JP3537199B2 - Air separation method and air separation device used in the method - Google Patents

Air separation method and air separation device used in the method

Info

Publication number
JP3537199B2
JP3537199B2 JP29987194A JP29987194A JP3537199B2 JP 3537199 B2 JP3537199 B2 JP 3537199B2 JP 29987194 A JP29987194 A JP 29987194A JP 29987194 A JP29987194 A JP 29987194A JP 3537199 B2 JP3537199 B2 JP 3537199B2
Authority
JP
Japan
Prior art keywords
air
low
heat exchange
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29987194A
Other languages
Japanese (ja)
Other versions
JPH08159655A (en
Inventor
孝 長村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP29987194A priority Critical patent/JP3537199B2/en
Publication of JPH08159655A publication Critical patent/JPH08159655A/en
Application granted granted Critical
Publication of JP3537199B2 publication Critical patent/JP3537199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気分離方法とその方
法に使用する空気分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation method and an air separation apparatus used in the method.

【0002】[0002]

【従来の技術】原料空気を液化温度近くに冷却して分離
する分離工程に原料空気を供給するにあたって、その液
化温度を高め、且つ、その供給温度を低くした状態の原
料空気を分離工程に供給できるよう、予め原料空気を圧
縮する圧縮工程と、予め原料空気を冷却する冷却工程と
を設けているが、従来、図3に示すように、冷却しよう
とする原料空気を通常のフレオン冷凍機等の冷凍機01を
用いて予め冷却しており、そのような通常の冷凍機01で
原料空気を効率良く冷却できるようにする為、濾過器02
で塵埃を除去した原料空気を予め圧縮機03で圧縮してか
ら、通常の冷凍機01で冷却して、原料空気を液化温度近
くに冷却して分離する低温分離装置04に供給している。
2. Description of the Related Art In supplying raw air to a separation step in which raw air is cooled to near a liquefaction temperature and separated, raw air is supplied to the separation step with its liquefaction temperature raised and its supply temperature lowered. A compression step of compressing the raw air in advance and a cooling step of cooling the raw air in advance are provided so that the raw air to be cooled can be conventionally cooled as shown in FIG. In order to be able to efficiently cool the raw material air with such a normal refrigerator 01, a filter 02 is used.
The raw material air from which dust has been removed is compressed by a compressor 03 in advance, and then cooled by a normal refrigerator 01, and is supplied to a low-temperature separation device 04 that cools and separates the raw material air near a liquefaction temperature.

【0003】そして、原料空気から炭酸ガスと水分とを
吸着除去する必要がある場合には、外気温度の季節変動
にかかわらず、その吸着除去に適した低い温度に一旦冷
却してから炭酸ガスと水分とを吸着除去することが望ま
しいから、従来、前述の圧縮機03で予め圧縮して通常の
冷凍機01で冷却した後の原料空気を吸着装置05に供給し
て炭酸ガスと水分とを吸着除去している。
[0003] When it is necessary to adsorb and remove carbon dioxide and moisture from raw material air, regardless of seasonal fluctuations in the outside air temperature, the carbon dioxide and water are once cooled to a low temperature suitable for the adsorption and removal. Since it is desirable to adsorb and remove moisture, conventionally, the raw material air after being compressed in advance by the compressor 03 and cooled by the ordinary refrigerator 01 is supplied to the adsorber 05 to adsorb carbon dioxide gas and moisture. Has been removed.

【0004】[0004]

【発明が解決しようとする課題】この為、原料空気を圧
縮してから、その圧縮した原料空気を冷却し、分離工程
に供給するまでの原料空気供給ラインが高圧ラインとな
るため、原料空気供給ラインを高い精度で維持管理しな
ければならない欠点があるとともに、冷却する前の体積
の大きい原料空気を圧縮するから、その圧縮の為に大き
なエネルギーを必要とする欠点もある。
For this reason, since the raw air supply line from the compression of the raw air to the cooling of the compressed raw air to supply to the separation step becomes a high pressure line, the raw air supply In addition to the drawback that the line must be maintained and controlled with high accuracy, there is also the drawback that a large amount of raw air before cooling is compressed, so that a large amount of energy is required for the compression.

【0005】これらの欠点を解決する為に、例えば、原
料空気を冷却してから圧縮することが考えられるが、こ
の場合は、原料空気を圧縮する前に通常の冷凍機で冷却
することになるから、原料空気を効率よく冷却できない
欠点があり、殊に、原料空気に水分や炭酸ガス等が含ま
れている状態でその原料空気を冷却する場合は、それら
の水分や炭酸ガス等が凍結して原料空気供給ラインを詰
まらせるおそれがあるから、圧縮による温度上昇分を見
越した充分低い温度まで冷却しにくい欠点もある。
In order to solve these drawbacks, for example, it is conceivable to cool the raw material air and then compress it. In this case, however, the raw material air is cooled by a normal refrigerator before being compressed. Therefore, there is a drawback that the raw material air cannot be cooled efficiently, especially when the raw material air is cooled in a state where the raw material air contains moisture or carbon dioxide gas, the moisture or carbon dioxide gas is frozen. There is also a drawback that it is difficult to cool to a sufficiently low temperature in anticipation of the temperature rise due to compression because the raw material air supply line may be clogged.

【0006】更に、外部空気を放熱源とする通常の冷凍
機で原料空気を冷却しているから、その冷凍機の冷媒を
圧縮する圧縮機を駆動する必要があり、空気分離コスト
が増大する欠点もある。
Further, since the raw air is cooled by a normal refrigerator using external air as a heat radiation source, it is necessary to drive a compressor for compressing the refrigerant of the refrigerator, which increases the cost of air separation. There is also.

【0007】本発明は上記実情に鑑みてなされたもので
あって、原料空気の冷却方法を工夫することにより、原
料空気を分離工程に供給するまでの原料空気供給ライン
の維持管理が容易で、しかも、空気分離コストの逓減を
図ることができる空気分離方法とその方法に使用する空
気分離装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and by devising a method of cooling the raw air, it is easy to maintain and control the raw air supply line until the raw air is supplied to the separation step. Moreover, it is an object of the present invention to provide an air separation method that can reduce the cost of air separation and an air separation device used in the method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する為の
本発明による空気分離方法の第1特徴構成は、原料空気
を低圧に圧縮する低圧圧縮工程と、前記低圧圧縮工程で
圧縮した原料空気を低温液化ガスとの熱交換で冷却する
吸着用冷却工程と、前記吸着用冷却工程で冷却した原料
空気の炭酸ガスと水分とを吸着除去する吸着工程と、前
記吸着工程で炭酸ガスと水分とが吸着除去された原料空
気を低温液化ガスとの熱交換で冷却する予備冷却工程
と、前記予備冷却工程で冷却した原料空気を前記低圧圧
縮工程よりも高圧に圧縮する高圧圧縮工程と、前記高圧
圧縮工程で圧縮した原料空気を液化温度近くに冷却して
分離する分離工程とを備え、前記吸着用冷却工程と予備
冷却工程とにおいて、原料空気を、共通の熱交換器を介
して、低温液化ガスとの間接熱交換で冷却する点にあ
る。
The first feature of the air separation method according to the present invention for achieving the above object is to provide a raw material air.
In a low pressure compression step of compressing to a low pressure,
Cools compressed raw air by heat exchange with low-temperature liquefied gas
The cooling step for adsorption and the raw material cooled in the cooling step for adsorption
An adsorption step of adsorbing and removing carbon dioxide and moisture from air,
Wherein the pre-cooling step of serial and carbon dioxide in the adsorption step and the water cools the feed air is adsorbed and removed by the heat exchange with the low-temperature liquefied gas, the feed air cooled in the pre-cooling step the low-pressure
A high-pressure compression step of compressing the high pressure than condensation step, a separation step of separating by cooling the feed air compressed by the high pressure <br/> compression step near the liquefaction temperature, the adsorption cooling step and the preliminary
In the cooling process, feed air is passed through a common heat exchanger.
Then, cooling is performed by indirect heat exchange with a low-temperature liquefied gas .

【0009】[0009]

【0010】[0010]

【0011】本発明による空気分離方法の第特徴構成
は、上記第1特徴構成において、前記分離工程が、前記
高圧圧縮工程で圧縮した原料空気を低温液化ガス及び低
温分離ガスとの熱交換で液化温度近くに冷却する分離用
冷却工程を備えている点にある。
A second characteristic feature of the air separation process according to the present invention is the first feature structure, the separation step, the
The present invention is characterized in that a separation cooling step is provided for cooling the raw material air compressed in the high-pressure compression step to near the liquefaction temperature by heat exchange with the low-temperature liquefied gas and the low-temperature separation gas.

【0012】上記第1特徴構成の空気分離方法に使用す
る空気分離装置の第1特徴構成は、原料空気を低圧に圧
縮する低圧圧縮手段と、前記低圧圧縮手段で圧縮した原
料空気を低温液化ガスとの熱交換で冷却する吸着用熱交
換手段と、前記吸着用熱交換手段で冷却した原料空気の
炭酸ガスと水分とを吸着除去する吸着手段と、前記吸着
手段で炭酸ガスと水分とを吸着除去した原料空気を低温
液化ガスとの熱交換で冷却する予備熱交換手段と、前記
予備熱交換手段で冷却された原料空気を高圧に圧縮する
高圧圧縮手段と、前記高圧圧縮手段で圧縮された原料空
気を液化温度近くに冷却して分離する分離手段とが設け
られ、前記吸着用熱交換手段と前記予備熱交換手段と
が、原料空気を、共通の熱交換器を介して、低温液化ガ
との間接熱交換で冷却するように構成されている点に
ある。
A first characteristic configuration of the air separation device used in the air separation method of the first characteristic configuration is that the raw air is compressed to a low pressure.
Low-pressure compression means for compressing, and an original compressed by the low-pressure compression means.
Heat exchange for cooling the feed air by heat exchange with low-temperature liquefied gas
Exchange means, and the raw material air cooled by the heat exchange means for adsorption.
Adsorbing means for adsorbing and removing carbon dioxide gas and moisture;
Preliminary heat exchange means for cooling the raw material air from which carbon dioxide and moisture are adsorbed and removed by means of heat exchange with a low-temperature liquefied gas, and compressing the raw material air cooled by the preliminary heat exchange means to a high pressure
High- pressure compression means, separation means for cooling and separating the raw material air compressed by the high-pressure compression means near the liquefaction temperature is provided , the heat exchange means for adsorption and the preliminary heat exchange means,
Feed air through a common heat exchanger.
In that it is configured to cool by indirect heat exchange with heat .

【0013】[0013]

【0014】[0014]

【0015】空気分離装置の第特徴構成は、上記空気
分離装置の第1特徴構成において、前記分離手段に、前
高圧圧縮手段で圧縮した原料空気を低温液化ガス及び
低温分離ガスとの熱交換で液化温度近くに冷却する分離
用熱交換手段が設けられている点にある。
A second characteristic feature of the air separation unit, in the first feature structure of the air separation unit, the separation unit, the heat of the compressed feed air and low-temperature liquefied gas and cryogenic separation gas in the high pressure compression means The point is that a heat exchange means for separation for cooling to near the liquefaction temperature by exchange is provided.

【0016】空気分離装置の第特徴構成は、上記空気
分離装置の第2特徴構成において、前記予備熱交換手段
と前記吸着用熱交換手段と前記分離用熱交換手段とが、
低温液化ガスとの熱交換を行う共通の熱交換器を設けて
構成されている点にある。
A third characteristic feature of the air separation unit, in the second feature structure of the air separation unit, and the preliminary heat exchange means the adsorption heat exchanger means and the separating heat exchange means,
The point is that a common heat exchanger for performing heat exchange with the low-temperature liquefied gas is provided.

【0017】[0017]

【作用】空気分離方法の第1特徴構成によれば、冷却し
ようとする原料空気と同じ温度条件の外部空気を放熱源
とするのではなく、つまり、原料空気を予め圧縮して原
料空気と放熱源との温度差を大きく取ることなく、所定
の供給先に供給される際にガス化される低温液化ガスを
放熱源とする吸着用冷却工程で、その低温液化ガスがガ
ス化される際の冷熱を利用して、吸着工程で炭酸ガスと
水分とを吸着除去するに適した低い温度まで原料空気を
冷却できる。また、吸着工程で炭酸ガスと水分とを吸着
除去した原料空気を、冷却しようとする原料空気と同じ
温度条件の外部空気を放熱源とするのではなく、つま
り、原料空気を予め圧縮して原料空気と放熱源との温度
差を大きく取ることなく、所定の供給先に供給される際
にガス化される低温液化ガスを放熱源とする予備冷却工
程で、その低温液化ガスがガス化される際の冷熱を利用
して原料空気を予め効率良く冷却するから、それらの水
分や炭酸ガス等が凍結して原料空気供給ラインを詰まら
せるおそれが少なく、高圧圧縮工程における圧縮に起因
する温度上昇を予め見越した状態で原料空気を充分冷却
してから、その冷却した後の体積の小さくなった原料空
気を高圧圧縮工程で効率良く圧縮して、液化温度を高
め、且つ、その供給温度を低くした状態の原料空気を分
離工程に供給できるとともに、低圧圧縮工程から吸着用
冷却工程と吸着工程と予備冷却工程を経て高圧圧縮工程
に至るまでの原料空気供給ラインを低圧化できる。
According to the first aspect of the air separation method, cooling and cooling are performed.
External air with the same temperature conditions as the source air to be radiated
In other words, the raw air is compressed in advance and
Without taking the temperature difference between the air
Low-temperature liquefied gas that is gasified when supplied to
In the adsorption cooling process, which is used as a heat radiation source,
Utilizing the cold heat generated during the conversion to carbon dioxide gas in the adsorption process
Feed air to a low temperature suitable for adsorbing and removing moisture
Can be cooled. In addition, carbon dioxide gas and moisture are adsorbed in the adsorption process.
Rather than using the removed air as the heat source, use external air that has the same temperature conditions as the air to be cooled, that is, compress the air in advance to obtain a large temperature difference between the air and the heat source. In a pre-cooling step using a low-temperature liquefied gas that is gasified when supplied to a predetermined supply destination as a heat radiation source, the raw air is preliminarily efficiently used by utilizing cold heat generated when the low-temperature liquefied gas is gasified. Because they cool well , their water
And the carbon dioxide gas freezes and clogs the raw air supply line.
The raw material air is sufficiently cooled in a state in which the temperature rise due to the compression in the high-pressure compression step is anticipated in advance, and the reduced-volume raw material air after the cooling is efficiently compressed in the high-pressure compression step. to enhance the liquefaction temperature, and, together with the feed air in a state of low and the supply temperature can be supplied to the separation step, the adsorbent for the low pressure compressor step
The pressure of the raw material air supply line from the cooling step, the adsorption step, and the pre-cooling step to the high-pressure compression step can be reduced.

