus for hydrogen liquefaction using neon
CN115789511A (en) Liquid hydrogen cold energy gradient utilization system and method
EP3271671B1 (en) Plant for the liquefaction of nitrogen using the recovery of cold energy deriving from the evaporation of liquefied natural gas
TW202419798A (en) Method and system for solidifying a gas at atmospheric pressure
TW202328612A (en) Hydrogen liquefaction with stored hydrogen refrigeration source
SU916919A1 (en) Unit for low-temperature treatment of low gas
JPH0339234B2 (en)
JPH05296652A (en) Low temperature separation method for air

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees