JP4142559B2 - Gas liquefaction apparatus and gas liquefaction method - Google Patents

Gas liquefaction apparatus and gas liquefaction method Download PDF

Info

Publication number
JP4142559B2
JP4142559B2 JP2003404612A JP2003404612A JP4142559B2 JP 4142559 B2 JP4142559 B2 JP 4142559B2 JP 2003404612 A JP2003404612 A JP 2003404612A JP 2003404612 A JP2003404612 A JP 2003404612A JP 4142559 B2 JP4142559 B2 JP 4142559B2
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
compressor
liquid separator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003404612A
Other languages
Japanese (ja)
Other versions
JP2005164150A (en
Inventor
伸二 富田
理郎 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2003404612A priority Critical patent/JP4142559B2/en
Publication of JP2005164150A publication Critical patent/JP2005164150A/en
Application granted granted Critical
Publication of JP4142559B2 publication Critical patent/JP4142559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]

Description

本発明は、液化天然ガス(LNG)の寒冷を利用したガスの液化方法およびガスの液化装置に関し、特に空気分離装置などによって製造される窒素ガスの液化技術として有用である。   The present invention relates to a gas liquefaction method and gas liquefaction apparatus using liquefied natural gas (LNG) cooling, and is particularly useful as a liquefaction technique for nitrogen gas produced by an air separation apparatus or the like.

天然ガス(NG)は、輸送や貯蔵の利便性などのため、液化天然ガス(LNG)として貯蔵され、これを気化した後に、主として火力発電用や都市ガス用として用いられる。このため、LNGの寒冷を有効利用する技術が開発されている。   Natural gas (NG) is stored as liquefied natural gas (LNG) for convenience of transportation and storage, and after being vaporized, it is mainly used for thermal power generation and city gas. For this reason, a technique for effectively utilizing the coldness of LNG has been developed.

LNGの寒冷を利用して窒素ガス等を液化する設備としては、一般に、窒素ガスを圧縮機でLNGとの熱交換で液化可能な圧力まで圧縮し、次いで熱交換器でLNGと熱交換させてLNGを昇温気化させるとともに、窒素ガスを液化するプロセスが用いられている。   As equipment for liquefying nitrogen gas etc. using the coldness of LNG, in general, nitrogen gas is compressed to a pressure that can be liquefied by heat exchange with LNG with a compressor, and then heat exchanged with LNG with a heat exchanger. A process of evaporating LNG at a temperature and liquefying nitrogen gas is used.

しかしながら、火力発電や都市ガスは、1日のうち、昼に需要が多く、夜に需要が少ないという需要の変動がある。従って、上記のガス液化プロセスに供給されるLNG量も、上記需要変動によって変動するため、利用できる寒冷量も変動してしまう。このため、供給されるLNG量が多いときは上記ガス液化プロセスで得られる液化ガス量を増大できるが、LNG量が減少すれば液化ガス量も減少することになる。   However, there is a fluctuation in demand for thermal power generation and city gas, where demand is high during the day and demand is low at night. Therefore, since the amount of LNG supplied to the gas liquefaction process also fluctuates due to the fluctuation in demand, the amount of cold that can be used also fluctuates. For this reason, when the amount of LNG supplied is large, the amount of liquefied gas obtained by the gas liquefaction process can be increased. However, when the amount of LNG decreases, the amount of liquefied gas also decreases.

一方、圧縮機を駆動するための電力は、昼間の料金に比べて夜間が安く設定されているため、上記LNGの供給量の変動と電力料金の差を勘案して、効率よくガスを液化するためのガス液化プロセスが提案されている。例えば、1台以上のガス用圧縮機と、1台以上のガス用膨張タービンと、ガスと液化天然ガスとを熱交換させる熱交換器とを備えた液化プロセスにより、前記液化天然ガスの寒冷を利用して前記ガスを液化する方法において、供給される液化天然ガスの増量時には前記膨張タービンを停止又は減量運転し、供給される液化天然ガスの減量時には前記膨張タービンを稼働又は増量運転することを特徴とする液化天然ガスの寒冷を利用したガスの液化方法が知られている(例えば、特許文献1参照)。   On the other hand, the electric power for driving the compressor is set to be cheaper at night than the charge during the daytime, so the gas is efficiently liquefied taking into consideration the fluctuation in the supply amount of the LNG and the difference in the power charge. A gas liquefaction process has been proposed. For example, the liquefied natural gas is cooled by a liquefaction process including one or more gas compressors, one or more gas expansion turbines, and a heat exchanger that exchanges heat between the gas and liquefied natural gas. In the method of liquefying the gas, the expansion turbine is stopped or reduced when the supplied liquefied natural gas is increased, and the expansion turbine is operated or increased when the supplied liquefied natural gas is reduced. A gas liquefaction method using the chilling of liquefied natural gas, which is a feature, is known (see, for example, Patent Document 1).

しかしながら、上記の液化方法では、膨張タービンで発生した寒冷を有する低温ガスが熱交換器に導入される際に、低温ガスが別に導入される液化天然ガス(一般に1MPa以上である)より低圧になる。このため、もし熱交換器にリークが発生した場合、天然ガスが液化するガスのラインに混入し、爆発の危険性があった。なお、ガス用圧縮機で圧縮後に熱交換器と減圧弁とを経たガス成分も、液化天然ガスより低圧にて熱交換器に導入される。   However, in the above liquefaction method, when the low-temperature gas having cold generated in the expansion turbine is introduced into the heat exchanger, the pressure becomes lower than that of liquefied natural gas (generally 1 MPa or more) into which the low-temperature gas is separately introduced. . For this reason, if a leak occurs in the heat exchanger, natural gas is mixed into the liquefied gas line and there is a risk of explosion. In addition, the gas component which passed through the heat exchanger and the pressure-reducing valve after being compressed by the gas compressor is also introduced into the heat exchanger at a lower pressure than liquefied natural gas.

一方、窒素ガスを液化する際に、多段階に圧縮しつつ複数の熱交換器でLNGで冷却するガスの液化方法が知られている(例えば、特許文献2参照)。しかし、この液化方法でも、熱交換器に導入するLNGの圧力が、導入するガスの圧力より高くなり、上述した爆発の危険性が残る。また、熱交換器で冷却後の低温ガスを圧縮するため、低温圧縮機が必要となり、断続的な運転には適さないので、昼夜で変動するLNG量に対応して、液化プロセスを断続的に行うことは困難であった。つまり、低温圧縮機を使用する場合、その冷却のための準備工程や電力費用が必要となり、断続的な運転を行うと工程時間や費用のロスが大きくなる。   On the other hand, there is known a gas liquefaction method in which nitrogen gas is liquefied and cooled by LNG with a plurality of heat exchangers while being compressed in multiple stages (see, for example, Patent Document 2). However, even in this liquefaction method, the pressure of LNG introduced into the heat exchanger becomes higher than the pressure of the introduced gas, and the above-described explosion risk remains. In addition, since the low temperature gas after cooling is compressed by the heat exchanger, a low temperature compressor is necessary and is not suitable for intermittent operation. Therefore, the liquefaction process is intermittently adapted to the amount of LNG that fluctuates day and night. It was difficult to do. That is, when a low-temperature compressor is used, a preparation process for cooling and power costs are necessary, and intermittent operation increases process time and cost loss.

更に、特許文献2に記載のガスの液化方法では、低温ガスの一段の膨張後、気液分離器で気化成分のみをLNG熱交換器に戻す方式が取られており、後ほど議論する如く、効率的な運転ができない。
特開平5−45050号公報 特開平11−142054号公報
Furthermore, in the gas liquefaction method described in Patent Document 2, a method of returning only the vaporized components to the LNG heat exchanger by a gas-liquid separator after one-stage expansion of the low-temperature gas is employed. Driving is not possible.
Japanese Patent Laid-Open No. 5-45050 Japanese Patent Laid-Open No. 11-142054

そこで、本発明の目的は、天然ガスのリークによる爆発の危険性を回避することができ、また、昼夜で変動するLNG量に対応して断続的な運転が好適に行え、更に多段階の圧縮・膨張によって効率的なガスの液化を行うことができるガスの液化方法及びガスの液化装置を提供することにある。   Accordingly, the object of the present invention is to avoid the danger of explosion due to natural gas leaks, and to perform intermittent operation suitably in response to the amount of LNG varying between day and night, and further to multistage compression. An object of the present invention is to provide a gas liquefaction method and a gas liquefaction apparatus capable of performing efficient gas liquefaction by expansion.

上記目的は、下記の如き本発明により達成できる。   The above object can be achieved by the present invention as described below.

即ち、本発明のガスの液化方法は、複数段からなる圧縮機で圧縮されたガスの主要部を第1熱交換器に導入して液化天然ガスと熱交換させながら低温ガスとし、導出した低温ガスの一部を前記液化天然ガスより高い圧力の範囲で膨張させた後に、再び前記第1熱交換器に戻して熱交換により自身を加温した後、前記圧縮機の適切な圧力の中間段に合流させると共に、前記第1熱交換器から導出した低温ガスの残部を膨張させて更に低温に冷却して第1気液分離器に導入し、前記圧縮機で圧縮されたガスの残部を第2熱交換器に導入して熱交換により自身を冷却してから膨張させて更に低温に冷却して前記第1気液分離器に導入し、その第1気液分離器で集合された気体は再び前記第2熱交換器に戻して熱交換により自身を加温した後、前記圧縮機の適切な圧力の中間段又は吸入段に合流させながら、前記第1気液分離器で集合された液体を取り出す工程を含み、かつ前記第1熱交換器に導入された液化天然ガスの一部を、前記第1熱交換器の中間部から液化天然ガスの状態で分岐・排出し、残部を第1熱交換器から気体状態で導出することを特徴とする。 That is, in the gas liquefaction method of the present invention, the main part of the gas compressed by the multi-stage compressor is introduced into the first heat exchanger to make a low temperature gas while exchanging heat with the liquefied natural gas. After expanding a part of the gas in a range of pressure higher than that of the liquefied natural gas, it is returned to the first heat exchanger and heated by heat exchange, and then an intermediate stage of an appropriate pressure of the compressor. And the remaining portion of the low-temperature gas derived from the first heat exchanger is expanded and further cooled to a low temperature and introduced into the first gas-liquid separator. The remaining portion of the gas compressed by the compressor is 2 It introduces into the heat exchanger, cools itself by heat exchange, expands, cools to a lower temperature, introduces it into the first gas-liquid separator, and the gas collected in the first gas-liquid separator is After returning to the second heat exchanger again and heating itself by heat exchange, While merging the suitable pressure intermediate stage or inhalation stage of the machine, said step of removing a is set liquid in the first gas-liquid separator seen including, and the liquefied natural gas introduced into the first heat exchanger A part is branched and discharged from the intermediate part of the first heat exchanger in the form of liquefied natural gas, and the remaining part is led out from the first heat exchanger in a gaseous state .

本発明のガスの液化方法によると、熱交換により自身を加温したガスを圧縮機の入口側に合流させているため、圧縮機として低温圧縮機を使用する必要がなく、断続的な運転が可能となる。また、第1熱交換器から導出したガスを分岐して、その一部を液化天然ガスより高い圧力の範囲で膨張させた後に、再び第1熱交換器に導入するため、第1熱交換器にリークが生じても、窒素等の圧力の方が高いため、天然ガスが漏れ込むことなく爆発の危険性を回避することができる。更に、多段階の圧縮・膨張によって効率的なガスの液化を行うことができるのは、次の理由による。   According to the gas liquefaction method of the present invention, since the gas heated by heat exchange is joined to the inlet side of the compressor, there is no need to use a low-temperature compressor as the compressor, and intermittent operation is possible. It becomes possible. In addition, since the gas derived from the first heat exchanger is branched and a part thereof is expanded in a range of pressure higher than that of the liquefied natural gas, the first heat exchanger is introduced again into the first heat exchanger. Even if a leak occurs, the pressure of nitrogen or the like is higher, so that the danger of an explosion can be avoided without the natural gas leaking. Furthermore, the reason why gas can be efficiently liquefied by multi-stage compression / expansion is as follows.

窒素ガスなどの液化にLNGの寒冷を利用するとき、LNGの温度は−155℃前後であり、一方窒素の大気圧沸点は−196℃であるので、この間の温度レベルの差を埋める必要がある。そのため、窒素ガスを通常臨界圧力以上(好ましくは5〜6MPa)に昇圧してから、LNGの寒冷を利用して約−153℃まで冷却し、これを自由膨張し、低温を得る方法が知られている。膨張後の圧力を低くすればするほど低温が得られるが、膨張により生じる気体成分の割合は増え、正味液化量は減少する。またその気体成分を再利用するために、再度圧縮する必要があり、その圧縮比の増加つれ所要動力も増加する。そのため、膨張の圧力を如何に選定するか、また何段階で膨張するかによって液化に要する圧縮動力が変化する。   When using LNG cold for liquefaction of nitrogen gas etc., the temperature of LNG is around −155 ° C., while the atmospheric pressure boiling point of nitrogen is −196 ° C., so it is necessary to fill in the temperature level difference between them. . For this reason, a method is known in which the nitrogen gas is usually boosted to a critical pressure or higher (preferably 5 to 6 MPa) and then cooled to about −153 ° C. using the coldness of LNG, which is freely expanded to obtain a low temperature. ing. The lower the pressure after expansion, the lower the temperature is obtained, but the proportion of the gas component generated by expansion increases and the net liquefaction amount decreases. Further, in order to reuse the gaseous component, it is necessary to compress again, and the required power increases as the compression ratio increases. Therefore, the compression power required for liquefaction varies depending on how the expansion pressure is selected and in what stage the expansion is performed.