【0018】[0018]

【0019】[0019]

【0020】空気分離方法の第特徴構成によれば、所
定の供給先に供給される際にガス化される低温液化ガス
及び分離工程で分離された低温分離ガスを放熱源とする
分離用冷却工程で、その低温液化ガスがガス化される際
の冷熱と低温分離ガスの冷熱とを利用して、高圧圧縮工
程で圧縮した原料空気を液化温度近くに冷却できるとと
もに、その低温分離ガスを加熱できる。
According to the second characteristic configuration of the air separation method, the cooling for separation using the low-temperature liquefied gas gasified when supplied to the predetermined supply destination and the low-temperature separation gas separated in the separation step as a heat radiation source In the process, the raw air compressed in the high-pressure compression process can be cooled to near the liquefaction temperature by using the cold heat when the low-temperature liquefied gas is gasified and the cold heat of the low-temperature separated gas, and the low-temperature separated gas is heated. it can.

【0021】第1特徴構成の空気分離方法に使用する空
気分離装置の第1特徴構成によれば、冷却しようとする
原料空気と同じ温度条件の外部空気を放熱源とするので
はなく、つまり、原料空気を予め圧縮して原料空気と放
熱源との温度差を大きく取ることなく、所定の供給先に
供給される際にガス化される低温液化ガスを放熱源とす
る吸着用熱交換手段で、その低温液化ガスがガス化され
る際の冷熱を利用して、吸着手段で炭酸ガスと水分とを
吸着除去するに適した低い温度まで原料空気を冷却でき
る。また、吸着手段で炭酸ガスと水分とを吸着除去した
原料空気を、冷却しようとする原料空気と同じ温度条件
の外部空気を放熱源とするのではなく、つまり、原料空
気を予め圧縮して原料空気と放熱源との温度差を大きく
取ることなく、所定の供給先に供給される際にガス化さ
れる低温液化ガスを放熱源とする予備熱交換手段で、そ
の低温液化ガスがガス化される際の冷熱を利用して原料
空気を予め効率良く冷却するから、それらの水分や炭酸
ス等が凍結して原料空気供給ラインを詰まらせるおそ
れが少なく、高圧圧縮手段による圧縮に起因する温度上
昇を予め見越した状態で原料空気を充分冷却してから、
その冷却した後の体積の小さくなった原料空気を高圧
縮手段で効率良く圧縮して、液化温度を高め、且つ、そ
の供給温度を低くした状態の原料空気を分離手段に供給
できるとともに、低圧圧縮手段から吸着用熱交換手段と
吸着手段と予備熱交換手段を経て高圧圧縮手段に至るま
での原料空気供給ラインを低圧化できる。
According to the first aspect of the air separation apparatus used in the air separation method having the first aspect, the air is to be cooled.
External air with the same temperature conditions as the raw air is used as the heat radiation source.
In other words, the raw air is compressed beforehand and released
To a specified supply destination without taking a large temperature difference with the heat source
Low-temperature liquefied gas that is gasified when supplied is used as a heat radiation source.
The low-temperature liquefied gas is gasified by heat exchange means for adsorption.
The carbon dioxide gas and moisture are absorbed by the adsorption
Material air can be cooled to a low temperature suitable for adsorption removal.
You. In addition, carbon dioxide gas and moisture were removed by adsorption by the adsorption means.
The feed air, instead of the heat radiating source external air of the same temperature conditions as the feed air to be cooled, i.e., without a large temperature difference between the pre-compressed to the feed air radiator source feed air, Preliminary heat exchange means using a low-temperature liquefied gas that is gasified when supplied to a predetermined supply destination as a heat radiation source. To cool them from moisture or carbonic acid
Oso gas or the like clog the feed air supply line and freeze
After the raw material air is sufficiently cooled in a state where the temperature rise due to compression by the high-pressure compression means is anticipated in advance,
The volume of the smaller becomes feed air after the cooling efficiently compressed at a high pressure pressure <br/> condensation unit to increase the liquidus temperature, and, supplying a source air in the state that lower the feed temperature to the separation means As well as heat exchange means for adsorption from low pressure compression means.
The pressure of the raw material air supply line from the adsorption means and the preliminary heat exchange means to the high pressure compression means can be reduced.

【0022】[0022]

【0023】[0023]

【0024】空気分離装置の第特徴構成によれば、所
定の供給先に供給される際にガス化される低温液化ガス
及び分離工程で分離された低温分離ガスを放熱源とする
分離用熱交換手段で、その低温液化ガスがガス化される
際の冷熱と低温分離ガスの冷熱とを利用して、高圧圧縮
手段で圧縮した原料空気を液化温度近くに冷却できると
ともに、その低温分離ガスを加熱できる。
According to the second characteristic configuration of the air separation device, the separation heat is generated by using the low-temperature liquefied gas gasified when supplied to the predetermined supply destination and the low-temperature separation gas separated in the separation step as a heat radiation source. In the exchange means, the raw air compressed by the high-pressure compression means can be cooled to a temperature close to the liquefaction temperature by utilizing the cold heat when the low-temperature liquefied gas is gasified and the cold heat of the low-temperature separated gas, and the low-temperature separated gas is cooled. Can be heated.

【0025】空気分離装置の第特徴構成によれば、予
備熱交換手段と吸着用熱交換手段と分離用熱交換手段と
設けられるべき低温液化ガスとの間接熱交換を行う熱
交換器を共通化できる。
According to the third characteristic configuration of the air separation device, the preliminary heat exchange means, the heat exchange means for adsorption, the heat exchange means for separation,
The heat exchanger for performing indirect heat exchange with the low-temperature liquefied gas to be provided in the refrigeration system can be shared.

【0026】[0026]

【発明の効果】空気分離方法の第1特徴構成によれば、
低温液化ガスが所定の供給先に供給する為にガス化され
る際の冷熱を利用して、水分と炭酸ガスとを吸着除去す
るに適した低い温度まで原料空気を冷却でき、また、吸
着工程で炭酸ガスと水分とを吸着除去した原料空気も、
低温液化ガスが所定の供給先に供給する為にガス化され
る際の冷熱を利用した予備冷却工程で充分低い温度まで
冷却して分離工程に供給できるとともに、原料空気を効
率良く圧縮できるから、空気分離コストの逓減を図るこ
とができる。しかも、低圧圧縮工程から吸着用冷却工程
と吸着工程と予備冷却工程を経て高圧圧縮工程に至るま
での原料空気供給ラインを低圧化できるから、その分、
原料空気供給ラインの維持管理を容易化できる。
According to the first feature of the air separation method,
Low-temperature liquefied gas is gasified to supply to a predetermined destination.
To remove water and carbon dioxide by adsorption
The raw material air can be cooled to a low temperature suitable for
The raw material air from which carbon dioxide and moisture are adsorbed and removed in the
Preliminary cooling process using cold heat when low-temperature liquefied gas is gasified to be supplied to a specified destination
Together can be supplied to the cooling to the separation process, because the feed air can be efficiently compressed, Ru can be achieved diminishing air separation costs. Moreover, from the low pressure compression process to the adsorption cooling process
The pressure of the raw air supply line from the adsorption process and the pre-cooling process to the high-pressure compression process can be reduced.
The maintenance of the raw material air supply line can be facilitated.

【0027】[0027]

【0028】[0028]

【0029】空気分離方法の第特徴構成によれば、空
気分離方法の第1特徴構成による効果に加えて、低温液
化ガスが所定の供給先に供給する為にガス化される際の
冷熱と低温分離ガスの冷熱とを利用して、高圧圧縮工程
で圧縮した原料空気を液化温度近くに冷却できるから、
空気分離コストの一層の逓減を図ることができるととも
に、その低温分離ガスを常温にすることができる。
According to a second characterizing feature of the air separation process, in addition to the effect of the first feature structure of an air separation method, cold when low-temperature liquefied gas is gasified to be fed to the predetermined supply destination And high-temperature compression process
The raw air compressed in step can be cooled to near the liquefaction temperature,
The air separation cost can be further reduced, and the low-temperature separation gas can be kept at room temperature.

【0030】第1特徴構成の空気分離方法に使用する空
気分離装置の第1特徴構成によれば、低温液化ガスが所
定の供給先に供給する為にガス化される際の冷熱を利用
して、水分と炭酸ガスとを吸着除去するに適した低い温
度まで原料空気を冷却でき、また、吸着手段で炭酸ガス
と水分とを吸着除去した原料空気も、低温液化ガスが所
定の供給先に供給する為にガス化される際の冷熱を利用
た予備熱交換手段で充分低い温度まで冷却して分離手
段に供給できるとともに、原料空気を効率良く圧縮でき
るから、空気分離コストの逓減を図ることができる。
かも、低圧圧縮手段から吸着用熱交換手段と吸着手段と
予備熱交換手段を経て圧縮手段に至るまでの原料空気供
給ラインを低圧化できるから、その分、原料空気供給ラ
インの維持管理を容易化できる。
According to the first aspect of the air separation apparatus used in the air separation method of the first aspect, the low-temperature liquefied gas is stored in the space.
Utilizes cold heat when gasifying to supply to a fixed supply destination
Low temperature suitable for adsorbing and removing moisture and carbon dioxide.
The raw material air can be cooled down to
The raw material air from which water and moisture have been adsorbed and removed is also cooled to a sufficiently low temperature by preliminary heat exchange means utilizing cold heat when the low-temperature liquefied gas is gasified to be supplied to a predetermined supply destination. Hands isolated
Together can be supplied to the stage, from the raw air can be efficiently compressed, Ru can be achieved diminishing air separation costs. In addition, the pressure of the raw material air supply line from the low pressure compression means to the compression means through the heat exchange means for adsorption, the adsorption means and the preliminary heat exchange means can be reduced, so that the raw material air supply line can be maintained accordingly. Management can be simplified.

【0031】[0031]

【0032】[0032]

【0033】空気分離装置の第特徴構成によれば、空
気分離装置の第1特徴構成による効果に加えて、低温液
化ガスが所定の供給先に供給する為にガス化される際の
冷熱と低温分離ガスの冷熱とを利用して、高圧圧縮手段
で圧縮した原料空気を液化温度近くに冷却できるから、
空気分離コストの一層の逓減を図ることができるととも
に、その低温分離ガスを常温にすることができる。
According to a second characterizing feature of the air separation unit, in addition to the effect of the first feature structure of an air separation unit, cold when low-temperature liquefied gas is gasified to be fed to the predetermined supply destination And high-temperature compression means
The raw air compressed in step can be cooled to near the liquefaction temperature,
The air separation cost can be further reduced, and the low-temperature separation gas can be kept at room temperature.

【0034】空気分離装置の第特徴構成によれば、空
気分離装置の第2特徴構成による効果に加えて、予備熱
交換手段と吸着用熱交換手段と分離用熱交換手段と
けられるべき低温液化ガスとの熱交換を行う熱交換器を
共通化できるから、低温液化ガスとの熱交換構造を簡略
化できる。
According to a third characterizing feature of the air separation unit, in addition to the effect of the second feature structure of the air separation unit, set to the pre-heat exchanger unit and the suction heat exchange means and the separating heat exchange means < Since the heat exchanger for performing heat exchange with the low-temperature liquefied gas to be exchanged can be shared, the structure of heat exchange with the low-temperature liquefied gas can be simplified.

【実施例】図1は、本発明による空気分離方法とその方
法に使用する空気分離装置の概略を示し、原料空気から
塵埃を除去する空気濾過器4と、塵埃を除去した原料空
気を1.3ata 程度の圧力になるよう圧縮する低圧圧縮
手段8と、低圧圧縮手段8で圧縮した原料空気を低温液
化ガスとしての−160℃程度の液化天然ガス(以下、
LNGという。)との間接熱交換で冷却する吸着用熱交
換手段としての第2熱交換手段2と、冷却した原料空気
から炭酸ガスと水分とを吸着除去する吸着手段5と、炭
酸ガスと水分とが吸着除去された原料空気をLNGとの
間接熱交換で冷却する予備熱交換手段としての第1熱交
換手段1と、その冷却した原料空気を約5.4ata の圧
力になるよう圧縮する高圧圧縮手段6と、高圧圧縮手段
6で圧縮した原料空気を液化温度近くに冷却して分離す
る分離手段7とを設け、分離手段7には、原料空気を液
化温度近くに冷却する分離用熱交換手段としての第3熱
交換手段3と、液化温度近くに冷却した原料空気から酸
素と窒素を分離する低温分離装置14とを設けてある。
FIG. 1 schematically shows an air separation method according to the present invention and an air separation apparatus used in the method. An air filter 4 for removing dust from the raw air, and a raw air from which the dust has been removed are subjected to the following steps. Low-pressure compression means 8 for compressing to a pressure of about 3 ata, and liquefied natural gas of about -160 ° C.
LNG. ), A second heat exchange means 2 as an adsorbing heat exchange means for cooling by indirect heat exchange, an adsorbing means 5 for adsorbing and removing carbon dioxide and moisture from the cooled raw material air, and adsorbing carbon dioxide and moisture. First heat exchange means 1 as preliminary heat exchange means for cooling the removed raw air by indirect heat exchange with LNG, and high-pressure compression means 6 for compressing the cooled raw air to a pressure of about 5.4 ata. And a separating means 7 for cooling the raw material air compressed by the high-pressure compressing means 6 to a temperature close to the liquefaction temperature and separating the raw material air. The separating means 7 is provided as a heat exchange means for separation for cooling the raw material air to a temperature close to the liquefying temperature. A third heat exchange means 3 and a low-temperature separation device 14 for separating oxygen and nitrogen from the raw material air cooled near the liquefaction temperature are provided.

【0035】そして、空気濾過器4を通過した原料空気
が、低圧圧縮手段8で圧縮される低圧圧縮工程Hと、第
2熱交換手段2で冷却される吸着用冷却工程Eと、炭酸
ガスと水分とが吸着手段5で吸着除去される吸着工程D
と、第1熱交換手段1で冷却される予備冷却工程Aと、
高圧圧縮手段6で圧縮される高圧圧縮工程Bとを順に経
て、分離手段7で分離する分離工程Cに供給され、分離
工程Cに供給された原料空気は、第3熱交換手段3で液
化温度近くに冷却する分離用冷却工程Fを経て、低温分
離装置14でその原料空気から酸素と窒素を分離する低
温分離工程Gに送られる。
Then, the raw air passed through the air filter 4 is compressed by the low-pressure compression means 8 in a low-pressure compression step H, the second heat exchange means 2 is cooled by an adsorption cooling step E, Adsorption step D in which moisture and the adsorption means 5 are adsorbed and removed.
A pre-cooling step A for cooling by the first heat exchange means 1;
After sequentially passing through the high-pressure compression step B compressed by the high-pressure compression means 6, the raw material air supplied to the separation step C separated by the separation means 7 is supplied to the third heat exchange means 3. After passing through a separation cooling step F for cooling nearby, it is sent to a low temperature separation step G for separating oxygen and nitrogen from the raw material air in the low temperature separation device 14.

【0036】従って、原料空気の圧縮工程を、低圧圧縮
手段8で圧縮される低圧圧縮工程Hと高圧圧縮手段6で
圧縮される高圧圧縮工程Bとに分けて、低圧圧縮工程H
での圧縮圧力をできるだけ低く設定し、その低い圧力下
で炭酸ガスと水分とを吸着除去した原料空気を予備冷却
工程Aで冷却して、高圧圧縮工程Bでは予備冷却工程A
で冷却した低温の原料空気を圧縮しているから、原料空
気の圧縮に必要な圧縮エネルギーを減らすことができ
る。
Therefore, the raw air compression process is divided into a low pressure compression process H compressed by the low pressure compression means 8 and a high pressure compression process B compressed by the high pressure compression means 6.
Is set as low as possible, and the raw material air from which carbon dioxide and moisture are adsorbed and removed is cooled in the pre-cooling step A under the low pressure, and the pre-cooling step A is performed in the high-pressure compression step B.
Since the low-temperature raw material air cooled by the above is compressed, the compression energy required for compressing the raw material air can be reduced.

【0037】次に、前記空気分離方法とその方法に使用
する空気分離装置を、図2に示すフローダイヤグラムに
基づいて説明する。
Next, the air separation method and the air separation device used in the method will be described with reference to the flow diagram shown in FIG.

【0038】前記空気瀘過器4を通過して塵埃が除去さ
れた原料空気は、配管P1を介して1ata の圧力で低圧圧
縮手段である第2空気圧縮機8に導入され、この第2空
気圧縮機8で約1.3ata の圧力になるよう圧縮され
て、+50℃程度の温度で配管P2を介して第2熱交換手
段2に導入され、この第2熱交換手段2で+5℃程度に
冷却される。
The raw air from which dust has been removed by passing through the air filter 4 is introduced at a pressure of 1 ata through a pipe P1 into a second air compressor 8, which is low-pressure compression means. It is compressed to a pressure of about 1.3 ata by the compressor 8 and is introduced into the second heat exchange means 2 through the pipe P2 at a temperature of about + 50 ° C., and the temperature is increased to about + 5 ° C. by the second heat exchange means 2. Cooled.

【0039】前記第2熱交換手段2は、LNG蒸発器9
上部と、原料空気供給路に設けた第2熱交換器2aとに亘
って、第2ポンプ2cの作動で冷媒としてのフレオンを循
環させる第2冷媒循環路2bを設けて構成され、LNG蒸
発器9で比較的温度の高いLNGとの熱交換で冷却され
て液化した循環冷媒は、LNG蒸発器9中部から第2ポ
ンプ2cで第2熱交換器2aに送り込まれて、原料空気との
熱交換で当該原料空気を冷却し、原料空気との熱交換で
加熱された循環冷媒はLNG蒸発器9頂部に還流され
る。
The second heat exchange means 2 comprises an LNG evaporator 9
An LNG evaporator that is provided with a second refrigerant circulation path 2b that circulates freon as a refrigerant by operating a second pump 2c over an upper part and a second heat exchanger 2a provided in a raw air supply path. The circulating refrigerant cooled and liquefied by heat exchange with LNG having a relatively high temperature in 9 is sent from the middle part of the LNG evaporator 9 to the second heat exchanger 2a by the second pump 2c to exchange heat with the raw air. The circulating refrigerant heated by the heat exchange with the raw material air is returned to the top of the LNG evaporator 9.

【0040】前記LNG蒸発器9で冷却された循環冷媒
が、気相状態のまま第2ポンプ2cに吸入されることがな
いよう、LNG蒸発器9と第2ポンプ2cとの間の第2冷
媒循環路2bに液溜め2dが接続されている。
The second refrigerant between the LNG evaporator 9 and the second pump 2c prevents the circulating refrigerant cooled by the LNG evaporator 9 from being sucked into the second pump 2c in a gaseous state. The reservoir 2d is connected to the circulation path 2b.

【0041】前記第2熱交換器2aで冷却された原料空気
は、配管P3を介して吸着手段としてのアルミナゲルや合
成ゼオライト等の吸着剤が充填されている除炭・乾燥ユ
ニット(所謂、モレキュラーシーブス塔)5に導入さ
れ、この除炭・乾燥ユニット5で初めに水分が次に炭酸
ガスが吸着除去されてから、配管P4を介して第1熱交換
手段1に導入され、この第1熱交換手段1で約−160
℃程度に冷却される。
The raw material air cooled in the second heat exchanger 2a is supplied through a pipe P3 with a decarburizing / drying unit (so-called molecular) which is filled with an adsorbent such as alumina gel or synthetic zeolite as an adsorbing means. Water is first removed and carbon dioxide gas is adsorbed and removed in the decarburization / drying unit 5, and then introduced into the first heat exchange means 1 via a pipe P4. About -160 by the exchange means 1
Cooled to about ° C.

【0042】前記第1熱交換手段1は、LNG蒸発器9
と、原料空気供給路に設けた上流側第1熱交換器10と下
流側第1熱交換器11との二つの熱交換器からなる第1熱
交換器1aとに亘って、第1ポンプ1cの作動で冷媒として
の低温窒素を循環させる第1冷媒循環路1bを設けて構成
され、LNG蒸発器9でLNGとの熱交換で冷却されて
液化した循環冷媒(液化窒素)は、LNG蒸発器9下部
から第1ポンプ1cで下流側第1熱交換器11に導入され
て、原料空気との熱交換で当該原料空気を約−160℃
程度に冷却し、原料空気との熱交換で加熱された循環冷
媒(低温窒素ガス)はバルブV1を通ってLNG蒸発器9
頂部に還流される。
The first heat exchange means 1 includes an LNG evaporator 9
And a first heat exchanger 1a comprising two heat exchangers, an upstream first heat exchanger 10 and a downstream first heat exchanger 11, provided in the raw material air supply path. A circulating refrigerant (liquefied nitrogen) cooled and liquefied by heat exchange with LNG in the LNG evaporator 9 is provided with a first refrigerant circulation path 1b for circulating low-temperature nitrogen as a refrigerant by the operation of the LNG evaporator. 9 is introduced into the downstream first heat exchanger 11 by the first pump 1c from the lower part, and the raw material air is heated to about -160 ° C. by heat exchange with the raw material air.
The circulating refrigerant (low-temperature nitrogen gas) that has been cooled to a sufficient degree and is heated by heat exchange with the raw material air passes through the valve V1 and passes through the LNG evaporator 9.
Refluxed to the top.

【0043】前記LNGとの熱交換で冷却された循環冷
媒が、気相状態のまま第1ポンプ1cに吸入されることが
ないよう、LNG蒸発器9と第1ポンプ1cとの間の第1
冷媒循環路1bに液溜め1dが接続され、液溜め1d上部に溜
まった気相状態の冷媒(窒素ガス)はLNG蒸発器9中
部に還流されてその液化が図られる。
The first circulating refrigerant cooled between the LNG evaporator 9 and the first pump 1c is prevented from being sucked into the first pump 1c in a gaseous state while being cooled by heat exchange with the LNG.
A liquid reservoir 1d is connected to the refrigerant circulation path 1b, and the refrigerant (nitrogen gas) in a gaseous state stored in the upper portion of the liquid reservoir 1d is returned to the center of the LNG evaporator 9 to be liquefied.