また、利用できるLNG量に対して液化量要求量が多いと窒素の低温域の液化のための寒冷が特に不足してくる。これを解消するために、LNGで冷却した低温ガスの一部を膨張して戻すことが有効である。この場合には、再度圧縮の圧縮比が小さく、僅かな動力の増加に限定でき、有効である。このため本発明では、多段の膨張を組み合わせることにより、効率的な運転が可能となる。ここで、第1熱交換器の中間段から分岐・排出した液化天然ガスは、液化するガスの量に応じて増減量することができるとともに、蒸発させてから、発電等に使用することができる。また、第1熱交換器から気体状態で導出された天然ガスは、発電等に使用することができる。従って、こうした液化天然ガスを寒冷として利用したガスの液化操作は、発電や都市ガスの需要に応じて実施することができ、昼夜で変動するLNG量に対応して断続的な運転が好適に行うことができる。 In addition, when the required amount of liquefaction is larger than the amount of LNG that can be used, cooling for liquefaction of nitrogen in a low temperature region is particularly insufficient. In order to solve this problem, it is effective to expand and return part of the low-temperature gas cooled by LNG. In this case, the compression ratio of compression is small again, and it can be limited to a slight increase in power, which is effective. For this reason, in this invention, efficient driving | operation is attained by combining multistage expansion | swelling. Here, the liquefied natural gas branched and discharged from the intermediate stage of the first heat exchanger can be increased or decreased according to the amount of the gas to be liquefied, and can be used for power generation after being evaporated. . Moreover, the natural gas derived | led-out in the gaseous state from the 1st heat exchanger can be used for an electric power generation. Therefore, the gas liquefaction operation using such liquefied natural gas as a cold can be performed according to the demand for power generation and city gas, and intermittent operation is suitably performed corresponding to the amount of LNG changing day and night. be able to.

上記の結果、天然ガスのリークによる爆発の危険性を回避することができ、また、昼夜で変動するLNG量に対応して断続的な運転が好適に行え、更に多段階の圧縮・膨張によって効率的なガスの液化を行うことができるガスの液化方法を提供できる。   As a result of the above, the risk of explosion due to natural gas leaks can be avoided, and intermittent operation can be suitably performed in response to the amount of LNG changing day and night, and more efficient by multistage compression and expansion. It is possible to provide a gas liquefaction method capable of performing gas liquefaction.

上記において、前記第1気液分離器から取り出された液体を更に少なくとも1段膨張させて更に低温にして第2気液分離器に導入し、膨張で生成した気体分を再び第2熱交換器に戻して熱交換により自身を加温した後、前記圧縮機の適切な圧力の中間段又は吸入段に合流させながら、前記第2気液分離器の液体を取り出す工程を更に含むことが好ましい。   In the above, the liquid taken out from the first gas-liquid separator is further expanded at least one stage, further cooled to be introduced into the second gas-liquid separator, and the gas generated by the expansion is again supplied to the second heat exchanger. It is preferable that the method further includes a step of taking out the liquid of the second gas-liquid separator while joining itself to an intermediate stage or a suction stage of an appropriate pressure of the compressor after heating itself by heat exchange.

この場合、第1気液分離器から取り出した液体を膨張させて一部を気化することによって、その膨張時の冷却効果によって、より低温で大気圧に近い液化ガスを得ることができる。また、第2気液分離器からガス分を導出して第2熱交換器に導入して自身を加温した後に前記圧縮機の適切な圧力の中間段又は吸入段に合流させることで、低温のガス分によって、第2熱交換器に導入されるガスを更に冷却することができる。   In this case, the liquid taken out from the first gas-liquid separator is expanded and partially vaporized, whereby a liquefied gas close to atmospheric pressure can be obtained at a lower temperature due to the cooling effect during the expansion. In addition, the gas component is derived from the second gas-liquid separator, introduced into the second heat exchanger and heated, and then joined to the intermediate stage or the suction stage of an appropriate pressure of the compressor. By this gas component, the gas introduced into the second heat exchanger can be further cooled.

一方、本発明のガスの液化装置は、複数段からなる圧縮機と、その圧縮機で圧縮されたガスの主要部を導入して液化天然ガスと熱交換させる第1熱交換器と、その第1熱交換器から導出したガスの一部を前記液化天然ガスより高い圧力の範囲で膨張させる第1膨張弁と、その第1膨張弁を経たガスを前記第1熱交換器に導入して熱交換後に前記圧縮機の適切な圧力の中間段に合流させる経路と、前記第1熱交換器から導出したガスの残部を膨張させて更に低温に冷却する第2膨張弁と、その第2膨張弁を経た流体を導入する第1気液分離器と、その第1気液分離器から導出したガス分と前記圧縮機で圧縮されたガスの残部とを熱交換する第2熱交換器と、前記第1気液分離器から導出したガス分を前記第2熱交換器に導入した後に前記圧縮機の適切な圧力の中間段又は吸入段に合流させる経路と、前記圧縮機で圧縮されたガスの残部を第2熱交換器に導入した後に第3膨張弁を経て前記第1気液分離器に導入する経路と、前記第1気液分離器から液化した液体を取り出す経路とを備え、かつ前記第1熱交換器に導入された液化天然ガスの一部を前記第1熱交換器の中間部から液化天然ガスの状態で分岐・排出する経路と、残部を第1熱交換器から気体状態で導出する経路とを備えることを特徴とする。 On the other hand, the gas liquefaction apparatus of the present invention includes a multi-stage compressor, a first heat exchanger that introduces a main part of the gas compressed by the compressor and exchanges heat with liquefied natural gas, and a first heat exchanger thereof. A first expansion valve that expands a part of the gas derived from one heat exchanger in a range of pressure higher than that of the liquefied natural gas, and a gas that has passed through the first expansion valve are introduced into the first heat exchanger to generate heat. A path for joining the intermediate stage of the compressor with an appropriate pressure after the exchange, a second expansion valve for expanding the remaining gas derived from the first heat exchanger and cooling it to a lower temperature, and the second expansion valve A first gas-liquid separator that introduces the fluid having passed through the second gas exchanger, a second heat exchanger that exchanges heat between the gas component derived from the first gas-liquid separator and the remainder of the gas compressed by the compressor, After the gas component derived from the first gas-liquid separator is introduced into the second heat exchanger, the compressor A path for joining an intermediate stage or a suction stage having an appropriate pressure, and the remainder of the gas compressed by the compressor are introduced into the second heat exchanger and then introduced into the first gas-liquid separator through a third expansion valve. And a path for taking out the liquefied liquid from the first gas-liquid separator , and a part of the liquefied natural gas introduced into the first heat exchanger from an intermediate part of the first heat exchanger It comprises a path for branching and discharging in the state of liquefied natural gas and a path for deriving the remainder from the first heat exchanger in a gaseous state .

本発明のガスの液化装置によると、熱交換により自身を加温したガスを圧縮機の入口側に合流させているため、圧縮機として低温圧縮機を使用する必要がなく、断続的な運転が可能となる。また、第1熱交換器から導出したガスを分岐して、第1膨張弁によってその一部を液化天然ガスより高い圧力の範囲で膨張させた後に、再び第1熱交換器に導入するため、第1熱交換器にリークが生じても、窒素等の圧力の方が高いため、天然ガスが漏れ込むことなく爆発の危険性を回避することができる。さらに、第1熱交換器の中間段から分岐・排出した液化天然ガスは、液化するガスの量に応じて増減量することができるとともに、蒸発させてから、発電等に使用することができる。また、第1熱交換器から気体状態で導出された天然ガスは、発電等に使用することができる。また、更に、上述した理由から、多段階の圧縮・膨張によって効率的なガスの液化を行うことができる。その結果、天然ガスのリークによる爆発の危険性を回避することができ、また、昼夜で変動するLNG量に対応して断続的な運転が好適に行え、更に多段階の圧縮・膨張によって効率的なガスの液化を行うことができるガスの液化装置を提供できる。 According to the gas liquefaction apparatus of the present invention, since the gas heated by heat exchange is joined to the inlet side of the compressor, there is no need to use a low-temperature compressor as the compressor, and intermittent operation is possible. It becomes possible. In addition, in order to branch the gas derived from the first heat exchanger and expand a part thereof in a range of pressure higher than that of liquefied natural gas by the first expansion valve, the gas is again introduced into the first heat exchanger. Even if a leak occurs in the first heat exchanger, since the pressure of nitrogen or the like is higher, the risk of explosion can be avoided without the natural gas leaking. Furthermore, the liquefied natural gas branched and discharged from the intermediate stage of the first heat exchanger can be increased or decreased according to the amount of gas to be liquefied, and can be used for power generation or the like after being evaporated. Moreover, the natural gas derived | led-out in the gaseous state from the 1st heat exchanger can be used for an electric power generation. Furthermore, for the reasons described above, efficient gas liquefaction can be performed by multistage compression / expansion. As a result, the risk of explosion due to natural gas leaks can be avoided, and intermittent operation can be suitably performed corresponding to the amount of LNG changing day and night, and more efficient by multi-stage compression and expansion. It is possible to provide a gas liquefying apparatus capable of liquefying various gases.

上記において、前記第1気液分離器から取り出した液体を更に少なくとも1段膨張させて更に低温に冷却する第4膨張弁と、その第4膨張弁を経た流体を導入する第2気液分離器と、その第2気液分離器からガス分を導出して第2熱交換器に導入して自身を加温した後に前記圧縮機の適切な圧力の中間段又は吸入段に合流させる経路と、前記第2気液分離器の液体を取り出す経路とを更に備えることが好ましい。   In the above, the fourth expansion valve that further expands the liquid taken out from the first gas-liquid separator at least one stage and cools it to a lower temperature, and the second gas-liquid separator that introduces the fluid that has passed through the fourth expansion valve And a path for deriving a gas component from the second gas-liquid separator, introducing it into the second heat exchanger and warming itself, and then joining the intermediate stage or the suction stage with an appropriate pressure of the compressor; It is preferable to further include a path for taking out the liquid of the second gas-liquid separator.

この場合、第1気液分離器から取り出した液体を、第4膨張弁で膨張させて一部を気化することによって、その膨張時の冷却効果によって、より低温で大気圧に近い液化ガスを得ることができる。また、第2気液分離器からガス分を導出して第2熱交換器に導入して自身を加温した後に前記圧縮機の適切な圧力の中間段又は吸入段に合流させることで、低温のガス分によって、第2熱交換器に導入されるガスを更に冷却することができる。   In this case, the liquid taken out from the first gas-liquid separator is expanded by the fourth expansion valve to partially vaporize, thereby obtaining a liquefied gas at a lower temperature and close to atmospheric pressure due to the cooling effect during the expansion. be able to. In addition, the gas component is derived from the second gas-liquid separator, introduced into the second heat exchanger and heated, and then joined to the intermediate stage or the suction stage of an appropriate pressure of the compressor. By this gas component, the gas introduced into the second heat exchanger can be further cooled.

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明のガスの液化装置の一例を示す概略構成図である。なお、本実施形態では、液化するガスとして窒素ガスの場合を例示するが、本発明は、他のガス、例えば空気やアルゴン等の液化にも同様にして適用することができる。また、各部の温度、圧力、流量などの条件は、ガスの種類や流量等、その他の条件に応じて適宜変更することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example of a gas liquefying apparatus according to the present invention. In the present embodiment, the case of nitrogen gas is exemplified as the gas to be liquefied, but the present invention can be similarly applied to liquefaction of other gases such as air and argon. Moreover, conditions, such as temperature of each part, a pressure, and a flow volume, can be suitably changed according to other conditions, such as a kind and flow volume of gas.

本発明のガスの液化装置は、複数段からなる圧縮機を備える。本実施形態では、図1に示すように、上流側より低圧段の圧縮機C1、中圧段の圧縮機C2、及び高圧段の圧縮機C3の3個の圧縮機を備える例を示す。   The gas liquefying apparatus of the present invention includes a compressor composed of a plurality of stages. In the present embodiment, as shown in FIG. 1, an example in which three compressors, that is, a low-pressure stage compressor C1, an intermediate-pressure stage compressor C2, and a high-pressure stage compressor C3 are provided from the upstream side.

本発明では、低圧段の圧縮機C1に、液化の対象となるガス(例えば窒素ガス(GN2 ))が導入される。このガスは常温(25℃)より低温でもよいが、常温付近の方が低温圧縮機の使用を避けられるため好ましい。また、本発明では、圧縮機C1〜C3の入口側に、熱交換で加温されたガスが合流するため、何れの圧縮機C1〜C3も低温圧縮機の使用を避けることができる。本実施形態では、例えば、常温で大気圧付近の窒素ガスを圧縮機C1に導入(34000Nm3 /h)して約0.4MPa(ゲージ圧、以下同じ)まで圧縮し、次いで圧縮機C2により約3MPaまで圧縮し、次いで圧縮機C3により約5MPaまで圧縮する。本発明では、最終的に圧縮機C3により5〜6MPaまで圧縮するのが好ましい。 In the present invention, a gas to be liquefied (for example, nitrogen gas (GN 2 )) is introduced into the low-pressure stage compressor C1. This gas may be at a temperature lower than room temperature (25 ° C.), but a temperature near room temperature is preferable because the use of a low-temperature compressor can be avoided. Moreover, in this invention, since the gas heated by heat exchange joins to the inlet side of compressor C1-C3, any compressor C1-C3 can avoid use of a low-temperature compressor. In the present embodiment, for example, nitrogen gas at normal temperature and near atmospheric pressure is introduced into the compressor C1 (34000 Nm 3 / h) and compressed to about 0.4 MPa (gauge pressure, the same applies hereinafter), and then the compressor C2 performs about Compress to 3 MPa, then compress to about 5 MPa with compressor C3. In this invention, it is preferable to finally compress to 5-6 MPa with the compressor C3.

この圧縮ガスの主要部は、第1熱交換器E1に導入され、向流に導入される液化天然ガス(LNG)と熱交換して冷却される。本実施形態では、第1熱交換器E1が、2つの熱交換器E1aと熱交換器E1bとで構成される例を示す。液化天然ガスは熱交換器E1bに、例えば約1.9MPa、−155℃、45トン/hで導入され、熱交換器E1bから導出された後、一部が余剰寒冷として液化天然ガスの状態で分岐・排出され、残部が熱交換器E1aに導入される。   The main part of this compressed gas is introduced into the first heat exchanger E1, and is cooled by exchanging heat with liquefied natural gas (LNG) introduced into the counterflow. In this embodiment, the 1st heat exchanger E1 shows the example comprised by two heat exchanger E1a and heat exchanger E1b. The liquefied natural gas is introduced into the heat exchanger E1b at, for example, about 1.9 MPa, −155 ° C. and 45 ton / h, and after being led out from the heat exchanger E1b, a part thereof is in the state of liquefied natural gas as excessive cold. It is branched and discharged, and the remainder is introduced into the heat exchanger E1a.

熱交換器E1aで気体状態で導出された天然ガスは、約1.9MPaで常温付近であり、発電等に使用することができる。また、分岐・排出した液化天然ガスも、蒸発させてから、同様に利用することができる。一般に、火力発電や都市ガスは、1日のうち、昼に需要が多く、夜に需要が少ないため、本発明では、昼間時間帯のみガスの液化方法を実施して、断続的な運転を行うことができる。なお、液化天然ガスの分岐・排出は、液化するガスの量に応じて、増減量することができる。 Natural gas derived in a gas state by the heat exchanger E1a is about 1.9 MPa and is near room temperature, and can be used for power generation and the like. Further, the liquefied natural gas branched and discharged can be used in the same manner after evaporating. In general, thermal power generation and city gas have a high demand at daytime during the day and a low demand at night. Therefore, in the present invention, the gas liquefaction method is performed only during the daytime period to perform intermittent operation. be able to. The branching / exhaust of liquefied natural gas can be increased or decreased according to the amount of gas to be liquefied.

圧縮ガスは、第1熱交換器E1で液化天然ガス(LNG)と熱交換されて、約−153℃まで冷却される。第1熱交換器E1(熱交換器E1b)から導出した低温ガスの一部(約8000Nm3 /h)は第1膨張弁V1に導入され、熱交換器E1bに導入される液化天然ガスより高い圧力の範囲(例えば約3MPa)に膨張させる。この膨張は自由膨張に相当し、寒冷を発生させる。 The compressed gas is heat-exchanged with liquefied natural gas (LNG) in the first heat exchanger E1 and cooled to about −153 ° C. Part of the low temperature gas (about 8000 Nm 3 / h) derived from the first heat exchanger E1 (heat exchanger E1b) is introduced into the first expansion valve V1, and is higher than the liquefied natural gas introduced into the heat exchanger E1b. The pressure is expanded to a range (for example, about 3 MPa). This expansion corresponds to free expansion and generates cold.

第1膨張弁V1を経たガスは、第1熱交換器E1に導入して熱交換した後に、複数段の圧縮機の適切な圧力の中間段に合流させる。本実施形態では、高圧段の圧縮機C3の入口側に合流させる例を示す。このとき、第1熱交換器E1に導入されたガスは、自身が常温付記まで加温されると共に、圧縮機C3からのガスを冷却する。   The gas that has passed through the first expansion valve V1 is introduced into the first heat exchanger E1 for heat exchange, and then merged with an intermediate stage having an appropriate pressure in a plurality of stages of compressors. In the present embodiment, an example is shown in which the high-pressure stage compressor C3 is joined to the inlet side. At this time, the gas introduced into the first heat exchanger E1 is heated to the normal temperature addition and cools the gas from the compressor C3.

一方、第1熱交換器E1から導出したガスの残部は第2膨張弁V2に導入(約26000Nm3 /h)され、これを膨張させて更に低温に冷却する、この膨張は自由膨張に相当し、寒冷を発生させると共に、ガスの一部を液化することができる。膨張後の圧力は、本例では0.4MPaである。 On the other hand, the remainder of the gas derived from the first heat exchanger E1 is introduced into the second expansion valve V2 (about 26000 Nm 3 / h), and is expanded to cool to a lower temperature. This expansion corresponds to free expansion. In addition to generating cold, part of the gas can be liquefied. The pressure after expansion is 0.4 MPa in this example.

膨張後の流体は、第1気液分離器B1に導入され、気液分離される。液化した液体は第1気液分離器B1の底部に連結した経路から取り出される。この液分は、約17400Nm3 /hである。 The fluid after expansion is introduced into the first gas-liquid separator B1, and gas-liquid separation is performed. The liquefied liquid is taken out from the path connected to the bottom of the first gas-liquid separator B1. This liquid content is about 17400 Nm 3 / h.

また、第1気液分離器B1から導出したガス分は、第2熱交換器E2に導入(約8600Nm3 /h)され、高圧段の圧縮機C3の出口側から分岐し向流にて導入(約4400Nm3 /h)される残部ガスと熱交換される。これによって、圧縮機C3からの残部ガスは、−175℃まで冷却される。 The gas component derived from the first gas-liquid separator B1 is introduced into the second heat exchanger E2 (approximately 8600 Nm 3 / h), branched from the outlet side of the high-pressure stage compressor C3, and introduced in a countercurrent manner. Heat exchange with the remaining gas (about 4400 Nm 3 / h). As a result, the remaining gas from the compressor C3 is cooled to -175 ° C.

第1気液分離器B1から導出したガス分は、第2熱交換器E2に導入した後、複数段の圧縮機の適切な圧力の中間段又は吸入段に合流させる。本実施形態では、中圧段の圧縮機C2の入口側に合流させる例を示す。また、高圧段の圧縮機C3の出口側から分岐したガスは第2熱交換器E2に導入した後、第3膨張弁V3を経て第1気液分離器B1に導入される。   The gas component derived from the first gas-liquid separator B1 is introduced into the second heat exchanger E2, and then merged into an intermediate stage or an intake stage having an appropriate pressure of a plurality of compressors. In the present embodiment, an example is shown in which the medium is joined to the inlet side of the compressor C2 in the intermediate pressure stage. Further, the gas branched from the outlet side of the high-pressure stage compressor C3 is introduced into the second heat exchanger E2, and then introduced into the first gas-liquid separator B1 through the third expansion valve V3.