【0044】前記第1熱交換器1a(10,11)で冷却された
原料空気は、配管P5を介して約1.2ata の圧力で高圧
圧縮手段としての第1空気圧縮機6に導入され、この第
1空気圧縮機6で約5.4ata の圧力になるよう圧縮さ
れて−20℃程度に昇温された後、配管P6を介して上流
側第1熱交換器10に再導入され、配管P4を介して上流側
第1熱交換器10に導入される原料空気との向流間接熱交
換で+5℃程度に昇温されてから、配管P7を介して分離
手段7に導入される。
The raw material air cooled in the first heat exchanger 1a (10, 11) is introduced into a first air compressor 6 as high-pressure compression means through a pipe P5 at a pressure of about 1.2 ata. After being compressed to a pressure of about 5.4 ata by the first air compressor 6 and heated to about −20 ° C., it is re-introduced into the upstream first heat exchanger 10 via the pipe P6, The temperature is raised to about + 5 ° C. by countercurrent indirect heat exchange with the raw air introduced into the upstream first heat exchanger 10 via P4, and then introduced into the separation means 7 via the pipe P7.

【0045】前記分離手段7は、配管P7を介して導入さ
れる原料空気を液化温度近くまで冷却する第3熱交換手
段3と、中圧精留塔12と低圧精留塔13とで液化温度近く
まで冷却した原料空気を酸素と窒素と廃ガスとに分離す
る低温分離装置14とを設けて構成されている。
The separation means 7 comprises a third heat exchange means 3 for cooling the raw material air introduced through the pipe P7 to a temperature close to the liquefaction temperature, and a liquefaction temperature of the medium pressure rectification tower 12 and the low pressure rectification tower 13. It is provided with a low-temperature separator 14 for separating the raw material air cooled to near into oxygen, nitrogen and waste gas.

【0046】前記第3熱交換手段3は、LNG蒸発器9
と原料空気供給路に設けた第3熱交換器3aとに亘って冷
媒としての低温窒素を循環させる第3冷媒循環路3bと、
低温分離ガスとしての低圧精留塔13で分離された低温酸
素ガスと低温窒素ガスと低温廃ガスとをその第3熱交換
器3a内に通過させる配管P15,P18,P16,P19,P17,P20 とを
設けて構成され、原料空気は、第3冷媒循環路3bを介し
てのLNGとの熱交換及び低温酸素ガスと低温窒素ガス
と低温廃ガスとの熱交換で液化温度近くまで冷却され
る。
The third heat exchange means 3 includes an LNG evaporator 9
A third refrigerant circulation path 3b for circulating low-temperature nitrogen as a refrigerant over the third heat exchanger 3a provided in the raw material air supply path,
Pipes P15, P18, P16, P19, P17, P20 for passing the low-temperature oxygen gas, low-temperature nitrogen gas, and low-temperature waste gas separated by the low-pressure rectification column 13 as low-temperature separation gas into the third heat exchanger 3a. The raw material air is cooled to near the liquefaction temperature by heat exchange with LNG and heat exchange between low-temperature oxygen gas, low-temperature nitrogen gas, and low-temperature waste gas via the third refrigerant circuit 3b. .

【0047】前記第1熱交換器1aと第3熱交換器3aとを
並列に接続して、第1ポンプ1cの作動でLNG蒸発器9
から送り出される循環冷媒(液化窒素)を、第1熱交換
器1aと第3熱交換器3aとに分岐供給するように構成し、
第3熱交換器3a下部に導入された循環冷媒(液化窒素)
は原料空気との熱交換で加熱されて窒素ガスとなり、第
3熱交換器3a上部から導出された循環冷媒(窒素ガス)
はバルブV3を通って第1熱交換器1aからの循環冷媒と合
流してLNG蒸発器9頂部に還流される。
The first heat exchanger 1a and the third heat exchanger 3a are connected in parallel, and the LNG evaporator 9 is operated by the operation of the first pump 1c.
Circulating refrigerant (liquefied nitrogen) sent out from the first heat exchanger 1a and the third heat exchanger 3a is branched and supplied to the first heat exchanger 1a and the third heat exchanger 3a.
Circulating refrigerant (liquefied nitrogen) introduced in the lower part of the third heat exchanger 3a
Is a circulating refrigerant (nitrogen gas) that is heated by heat exchange with the raw material air to become nitrogen gas, and is led out from the upper part of the third heat exchanger 3a.
Is combined with the circulating refrigerant from the first heat exchanger 1a through the valve V3 and returned to the top of the LNG evaporator 9.

【0048】前記LNG蒸発器9には−160℃程度の
LNGがその下部から供給され、第1,第3熱交換器1
a,3a から還流される循環冷媒(窒素)と、第2熱交換
器2aから還流される循環冷媒(フレオン)とで加熱され
てガス化し、LNG蒸発器9上部から導出されて所定の
供給先に供給される。
The LNG at about -160 ° C. is supplied to the LNG evaporator 9 from below, and the first and third heat exchangers 1
The circulating refrigerant (nitrogen) circulated from the a and 3a and the circulating refrigerant (freon) circulated from the second heat exchanger 2a are heated and gasified, and are discharged from the upper part of the LNG evaporator 9 and supplied to a predetermined supply destination. Supplied to

【0049】前記第3熱交換器3aで液化温度近くまで冷
却された原料空気は、配管P8を介して中圧精留塔12下部
に導入され、中圧精留塔12底部に製出した酸素リッチ液
体は、配管P9を介して膨張弁E1に導かれて自由膨張さ
れ、配管P10 を介して低圧精留塔13中部に導入される。
The raw material air cooled to near the liquefaction temperature in the third heat exchanger 3a is introduced into the lower part of the intermediate pressure rectification column 12 via the pipe P8, and the oxygen produced at the bottom of the medium pressure rectification column 12 The rich liquid is guided to the expansion valve E1 via the pipe P9, is freely expanded, and is introduced into the middle part of the low-pressure rectification column 13 via the pipe P10.

【0050】前記中圧精留塔12中部にできた液体窒素
は、配管P11 を介して膨張弁E2に導かれて自由膨張さ
れ、配管P12 を介して低圧精留塔13上部に導入される。
The liquid nitrogen formed in the middle part of the intermediate pressure rectification column 12 is led to an expansion valve E2 via a pipe P11, is freely expanded, and is introduced into the upper part of the low pressure rectification column 13 via a pipe P12.

【0051】前記中圧精留塔12頂部にできた窒素ガス
は、低圧精留塔13底部の熱交換器15に導入されて、低圧
精留塔13底部の液体酸素との熱交換で液化され、その液
化された液体窒素の一部は中圧精留塔12頂部から還流液
として流下し、残りの液体窒素は配管P13 を介して膨張
弁E3に導かれて自由膨張され、配管P14 を介して低圧精
留塔13頂部に導入される。
The nitrogen gas formed at the top of the medium pressure rectification column 12 is introduced into a heat exchanger 15 at the bottom of the low pressure rectification column 13 and liquefied by heat exchange with liquid oxygen at the bottom of the low pressure rectification column 13. A part of the liquefied liquid nitrogen flows down from the top of the intermediate pressure rectification column 12 as a reflux liquid, and the remaining liquid nitrogen is introduced to an expansion valve E3 via a pipe P13, is freely expanded, and is expanded via a pipe P14. To the top of the low-pressure rectification column 13.

【0052】前記低圧精留塔13は、中圧精留塔12上部
と、当該中圧精留塔12から熱交換器15に導入された窒素
ガスとの熱交換で加熱されて、その下部に酸素ガスを、
その頂部に窒素ガスを、その上部に廃ガスを夫々製出
し、酸素ガスは配管P15 を介して、窒素ガスは配管P16
を介して、廃ガスは配管P17 を介して夫々第3熱交換器
3aに導入される。
The low-pressure rectification column 13 is heated by heat exchange between the upper portion of the medium-pressure rectification column 12 and the nitrogen gas introduced from the intermediate-pressure rectification column 12 into the heat exchanger 15, and the lower portion is provided at the lower portion. Oxygen gas,
Nitrogen gas is produced at the top and waste gas is produced at the top, and oxygen gas is passed through the pipe P15 and nitrogen gas is sent through the pipe P16.
And the waste gas is discharged through the pipe P17 through the third heat exchanger, respectively.
Introduced in 3a.

【0053】前記第3熱交換器3aに導入された酸素ガス
と窒素ガスと廃ガスは、配管P7を介して第3熱交換器3a
に導入される原料空気との向流間接熱交換で常温(+2
℃程度)に加熱され、酸素ガスは配管P18 を介して製品
酸素ガスとして導出され、窒素ガスは配管P19 を介して
製品窒素ガスとして導出され、廃ガスは配管P20 を介し
て除炭・乾燥ユニット5に導入されて吸着材の再生に使
用した後、配管P21 を介して放出される。尚、第1,第
3熱交換手段において冷媒として使用される窒素は、約
25ata 以上の圧力で循環されている。
The oxygen gas, the nitrogen gas and the waste gas introduced into the third heat exchanger 3a are passed through the pipe P7 to the third heat exchanger 3a.
Room temperature (+2) by countercurrent indirect heat exchange with raw material air introduced into
℃), oxygen gas is led out as product oxygen gas via pipe P18, nitrogen gas is led out as product nitrogen gas via pipe P19, and waste gas is decarbonized / drying unit via pipe P20. After being introduced into 5 and used for the regeneration of the adsorbent, it is discharged via the pipe P21. The nitrogen used as the refrigerant in the first and third heat exchange means is circulated at a pressure of about 25 ata or more.

【0054】〔その他の実施例〕 .予備熱交換手段,分離用熱交換手段の各々は、循環
冷媒としての窒素に代えて、アルゴン等の不活性ガスを
冷媒として、原料空気と低温液化ガスとを間接熱交換さ
せるものであっても良い。前述の実施例において、アル
ゴンを冷媒として原料空気とLNGとを間接熱交換させ
る場合は、原料空気と熱交換したあとの常温アルゴンガ
スを8ata 程度以上の圧力でLNG蒸発器頂部に還流さ
せるのが望ましい。 .空気分離装置で分離された窒素の一部を冷媒とし
て、その冷媒で原料空気と低温液化ガスとを間接熱交換
させる予備熱交換手段や分離用熱交換手段を設けて実施
しても良い。 .原料空気と熱交換させる低温液化ガスとしては、L
NGに代えて、液体水素(LH2)であっても良い。そし
て、予備熱交換手段,分離用熱交換手段の循環冷媒とし
て窒素を使用する場合は、7ata 程度の常温窒素ガスを
LH2 蒸発器の頂部に導入して、その窒素が固体となら
ない温度条件と圧力条件で熱交換させ、又、予備熱交換
手段,分離用熱交換手段の循環冷媒としてアルゴンを使
用する場合は、4ata 程度の常温アルゴンガスをLH2
蒸発器の頂部に導入して、そのアルゴンが固体とならな
い温度条件と圧力条件で熱交換させることが望ましい。 .本発明による空気分離方法とその方法に使用する空
気分離装置は、酸素と窒素に加えて、アルゴンやネオ
ン、ヘリウム等を分離するものであっても良い。 .本発明による空気分離方法とその方法に使用する空
気分離装置は、液体酸素や液体窒素を製品として分離す
るものであっても良い。
[0054] [Other embodiments] 1. Each of the preliminary heat exchanging means and the separation heat exchanging means may perform indirect heat exchange between the raw air and the low-temperature liquefied gas by using an inert gas such as argon as a refrigerant instead of nitrogen as a circulating refrigerant. good. In the above-described embodiment, when indirect heat exchange is performed between the raw material air and LNG using argon as a refrigerant, it is necessary to return the room temperature argon gas after the heat exchange with the raw material air to the top of the LNG evaporator at a pressure of about 8 ata or more. desirable. 2 . A part of the nitrogen separated by the air separation device may be used as a refrigerant, and the refrigerant may be provided with a preliminary heat exchange unit or a separation heat exchange unit for indirect heat exchange between the raw material air and the low-temperature liquefied gas. 3 . As the low-temperature liquefied gas to be heat-exchanged with the raw material air, L
Liquid hydrogen (LH 2 ) may be used instead of NG. When nitrogen is used as a circulating refrigerant for the preliminary heat exchange means and the heat exchange means for separation, about 7 atm of room temperature nitrogen gas is introduced into the top of the LH 2 evaporator, and the temperature conditions are set so that the nitrogen does not become solid. When argon is used as the circulating refrigerant for the pre-heat exchange means and the heat exchange means for separation under the pressure condition, and about 4 ata of normal temperature argon gas is used in LH 2
It is desirable to introduce the gas at the top of the evaporator and exchange heat under temperature and pressure conditions under which the argon does not become solid. 4 . The air separation method according to the present invention and the air separation device used in the method may be one that separates argon, neon, helium, etc. in addition to oxygen and nitrogen. 5 . The air separation method according to the present invention and the air separation apparatus used in the method may be one that separates liquid oxygen or liquid nitrogen as a product.

【0055】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空気分離方法とその空気分離装置を示す概略図FIG. 1 is a schematic diagram showing an air separation method and an air separation device.

【図2】空気分離方法とその空気分離装置を示すフロー
ダイヤグラム
FIG. 2 is a flow diagram showing an air separation method and the air separation device.

【図3】従来例を示す概略図FIG. 3 is a schematic diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

A 予備冷却工程 B 高圧圧縮工程 C 分離工程 D 吸着工程 E 吸着用冷却工程 F 分離用冷却工程H 低圧圧縮工程 1 予備熱交換手段 2 吸着用熱交換手段 3 分離用熱交換手段 5 吸着手段 6 高圧圧縮手段 7 分離手段8 低圧圧縮手段 9 共通の熱交換器 Reference Signs List A Pre-cooling step B High-pressure compression step C Separation step D Adsorption step E Adsorption cooling step F Separation cooling step H Low-pressure compression step 1 Preliminary heat exchange means 2 Adsorption heat exchange means 3 Separation heat exchange means 5 Adsorption means 6 High pressure Compression means 7 Separation means 8 Low pressure compression means 9 Common heat exchanger