第3膨張弁V3では、約5MPaで導入されたガスが、約0.4MPaまで膨張(自由膨張)され、更に低温に冷却され、これによって飽和状態で一部が液化される。ガス分(200Nm3 /h)と液分(4200Nm3 /h)は、第2膨張弁V2を経た流体と混合され、混合物として第1気液分離器B1から、各々導出される。 In the third expansion valve V3, the gas introduced at about 5 MPa is expanded (free expansion) to about 0.4 MPa, further cooled to a low temperature, and thereby partially liquefied in a saturated state. The gas component (200 Nm 3 / h) and the liquid component (4200 Nm 3 / h) are mixed with the fluid that has passed through the second expansion valve V2, and are respectively derived from the first gas-liquid separator B1 as a mixture.

本実施形態では、図2に示すように、第1気液分離器B1から取り出した液体を更に膨張させて更に低温に冷却する例を示す。つまり、第1気液分離器B1から取り出した液体は、第4膨張弁V4に導入され、0.03MPaまで膨張(自由膨張)されて一部が気化される。このとき、液分18000Nm3 /hとガス分3600Nm3 /hとが生じ、これらが第2気液分離器B2に導入される。 In this embodiment, as shown in FIG. 2, the liquid taken out from 1st gas-liquid separator B1 is expanded further, and the example cooled further to low temperature is shown. That is, the liquid taken out from the first gas-liquid separator B1 is introduced into the fourth expansion valve V4 and expanded (free expansion) to 0.03 MPa, and a part thereof is vaporized. At this time, a liquid content of 18000 Nm 3 / h and a gas content of 3600 Nm 3 / h are generated, and these are introduced into the second gas-liquid separator B2.

第2気液分離器B2からは、ガス分が導出されて、第2熱交換器E2に導入される。このとき、導入されたガス分は、高圧段の圧縮機C3の出口側からのガスを冷却して自身は加温される。第2熱交換器E2から導出されたガス分は、複数段の圧縮機の適切な圧力の中間段又は吸入段に合流させるが、本例では低圧段の圧縮機C1の入口側に合流される。   A gas component is derived from the second gas-liquid separator B2 and introduced into the second heat exchanger E2. At this time, the introduced gas is heated by cooling the gas from the outlet side of the high-pressure compressor C3. The gas components derived from the second heat exchanger E2 are joined to the intermediate stage or the suction stage having an appropriate pressure of a plurality of stages of compressors. In this example, they are joined to the inlet side of the low-pressure stage compressor C1. .

第2気液分離器B2の底部からは、液化した液体(LN2 )が18000Nm3 /h、約0.03MPa、約−194℃にて取り出される。 From the bottom of the second gas-liquid separator B2, liquefied liquid (LN 2 ) is taken out at 18000 Nm 3 / h, about 0.03 MPa, and about −194 ° C.

本発明のガスの液化方法は、以上のように、複数段からなる圧縮機C1〜C3で圧縮されたガスの主要部を第1熱交換器E1に導入して液化天然ガスと熱交換させながら低温ガスとし、導出した低温ガスの一部を前記液化天然ガスより高い圧力の範囲で膨張させた後に、再び前記第1熱交換器E1に戻して熱交換により自身を加温した後、前記圧縮機C1〜C3の適切な圧力の中間段に合流させると共に、前記第1熱交換器E1から導出した低温ガスの残部を膨張させて更に低温に冷却して第1気液分離器B1に導入し、前記圧縮機C1〜C3で圧縮されたガスの残部を第2熱交換器E2に導入して熱交換により自身を冷却してから膨張させて更に低温に冷却して前記第1気液分離器B1に導入し、その第1気液分離器B1で集合された気体は再び前記第2熱交換器E2に戻して熱交換により自身を加温した後、前記圧縮機C1〜C3の適切な圧力の中間段又は吸入段に合流させながら、前記第1気液分離器B1で集合された液体を取り出す工程を含むものである。   In the gas liquefaction method of the present invention, as described above, the main part of the gas compressed by the multistage compressors C1 to C3 is introduced into the first heat exchanger E1 to exchange heat with the liquefied natural gas. After a part of the derived low-temperature gas is expanded in a range of pressure higher than that of the liquefied natural gas, it is returned to the first heat exchanger E1 and heated by heat exchange, and then compressed. And the remaining low-temperature gas derived from the first heat exchanger E1 is expanded and cooled to a lower temperature and introduced into the first gas-liquid separator B1. The remaining part of the gas compressed by the compressors C1 to C3 is introduced into the second heat exchanger E2, cooled by itself through heat exchange, expanded and then cooled to a lower temperature, and then the first gas-liquid separator. Gas introduced into B1 and collected in the first gas-liquid separator B1 After returning to the second heat exchanger E2 and heating itself by heat exchange, the first gas-liquid separator B1 is joined to the intermediate stage or the suction stage of the compressors C1 to C3 at an appropriate pressure. And a step of taking out the liquid collected in step (b).

本実施形態では、前記第1気液分離器B1から取り出された液体を更に少なくとも1段膨張させて更に低温にして第2気液分離器B2に導入し、膨張で生成した気体分を再び第2熱交換器E2に戻して熱交換により自身を加温した後、前記圧縮機C1〜C3の適切な圧力の中間段又は吸入段に合流させながら、前記第2気液分離器B2の液体を取り出す工程を更に含む例を示した。   In the present embodiment, the liquid taken out from the first gas-liquid separator B1 is further expanded at least one stage to be further cooled to be introduced into the second gas-liquid separator B2, and the gas component generated by the expansion is again supplied to the first gas-liquid separator B1. 2 After returning to the heat exchanger E2 and heating itself by heat exchange, the liquid in the second gas-liquid separator B2 is added to the intermediate stage or the suction stage at an appropriate pressure of the compressors C1 to C3. The example further including the process of taking out was shown.

本例で示した運転条件によると、約0.03MPaの飽和液体窒素を得るための液化原単位は0.283kWh/Nm3 となる。この値は、膨張タービンを用いた(LNG不使用)従来の液化方法の液化原単位0.6〜0.7kWh/Nm3 と比較して、大幅な動力の低減となる。 According to the operating conditions shown in this example, the liquefaction unit for obtaining saturated liquid nitrogen of about 0.03 MPa is 0.283 kWh / Nm 3 . This value is a significant reduction in power as compared with the liquefaction unit 0.6 to 0.7 kWh / Nm 3 of the conventional liquefaction method using an expansion turbine (without LNG).

[他の実施形態]
(1)前述の実施形態では、3段の圧縮機を設けて、3種の膨張圧に応じた、圧縮・熱交換・膨張からなる循環経路を設ける例を示したが、本発明では、更に多段の圧縮機を設けて、更に多段の膨張圧に応じた、圧縮・熱交換・膨張からなる循環経路を設けるようにしてもよい。
[Other Embodiments]
(1) In the above-described embodiment, an example in which a three-stage compressor is provided and a circulation path including compression, heat exchange, and expansion according to three types of expansion pressures is provided. A multistage compressor may be provided, and a circulation path composed of compression, heat exchange, and expansion may be provided according to the multistage expansion pressure.