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料空気を低圧に圧縮する低圧圧縮工程
(H ) と、前記低圧圧縮工程(H ) で圧縮した原料空気
を低温液化ガスとの熱交換で冷却する吸着用冷却工程
(E)と、前記吸着用冷却工程(E)で冷却した原料空
気の炭酸ガスと水分とを吸着除去する吸着工程(D)
と、前記吸着工程(D)で炭酸ガスと水分とが吸着除去
された原料空気を低温液化ガスとの熱交換で冷却する予
備冷却工程(A)と、前記予備冷却工程(A)で冷却し
た原料空気を前記低圧圧縮工程(H ) よりも高圧に圧縮
する高圧圧縮工程(B)と、前記高圧圧縮工程(B)で
圧縮した原料空気を液化温度近くに冷却して分離する分
離工程(C)とを備え 前記吸着用冷却工程(E ) と予備冷却工程(A ) とにお
いて、原料空気を、共通の熱交換器(9 ) を介して、低
温液化ガスとの間接熱交換で冷却する 空気分離方法。
1. A low pressure compression step of compressing raw air to a low pressure.
(H 2 ) and the raw material air compressed in the low-pressure compression step (H 2 )
Cooling process for adsorbing water by heat exchange with low-temperature liquefied gas
(E) and the raw material empty cooled in the adsorption cooling step (E).
Adsorption step (D) to adsorb and remove gaseous carbon dioxide and moisture
And the carbon dioxide gas and moisture are adsorbed and removed in the adsorption step (D).
High pressure to compress the pre-cooling step (A), the cooled feed air into the higher pressure than the low pressure compressor step (H) in the pre-cooling step (A) for cooling the raw material air heat exchange with the low-temperature liquefied gas A compression step (B); and a separation step (C) for cooling and separating the raw material air compressed in the high-pressure compression step (B) to a temperature close to the liquefaction temperature , wherein the adsorption cooling step (E 2 ) and the pre-cooling step (A) Tonio
And feed air is reduced through a common heat exchanger (9 ).
An air separation method that cools by indirect heat exchange with hot liquefied gas .
【請求項2】 前記分離工程(C)が、前記高圧圧縮工
程(B)で圧縮した原料空気を低温液化ガス及び低温分
離ガスとの熱交換で液化温度近くに冷却する分離用冷却
工程(F)を備えている請求項1記載の空気分離方法。
2. The separation cooling step (F) in which the raw material air compressed in the high-pressure compression step (B) is cooled to near the liquefaction temperature by heat exchange with a low-temperature liquefied gas and a low-temperature separated gas. air separation method of claim 1 Symbol placement and a).
【請求項3】 原料空気を低圧に圧縮する低圧圧縮手段
(8 ) と、前記低圧圧縮手段(8 ) で圧縮した原料空気
を低温液化ガスとの熱交換で冷却する吸着用熱交換手段
(2)と、前記吸着用熱交換手段(2)で冷却した原料
空気の炭酸ガスと水分とを吸着除去する吸着手段(5)
と、前記吸着手段(5)で炭酸ガスと水分とを吸着除去
した原料空気を低温液化ガスとの熱交換で冷却する予備
熱交換手段(1)と、前記予備熱交換手段(1)で冷却
された原料空気を高圧に圧縮する高圧圧縮手段(6)
と、前記高圧圧縮手段(6)で圧縮された原料空気を液
化温度近くに冷却して分離する分離手段(7)とが設け
られ 前記吸着用熱交換手段(2)と前記予備熱交換手段
(1)とが、原料空気を、共通の熱交換器(9 ) を介し
て、低温液化ガスとの間接熱交換で冷却するように構成
されている 空気分離装置。
3. A low-pressure compression means for compressing raw air to a low pressure.
(8 ) and the raw material air compressed by the low-pressure compression means (8 )
Heat exchange means for cooling by heat exchange with liquefied gas at low temperature
(2) and the raw material cooled by the heat exchange means for adsorption (2)
Adsorption means for adsorbing and removing carbon dioxide and moisture from air (5)
And adsorbing and removing carbon dioxide gas and moisture by the adsorbing means (5).
High pressure compressor means for compressing the pre-heat exchanger unit (1), the feed air the cooled preliminary heat exchange means (1) to a high pressure for cooling the raw material air heat exchange with the low-temperature liquefied gas (6)
And a separating means (7) for cooling and separating the raw material air compressed by the high-pressure compressing means (6) to a temperature close to the liquefaction temperature , wherein the heat exchange means for adsorption (2) and the preliminary heat exchange means are provided.
(1), but, the feed air, via a common heat exchanger (9)
To cool by indirect heat exchange with low-temperature liquefied gas
Has been air separation equipment.
【請求項4】 前記分離手段(7)に、前記高圧圧縮手
段(6)で圧縮した原料空気を低温液化ガス及び低温分
離ガスとの熱交換で液化温度近くに冷却する分離用熱交
換手段(3)が設けられている請求項記載の空気分離
装置。
4. A separation heat exchanging means (7) for cooling the raw material air compressed by the high-pressure compression means (6) to near the liquefaction temperature by heat exchange with a low-temperature liquefied gas and a low-temperature separation gas. The air separation device according to claim 3, wherein (3) is provided.
【請求項5】 前記予備熱交換手段(1)と前記吸着用
熱交換手段(2)と前記分離用熱交換手段(3)とが、
低温液化ガスとの間接熱交換を行う共通の熱交換器
(9)を設けて構成されている請求項記載の空気分離
装置。
5. The pre-heat exchange means (1), the heat exchange means for adsorption (2), and the heat exchange means for separation (3),
The air separation device according to claim 4, further comprising a common heat exchanger (9) for performing indirect heat exchange with the low-temperature liquefied gas.
JP29987194A 1994-12-02 1994-12-02 Air separation method and air separation device used in the method Expired - Lifetime JP3537199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29987194A JP3537199B2 (en) 1994-12-02 1994-12-02 Air separation method and air separation device used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29987194A JP3537199B2 (en) 1994-12-02 1994-12-02 Air separation method and air separation device used in the method

Publications (2)

Publication Number Publication Date
JPH08159655A JPH08159655A (en) 1996-06-21
JP3537199B2 true JP3537199B2 (en) 2004-06-14

Family

ID=17877971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29987194A Expired - Lifetime JP3537199B2 (en) 1994-12-02 1994-12-02 Air separation method and air separation device used in the method

Country Status (1)

Country Link
JP (1) JP3537199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601833B2 (en) * 2007-10-19 2013-12-10 Air Products And Chemicals, Inc. System to cold compress an air stream using natural gas refrigeration
CN111632467A (en) * 2020-05-08 2020-09-08 杭州制氧机集团股份有限公司 Vehicle-mounted electronic grade high-purity special gas tail gas liquefaction recovery device

Also Published As

Publication number Publication date
JPH08159655A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
JP3086857B2 (en) Method for generating cold, cooling cycle using this method, and air rectification method and apparatus using this method
EP1612496B1 (en) Air separator
JPH08254389A (en) Separating method of gas mixture by low-temperature distribution
JP4276520B2 (en) Operation method of air separation device
JP2005083588A (en) Helium gas liquefying device, and helium gas recovering, refining and liquefying device
JP3537199B2 (en) Air separation method and air separation device used in the method
CN114777418B (en) System for extracting helium from natural gas BOG by condensation method
JP3514485B2 (en) High-purity nitrogen gas production equipment
JPH10170144A (en) Device and method for cleaning raw air of air liquefaction and separation device
JP3447437B2 (en) High-purity nitrogen gas production equipment
JPS59164874A (en) Device for manufacturing nitrogen gas
JPH0668430B2 (en) Liquid air production equipment
JP3191161B2 (en) Cooling water cooling method and apparatus for air liquefaction / separation apparatus utilizing refrigeration of liquefied natural gas
KR100253752B1 (en) Method and apparatus for air separation
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JP3175003B2 (en) Nitrogen production equipment
JP2004085032A (en) Cooling method for air separation device
JPH06341760A (en) Nitrogen gas processing device
JP2873381B2 (en) Air liquefaction separation method and apparatus
JP2810819B2 (en) Nitrogen production method and apparatus
JPH01121678A (en) Air liquefying separating method and device
JPS59195084A (en) Method of liquefying and separating air
JP2002350046A (en) Method for separating subzero gas and apparatus for separating subzero gas
JP2005090915A (en) Air separator and air separating method
JPH0587447A (en) Producing apparatus for nitrogen gas

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term