その場合、第2気液分離器から取り出した液体を膨張させて一部を気化する第5膨張弁と、その第5膨張弁を経た流体を導入する第3気液分離器と、その第3気液分離器からガス分を導出して第3熱交換器に導入して自身を加温した後に第n−3段目の圧縮機の入口側に合流させる経路と、前記第3気液分離器から液化した液体を取り出す経路とを備えるガスの液化装置となる。   In that case, a fifth expansion valve that expands the liquid taken out from the second gas-liquid separator to partially vaporize, a third gas-liquid separator that introduces the fluid that has passed through the fifth expansion valve, and a third thereof A gas component derived from the gas-liquid separator, introduced into the third heat exchanger and heated, and then joined to the inlet side of the n-3rd stage compressor; and the third gas-liquid separation The gas liquefying apparatus includes a path for taking out the liquefied liquid from the vessel.

(2)前述の実施形態では、3段の圧縮機を各々設ける例を示したが、1台の圧縮装置で複数段に圧縮を行うようにしてもよく、更に多段の圧縮を行ってもよい。また、3段の圧縮機のそれぞれの中間に戻りガスを合流させているが、戻りガスの合流は、圧縮機の適切な圧力の中間段に対して行えばよい。   (2) In the above-described embodiment, an example in which each of the three-stage compressors is provided has been described. However, the compression may be performed in a plurality of stages by a single compression device, or may be further performed in multiple stages. . In addition, the return gas is joined to the middle of each of the three-stage compressors, but the return gas may be joined to the intermediate stage having an appropriate pressure of the compressor.

本発明のガスの液化装置の一例を示す概略構成図The schematic block diagram which shows an example of the liquefying apparatus of the gas of this invention 本発明のガスの液化装置の他の例を示す概略構成図The schematic block diagram which shows the other example of the gas liquefying apparatus of this invention

符号の説明Explanation of symbols

E1 第1熱交換器
E2 第2熱交換器
C1 圧縮機(低圧段)
C2 圧縮機(中圧段)
C3 圧縮機(高圧段)
V1 第1膨張弁
V2 第2膨張弁
V3 第3膨張弁
V4 第4膨張弁
B1 第1気液分離器
B2 第2気液分離器
E1 1st heat exchanger E2 2nd heat exchanger C1 Compressor (low pressure stage)
C2 compressor (medium pressure stage)
C3 compressor (high pressure stage)
V1 1st expansion valve V2 2nd expansion valve V3 3rd expansion valve V4 4th expansion valve B1 1st gas-liquid separator B2 2nd gas-liquid separator

Claims (4)

複数段からなる圧縮機で圧縮されたガスの主要部を第1熱交換器に導入して液化天然ガスと熱交換させながら低温ガスとし、導出した低温ガスの一部を前記液化天然ガスより高い圧力の範囲で膨張させた後に、再び前記第1熱交換器に戻して熱交換により自身を加温した後、前記圧縮機の適切な圧力の中間段に合流させると共に、前記第1熱交換器から導出した低温ガスの残部を膨張させて更に低温に冷却して第1気液分離器に導入し、前記圧縮機で圧縮されたガスの残部を第2熱交換器に導入して熱交換により自身を冷却してから膨張させて更に低温に冷却して前記第1気液分離器に導入し、その第1気液分離器で集合された気体は再び前記第2熱交換器に戻して熱交換により自身を加温した後、前記圧縮機の適切な圧力の中間段又は吸入段に合流させながら、前記第1気液分離器で集合された液体を取り出す工程を含み、かつ前記第1熱交換器に導入された液化天然ガスの一部を、前記第1熱交換器の中間部から液化天然ガスの状態で分岐・排出し、残部を第1熱交換器から気体状態で導出することを特徴とするガスの液化方法。 The main part of the gas compressed by the multi-stage compressor is introduced into the first heat exchanger to exchange heat with the liquefied natural gas to form a low temperature gas, and a part of the derived low temperature gas is higher than the liquefied natural gas. After expanding in the range of pressure, it is returned to the first heat exchanger again and heated by heat exchange, and then merged with an intermediate stage of an appropriate pressure of the compressor, and the first heat exchanger The remainder of the low temperature gas derived from is expanded and cooled to a low temperature and introduced into the first gas-liquid separator, and the remainder of the gas compressed by the compressor is introduced into the second heat exchanger to perform heat exchange. It cools itself, expands, cools to a lower temperature, and introduces it into the first gas-liquid separator. The gas gathered in the first gas-liquid separator is returned to the second heat exchanger and heated again. After heating itself by exchange, the intermediate stage or suction at the appropriate pressure of the compressor While merging, the saw including a step of removing a liquid that has been set by the first gas-liquid separator, and a portion of the liquefied natural gas introduced into the first heat exchanger, the first heat exchanger A gas liquefaction method comprising: branching and discharging from an intermediate part in a state of liquefied natural gas; and discharging the remaining part from a first heat exchanger in a gaseous state . 前記第1気液分離器から取り出された液体を更に少なくとも1段膨張させて更に低温にして第2気液分離器に導入し、膨張で生成した気体分を再び第2熱交換器に戻して熱交換により自身を加温した後、前記圧縮機の適切な圧力の中間段又は吸入段に合流させながら、前記第2気液分離器の液体を取り出す工程を更に含む請求項1記載のガスの液化方法。 The liquid taken out from the first gas-liquid separator is further expanded at least one stage to be further cooled to be introduced into the second gas-liquid separator, and the gas generated by the expansion is returned to the second heat exchanger again. The gas of claim 1, further comprising the step of taking out the liquid in the second gas-liquid separator while warming itself by heat exchange and then joining it to an intermediate stage or suction stage of an appropriate pressure of the compressor. Liquefaction method. 複数段からなる圧縮機と、その圧縮機で圧縮されたガスの主要部を導入して液化天然ガスと熱交換させる第1熱交換器と、その第1熱交換器から導出したガスの一部を前記液化天然ガスより高い圧力の範囲で膨張させる第1膨張弁と、その第1膨張弁を経たガスを前記第1熱交換器に導入して熱交換後に前記圧縮機の適切な圧力の中間段に合流させる経路と、前記第1熱交換器から導出したガスの残部を膨張させて更に低温に冷却する第2膨張弁と、その第2膨張弁を経た流体を導入する第1気液分離器と、その第1気液分離器から導出したガス分と前記圧縮機で圧縮されたガスの残部とを熱交換する第2熱交換器と、前記第1気液分離器から導出したガス分を前記第2熱交換器に導入した後に前記圧縮機の適切な圧力の中間段又は吸入段に合流させる経路と、前記圧縮機で圧縮されたガスの残部を第2熱交換器に導入した後に第3膨張弁を経て前記第1気液分離器に導入する経路と、前記第1気液分離器から液化した液体を取り出す経路とを備え、かつ前記第1熱交換器に導入された液化天然ガスの一部を前記第1熱交換器の中間部から液化天然ガスの状態で分岐・排出する経路と、残部を第1熱交換器から気体状態で導出する経路とを備えることを特徴とするガスの液化装置。 A compressor composed of a plurality of stages, a first heat exchanger that introduces a main part of the gas compressed by the compressor and exchanges heat with liquefied natural gas, and a part of the gas derived from the first heat exchanger A first expansion valve that expands the liquefied natural gas in a range of pressure higher than that of the liquefied natural gas, and a gas that has passed through the first expansion valve is introduced into the first heat exchanger, and after heat exchange, an intermediate intermediate pressure of the compressor A path for joining the stages, a second expansion valve for expanding the remainder of the gas derived from the first heat exchanger and cooling it to a lower temperature, and a first gas-liquid separation for introducing fluid through the second expansion valve , A second heat exchanger for exchanging heat between the gas component derived from the first gas-liquid separator and the remainder of the gas compressed by the compressor, and a gas component derived from the first gas-liquid separator Is introduced into the second heat exchanger and then into the intermediate stage or suction stage of the compressor with an appropriate pressure. A flow path, a path for introducing the remainder of the gas compressed by the compressor into the second heat exchanger and then introducing the remaining gas into the first gas-liquid separator through a third expansion valve, and the first gas-liquid separation A path for taking out the liquefied liquid from the vessel , and a part of the liquefied natural gas introduced into the first heat exchanger is branched and discharged from the intermediate portion of the first heat exchanger in the state of liquefied natural gas. A gas liquefaction apparatus comprising: a path; and a path for deriving the remainder from the first heat exchanger in a gaseous state . 前記第1気液分離器から取り出した液体を更に少なくとも1段膨張させて更に低温に冷却する第4膨張弁と、その第4膨張弁を経た流体を導入する第2気液分離器と、その第2気液分離器からガス分を導出して第2熱交換器に導入して自身を加温した後に前記圧縮機の適切な圧力の中間段又は吸入段に合流させる経路と、前記第2気液分離器の液体を取り出す経路とを更に備える請求項3記載のガスの液化装置。 A fourth expansion valve for further expanding the liquid taken out from the first gas-liquid separator at least one stage and further cooling to a low temperature; a second gas-liquid separator for introducing the fluid that has passed through the fourth expansion valve; A path for deriving a gas component from the second gas-liquid separator, introducing it into the second heat exchanger, heating it, and then joining it to an intermediate stage or suction stage of an appropriate pressure of the compressor; The gas liquefying apparatus according to claim 3, further comprising a path for taking out the liquid of the gas-liquid separator.
JP2003404612A 2003-12-03 2003-12-03 Gas liquefaction apparatus and gas liquefaction method Expired - Fee Related JP4142559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404612A JP4142559B2 (en) 2003-12-03 2003-12-03 Gas liquefaction apparatus and gas liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404612A JP4142559B2 (en) 2003-12-03 2003-12-03 Gas liquefaction apparatus and gas liquefaction method

Publications (2)

Publication Number Publication Date
JP2005164150A JP2005164150A (en) 2005-06-23
JP4142559B2 true JP4142559B2 (en) 2008-09-03

Family

ID=34727554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404612A Expired - Fee Related JP4142559B2 (en) 2003-12-03 2003-12-03 Gas liquefaction apparatus and gas liquefaction method

Country Status (1)

Country Link
JP (1) JP4142559B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150106868A (en) * 2015-09-04 2015-09-22 현대중공업 주식회사 Treatment system of liquefied gas
KR101643038B1 (en) * 2013-11-29 2016-07-26 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20210036826A (en) 2019-09-26 2021-04-05 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Gas liquefaction apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278587B1 (en) 2012-05-22 2013-06-25 연세대학교 산학협력단 Liquefaction method of natural gas for energy reduction
KR101310025B1 (en) * 2012-10-30 2013-09-24 한국가스공사 Re-liquefaction process for storing gas
CN106288650B (en) * 2015-06-26 2019-07-05 上海恩图能源科技有限公司 Nitrogen at room recycles LNG cold energy technique
TWI746977B (en) 2019-01-22 2021-11-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 Gas liquefaction method and gas liquefaction device
JP7379763B2 (en) * 2019-07-25 2023-11-15 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas liquefaction method and gas liquefaction device
CN115900228B (en) * 2023-03-02 2023-05-30 杭氧集团股份有限公司 Device for recycling low-temperature gas and application method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643038B1 (en) * 2013-11-29 2016-07-26 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20150106868A (en) * 2015-09-04 2015-09-22 현대중공업 주식회사 Treatment system of liquefied gas
KR102053479B1 (en) * 2015-09-04 2019-12-10 현대중공업 주식회사 Treatment system of liquefied gas
KR20210036826A (en) 2019-09-26 2021-04-05 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Gas liquefaction apparatus

Also Published As

Publication number Publication date
JP2005164150A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
CN102334001B (en) Liquefaction method and system
US7540171B2 (en) Cryogenic liquefying/refrigerating method and system
JP5725856B2 (en) Natural gas liquefaction process
JP5139292B2 (en) Natural gas liquefaction method for LNG
US7398642B2 (en) Gas turbine system including vaporization of liquefied natural gas
JP2009174844A (en) Air stream compressing method and air stream compressing device
JP2015501410A (en) Multiple nitrogen expansion process for LNG production
US20150192065A1 (en) Process and apparatus for generating electric energy
JP4142559B2 (en) Gas liquefaction apparatus and gas liquefaction method
JPWO2019188957A1 (en) Natural gas liquefaction device and natural gas liquefaction method
CA2743195A1 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
KR20090025514A (en) A bog re-liquefaction system for lng carrier
US9841229B2 (en) Process for cooling a hydrocarbon-rich fraction
US20110308276A1 (en) Method and system for periodic cooling, storing, and heating with multiple regenerators
JPS61105086A (en) Method and device for liquefying permanent gas flow
JP6501527B2 (en) Boil-off gas reliquefaction plant
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
JP4429552B2 (en) Liquid hydrogen production system
JP3660748B2 (en) Method and apparatus for hydrogen liquefaction using neon
JP2001090509A (en) Cryogenic power generating system using liquid air
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JP2961072B2 (en) Oxygen and nitrogen liquefaction equipment
CN115789511B (en) Liquid hydrogen cold energy cascade utilization system and method
US20240125543A1 (en) Reverse Brayton LNG Production Process
KR101969501B1 (en) Natural Gas Liquefaction System Using Expender with Methane Refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4142559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees