JP3514485B2 - High-purity nitrogen gas production equipment - Google Patents

High-purity nitrogen gas production equipment

Info

Publication number
JP3514485B2
JP3514485B2 JP15075993A JP15075993A JP3514485B2 JP 3514485 B2 JP3514485 B2 JP 3514485B2 JP 15075993 A JP15075993 A JP 15075993A JP 15075993 A JP15075993 A JP 15075993A JP 3514485 B2 JP3514485 B2 JP 3514485B2
Authority
JP
Japan
Prior art keywords
purity
nitrogen gas
liquid nitrogen
nitrogen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15075993A
Other languages
Japanese (ja)
Other versions
JPH0719723A (en
Inventor
孝 長村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP15075993A priority Critical patent/JP3514485B2/en
Publication of JPH0719723A publication Critical patent/JPH0719723A/en
Application granted granted Critical
Publication of JP3514485B2 publication Critical patent/JP3514485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/92Details relating to the feed point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/44Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/04Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pressure accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To prepare nitrogen gas having high purity by providing a converter, a cooling/decarbonizing/drying unit, a main heat exchanger, a rectifying tower, a condenser and a liquid nitrogen storage tank. CONSTITUTION:Carbon monoxide and hydrogen in material air are oxidized by a converter 12 to carbon dioxide and water, which are removed by a cooling/ decarbonizing/drying unit 14. Then, the air from the unit 14 is cooled by a main heat exchanger 16, brought into gas/liquid contact with liquid nitrogen having normal purity from a liquid nitrogen storage tank 20 by a lower rectifying part 18b in a rectifying tower 18 to be rectified, and further brought into gas/liquid contact with the liquid nitrogen having high purity circulated from a condenser 19 for liquefying only the nitrogen gas by an upper rectifying part 18c in the tower 18. Thus, nitrogen has having high purity in which oxygen, etc., is substantially completely removed can be prepared.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を精溜して高純度
の窒素ガスを製造するための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for rectifying air to produce high-purity nitrogen gas.

【0002】[0002]

【従来の技術】半導体製造工場等においては、多量の高
純度窒素ガスを使用するため、工場敷地内に空気を原料
とする窒素ガス製造装置が設置されることが多い。この
ため、設置スペースが少なくてすみ、しかも設置等の取
扱いが容易な窒素ガス製造装置が従来から求められてい
る。
2. Description of the Related Art In a semiconductor manufacturing factory or the like, a large amount of high-purity nitrogen gas is used, so that a nitrogen gas manufacturing apparatus using air as a raw material is often installed in the factory premises. Therefore, there has been a demand for a nitrogen gas production apparatus that requires a small installation space and is easy to handle such as installation.

【0003】かかる窒素ガス製造装置としては、例えば
実公平4−34391号に示されているものが知られて
いる。この装置の構成を図3に沿って簡単に説明する
と、まず原料空気を圧縮機1で圧縮した後、冷却・除炭
・乾燥ユニット2において炭酸ガス及び水分を除去し、
更に主熱交換器3で熱交換して冷却し、精溜塔4内で精
溜分離するようになっている。
As such a nitrogen gas production apparatus, for example, the one shown in Japanese Utility Model Publication No. 4-34391 is known. The configuration of this apparatus will be briefly described with reference to FIG. 3. First, after the raw material air is compressed by the compressor 1, carbon dioxide and water are removed in the cooling / carburizing / drying unit 2,
Further, heat is exchanged in the main heat exchanger 3 to cool it, and the rectification is separated in the rectification tower 4.

【0004】精溜塔4内において、原料空気は塔下部か
ら精溜部4aを通って上昇するが、その間に上部から流
下される液体窒素と向流接触することによって、精溜分
離される。精溜塔4内で原料空気と向流接触される液体
窒素には、精溜塔4の頂部の凝縮器5からの還流液、及
び、液体窒素貯槽6から精溜塔4に供給される液体窒素
が用いられる。
In the rectification column 4, the raw material air rises from the lower part of the column through the rectification part 4a, but during that time, it is rectified and separated by making countercurrent contact with liquid nitrogen flowing down from the upper part. The liquid nitrogen that is brought into countercurrent contact with the raw material air in the rectification column 4 is the reflux liquid from the condenser 5 at the top of the rectification column 4 and the liquid supplied from the liquid nitrogen storage tank 6 to the rectification column 4. Nitrogen is used.

【0005】精溜部4aで分離された窒素ガスは精溜塔
4の頂部4bから取り出される。この窒素ガスは、主熱
交換器3で前記原料空気を冷却する冷熱源として用いら
れた後、常温となって製品窒素ガスとして配管7から取
り出される。
The nitrogen gas separated in the rectifying section 4a is taken out from the top section 4b of the rectifying column 4. This nitrogen gas is used as a cold heat source for cooling the raw material air in the main heat exchanger 3 and then reaches room temperature to be taken out from the pipe 7 as product nitrogen gas.

【0006】凝縮器5の冷熱源は、精溜塔4の底部に貯
溜された液体空気を用いており、この液体空気は凝縮器
5で気化された後、主熱交換器3に冷熱源として送ら
れ、最終的に廃ガスとして配管8から外部に排出され
る。また、液体窒素貯槽6の液体窒素は、窒素ガス製造
装置の冷熱源が不足する場合に、精溜塔4の精溜部4a
の上部に導入されるようになっている。
As the cold heat source of the condenser 5, liquid air stored at the bottom of the rectifying tower 4 is used. This liquid air is vaporized in the condenser 5 and then used as a cold heat source in the main heat exchanger 3. It is sent and finally discharged as a waste gas from the pipe 8 to the outside. Further, the liquid nitrogen in the liquid nitrogen storage tank 6 is used as a rectification section 4a of the rectification tower 4 when the cold heat source of the nitrogen gas production apparatus is insufficient.
It is supposed to be introduced at the top of.

【0007】上記の窒素ガス製造装置においては、主熱
交換器3、精溜塔4、凝縮器5及びそれらの連絡配管が
コールドボックス(断熱容器)9内に収容されており、
設置スペースの節減化、取扱いの容易化及び熱効率の向
上等が図られている。
In the above-mentioned nitrogen gas producing apparatus, the main heat exchanger 3, the rectifying column 4, the condenser 5 and their connecting pipes are housed in a cold box (heat insulating container) 9.
The installation space has been reduced, handling has been facilitated, and thermal efficiency has been improved.

【0008】[0008]

【発明が解決しようとする課題】上述した従来の窒素ガ
ス製造装置は、比較的高純度の窒素ガスを製造すること
が可能である。しかしながら、近年の半導体製造技術の
進歩に伴い、更に高純度の窒素ガスの製造が可能な窒素
ガス製造装置が求められている。
The conventional nitrogen gas production apparatus described above is capable of producing nitrogen gas of relatively high purity. However, with recent advances in semiconductor manufacturing technology, there has been a demand for a nitrogen gas manufacturing apparatus capable of manufacturing higher purity nitrogen gas.

【0009】また、装置全体の小型化についての要請も
従来と同様に存在している。
There is also a demand for miniaturization of the entire device as in the conventional case.

【0010】従って、本発明の目的は、かかる従来にお
ける技術的課題を解決することのできる高純度窒素ガス
製造装置を提供することにある。
Therefore, an object of the present invention is to provide a high-purity nitrogen gas production apparatus which can solve the above-mentioned conventional technical problems.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明による高純度窒素ガス製造装置は、外部より取
り入れた原料空気を圧縮する圧縮機と、圧縮機により圧
縮された原料空気中の一酸化炭素及び水素を酸化してそ
れぞれ二酸化炭素及び水とするコンバータと、コンバー
タで処理後に原料空気中にできた二酸化炭素及び水と原
料空気中に初めんら存在する二酸化炭素及び水を除去す
る除炭・乾燥装置と、除炭・乾燥装置からの原料空気を
冷却する主熱交換器と、主熱交換器からの原料空気を精
溜分離して上部に窒素ガスを送り、底部に液体空気を貯
溜する精溜塔と、精溜塔の上部の窒素ガスから低沸点成
分を除去すべく、窒素ガスのみを液化する凝縮器と、精
溜塔内で原料空気の精溜に用いられる、、製品高純度窒
素ガスよりも純度の低い普通純度の液体窒素を供給する
液体窒素貯槽と、主熱交換器、精溜塔、凝縮器及び液体
窒素貯槽を収容する断熱容器とを備えるものであって、
精溜塔内部に下部精溜部及び上部精溜部を設け、液体窒
素貯槽からの液体窒素を下部精溜部の上部に導入し、凝
縮器により液化された高純度液体窒素を上部精溜部の上
部に還流させ、精溜塔の底部に貯溜した液体空気を凝縮
器に導入して窒素ガスの液化のための冷熱源とし、凝縮
器で液体空気を気化して成る廃ガスと液体窒素貯槽の上
部からの窒素ガスとを主熱交換器に導入して原料空気と
熱交換させ、また、精溜塔の上部に溜まった高純度窒素
ガスを主熱交換器に導入して原料空気と熱交換させた後
に、製品高純度窒素ガスとして取り出すようにしたこと
を特徴としている。
A high-purity nitrogen gas production apparatus according to the present invention for achieving the above object comprises a compressor for compressing raw material air taken from the outside, and a raw material air compressed by the compressor. A converter that oxidizes carbon monoxide and hydrogen to carbon dioxide and water, respectively, and removes carbon dioxide and water formed in the feed air after treatment by the converter and carbon dioxide and water originally present in the feed air. A decarburizing / drying device, a main heat exchanger for cooling the raw material air from the decarburizing / drying device, and raw material air from the main heat exchanger are rectified and separated, and nitrogen gas is sent to the upper part and liquid air to the bottom part. , A condenser for liquefying only nitrogen gas in order to remove low boiling point components from the nitrogen gas in the upper part of the rectification tower, and used for rectifying raw material air in the rectification tower , Product high-purity nitrogen
A liquid nitrogen storage tank for supplying liquid nitrogen of normal purity having a purity lower than that of a source gas, and a heat insulating container for housing a main heat exchanger, a rectifying column, a condenser and a liquid nitrogen storage tank,
A lower rectifying section and an upper rectifying section are provided inside the rectifying tower, liquid nitrogen from a liquid nitrogen storage tank is introduced to the upper part of the lower rectifying section, and high-purity liquid nitrogen liquefied by a condenser is rectified in the upper rectifying section. Liquid nitrogen stored in the bottom of the rectification tower is introduced into the condenser as a cold heat source for the liquefaction of nitrogen gas, and the waste gas and liquid nitrogen storage tank are formed by vaporizing the liquid air in the condenser. Nitrogen gas from the upper part of the column is introduced into the main heat exchanger for heat exchange with the raw material air, and high-purity nitrogen gas accumulated in the upper part of the rectification column is introduced into the main heat exchanger to introduce the raw material air and heat. The feature is that after the replacement, the product is taken out as high-purity nitrogen gas.

【0012】また、断熱容器内に、凝縮器により液化さ
れた高純度液体窒素の一部を取り出して貯蔵する高純度
液体窒素貯槽を設け、必要に応じて高純度液体窒素又は
高純度窒素ガスを外部に取り出すことができるようにし
てもよい。
Further, a high-purity liquid nitrogen storage tank for extracting and storing a part of the high-purity liquid nitrogen liquefied by the condenser is provided in the heat insulating container, and high-purity liquid nitrogen or high-purity nitrogen gas is supplied as necessary. It may be possible to take it out.

【0013】[0013]

【作用】上記構成によれば、主熱交換器に原料空気を導
入する前に、コンバータで原料空気中の一酸化炭素と水
素を酸化させて二酸化炭素と水とし、これを除炭・乾燥
装置にて除去することにより、精溜塔での精溜では分離
しにくい原料空気中の一酸化炭素及び水素を除去するこ
とができる。
According to the above construction, before introducing the raw material air into the main heat exchanger, the converter oxidizes carbon monoxide and hydrogen in the raw material air into carbon dioxide and water, which is then decarburized / dried. The carbon monoxide and hydrogen in the raw material air that are difficult to separate by rectification in the rectification column can be removed by removing the carbon monoxide and hydrogen.

【0014】更に、精溜部が1つだけの従来装置と異な
り、上下2段に分割し且つ多数の精溜板から成る精溜部
で精溜するので、原料空気から酸素等の不純物が効率的
に除去され、極めて高純度の窒素ガスが得られる。即
ち、原料空気は下部精溜部で、窒素より高沸点成分が除
去される。そして、窒素ガスは更に後述する凝縮器でで
きた高純度液体窒素を還流液とすることにより上部精溜
部で高純度液体窒素と気液接触され精溜され、窒素ガス
中の高沸点成分(酸素等)は流下される。窒素より低沸
点成分を含む窒素ガスは、更に、上部精溜部頂部より配
管を通り凝縮器に導入され、精溜塔底部から凝縮器の冷
熱源として導入された液体空気で冷却されて液化され、
それによって高純度液体窒素となり配管により上部精溜
部頂部に戻される。この高純度液体窒素の一部が高純度
窒素ガスとして取り出され、残部が環流液として精溜塔
を流下するのである。また、この高純度液体窒素の一部
を配管により精溜塔から導出し、高純度液体窒素貯槽に
貯蔵してもよい。凝縮器で液化されなかった低沸点成分
は配管により凝縮器下部より外部に排出される。このよ
うに上部精溜部で高純度の液体窒素が用いられるので、
下部精溜部に導入される液体窒素貯槽からの液体窒素の
純度は比較的低いものであってもよく、普通純度の液体
窒素を少量使用して多量の高純度窒素ガスを製造するこ
とができる。
Further, unlike the conventional apparatus having only one rectifying section, the rectifying section is divided into upper and lower two stages and is rectified by a rectifying section composed of a large number of rectifying plates. Nitrogen gas of high purity is obtained. That is, raw material air is removed in the lower rectification section from components having a higher boiling point than nitrogen. Then, the nitrogen gas is further subjected to gas-liquid contact with the high-purity liquid nitrogen in the upper rectification section by using high-purity liquid nitrogen made in a condenser described later as a reflux liquid to be rectified, and a high boiling point component in the nitrogen gas ( Oxygen, etc.) is drained. Nitrogen gas containing components having a lower boiling point than nitrogen is further introduced into the condenser from the top of the upper rectification section through a pipe, and is liquefied by being cooled by the liquid air introduced from the bottom of the rectification column as a cold heat source of the condenser. ,
As a result, it becomes high-purity liquid nitrogen and is returned to the top of the upper rectification section by piping. A part of this high-purity liquid nitrogen is taken out as high-purity nitrogen gas, and the rest flows down as a reflux liquid through the rectification column. Further, a part of this high-purity liquid nitrogen may be discharged from the rectification column through a pipe and stored in the high-purity liquid nitrogen storage tank. The low boiling point component that has not been liquefied in the condenser is discharged from the lower part of the condenser to the outside through a pipe. In this way, since high-purity liquid nitrogen is used in the upper rectification section,
The purity of liquid nitrogen from the liquid nitrogen storage tank introduced into the lower rectification section may be relatively low, and a large amount of high-purity nitrogen gas can be produced by using a small amount of normal-purity liquid nitrogen. .

【0015】[0015]

【実施例】以下、図面と共に本発明の好適な実施例につ
いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to the drawings.

【0016】図1は、本発明による高純度窒素ガス製造
装置の第1の実施例を示すフローダイヤグラムである。
図示するように、例えば3000Nm3 /hの原料空気
は、空気濾過器(図示せず)により除塵された後、圧縮
機10に導入されて、空気分離に必要な圧力、例えば約
8.5ATAまで圧縮される。この圧縮された原料空気
は、配管11を通ってコンバータ12に導入される。こ
のコンバータ12は、酸化触媒が充填されており、原料
空気に含まれている一酸化炭素及び水素を酸化し、それ
ぞれ二酸化炭素及び水とする。
FIG. 1 is a flow diagram showing a first embodiment of the high-purity nitrogen gas producing apparatus according to the present invention.
As shown in the figure, for example, 3000 Nm 3 / h of raw material air is dusted by an air filter (not shown) and then introduced into the compressor 10 to a pressure necessary for air separation, for example, up to about 8.5 ATA. Compressed. The compressed raw material air is introduced into the converter 12 through the pipe 11. The converter 12 is filled with an oxidation catalyst and oxidizes carbon monoxide and hydrogen contained in the raw material air into carbon dioxide and water, respectively.

【0017】この後、原料空気は配管13を経て冷却・
除炭・乾燥ユニット14に導入される。この冷却・除炭
・乾燥ユニット14は、冷却装置とモレキュラーシーブ
ス充填塔のような除炭・乾燥装置とを一体化したもので
あり、前記コンバータ12で熱せられた原料空気を予備
冷却すると共に、コンバータ12で処理後にできた二酸
化炭素及び水と原料空気中に初めから含まれている二酸
化炭素及び水分を除去するようになっている。
After that, the raw material air is cooled through the pipe 13.
It is introduced into the decarburizing / drying unit 14. The cooling / decarburizing / drying unit 14 is an integrated unit of a cooling device and a decarburizing / drying device such as a molecular sieves packed tower, and preliminarily cools the raw material air heated by the converter 12. The carbon dioxide and water formed after the treatment by the converter 12 and the carbon dioxide and water originally contained in the raw material air are removed.

【0018】次いで、この原料空気は配管15を経て主
熱交換器16に導入され、後述する酸素リッチ廃ガス及
び製品高純度窒素ガスと熱交換され、液化点近くまで冷
却される。そして、主熱交換器16から流出された原料
空気は、配管17を経て、例えば圧力約8.0ATA、
温度約−165℃の状態で精溜塔18の下部空間18a
に導入される。
Next, the raw material air is introduced into the main heat exchanger 16 through the pipe 15, and is heat-exchanged with the oxygen-rich waste gas and the product high-purity nitrogen gas, which will be described later, and cooled to near the liquefaction point. The raw material air that has flowed out of the main heat exchanger 16 passes through the pipe 17 and has a pressure of, for example, about 8.0 ATA,
Lower space 18a of the rectification tower 18 at a temperature of about -165 ° C
Will be introduced to.

【0019】前記の圧力・温度条件下においては、精溜
塔18の下部空間18aに導入された原料空気の一部は
液化され、精溜塔18の底部に酸素リッチ液体空気とし
て貯溜され、残部は窒素リッチ空気として精溜塔18内
を上昇していく。
Under the above-mentioned pressure and temperature conditions, a part of the raw material air introduced into the lower space 18a of the rectification column 18 is liquefied and stored in the bottom of the rectification column 18 as oxygen-rich liquid air, and the remaining part. Rises in the rectification column 18 as nitrogen-rich air.

【0020】精溜塔18内には、それぞれ多数段の精溜
板から成る下部精溜部18b及び上部精溜部18cが設
けられており、精溜塔18の頂部には仕切り板18dを
介して凝縮器19が形成されている。下部精溜部18b
及び上部精溜部18cの間には空間18eが形成されて
おり、この空間(以下、「中間部空間」と称する)18
eに、液体窒素貯槽20から弁21を挿入した配管22
を通して液体窒素が供給されるようになっている。
Inside the rectification tower 18, there are provided a lower rectification section 18b and an upper rectification section 18c, each of which comprises a plurality of rectification plates, and a partition plate 18d is provided at the top of the rectification tower 18. And a condenser 19 is formed. Lower rectifying section 18b
A space 18e is formed between the upper rectifying portion 18c and the upper rectifying portion 18c, and this space (hereinafter referred to as "intermediate portion space") 18
A pipe 22 in which a valve 21 is inserted from the liquid nitrogen storage tank 20 into e
Liquid nitrogen is supplied through.

【0021】精溜塔18の下部空間18aから上昇する
窒素リッチ空気は、下部精溜部18bにおいて、中間部
空間18eから流下してくる液体窒素と向流直接接触さ
れる。その結果、窒素リッチ空気中の酸素等は液体窒素
により凝縮され、酸素リッチ液体空気として流下され、
一方、窒素リッチ空気は下部精溜部18bを上昇するに
つれて窒素純度を増し窒素ガスになる。更に、この窒素
ガスは上部精溜部18cにおいて凝縮器19からの高純
度液体窒素である還流液と向流直接接触され、残存して
いる酸素等が除去される。
The nitrogen-rich air rising from the lower space 18a of the rectifying tower 18 is brought into direct contact with the liquid nitrogen flowing down from the intermediate space 18e in the lower rectifying portion 18b in a countercurrent manner. As a result, oxygen and the like in the nitrogen-rich air are condensed by the liquid nitrogen, and flowed down as oxygen-rich liquid air,
On the other hand, the nitrogen-rich air increases in nitrogen purity as it rises in the lower rectification section 18b and becomes nitrogen gas. Further, this nitrogen gas is brought into direct countercurrent contact with the reflux liquid, which is high-purity liquid nitrogen from the condenser 19, in the upper rectifying portion 18c, and residual oxygen and the like are removed.

【0022】このようにして上下2段の精溜部18b,
18cを通過して上部空間18fに達した窒素ガスは、
ほぼ完全に酸素が除去された高純度の窒素ガスとなって
いる。しかし、この窒素ガスは、未だヘリウムや水素、
ネオン等の低沸点成分を含んでいるため、配管23を経
て凝縮器19の液化器19aに導入され、高純度液体窒
素と低沸点ガスとに分離される。
In this way, the upper and lower two-stage rectifying sections 18b,
The nitrogen gas that has passed through 18c and reached the upper space 18f is
It is a high-purity nitrogen gas in which oxygen is almost completely removed. However, this nitrogen gas is still helium and hydrogen,
Since it contains a low boiling point component such as neon, it is introduced into the liquefier 19a of the condenser 19 through the pipe 23 and separated into high purity liquid nitrogen and low boiling point gas.

【0023】凝縮器19の液化器19aを囲む空間19
bには、精溜塔18の底部に貯溜された酸素リッチ液体
空気約2000Nm3 /hが精溜塔18の底部から配管
24を通して導入される。配管24には膨張弁25が介
設されており、この膨張弁25により酸素リッチ液体空
気は圧力約1.5ATAに膨張され、冷却されて温度約
−176℃で空間19bに供給される。従って、凝縮器
19の液化器19a内に導入された窒素ガスは液化され
て、液化器19aの下部の配管26から精溜塔18の上
部空間18fに戻され、一方、窒素ガスに含まれていた
ヘリウムや水素等の低沸点ガスは液化されず、液化器1
9aの下部から配管27により大気中に排出される。
Space 19 surrounding liquefier 19a of condenser 19
About 2000 Nm 3 / h of oxygen-rich liquid air stored in the bottom part of the rectification column 18 is introduced into b through the pipe 24 from the bottom part of the rectification column 18. An expansion valve 25 is interposed in the pipe 24, and the oxygen-rich liquid air is expanded to a pressure of about 1.5 ATA by the expansion valve 25, cooled, and supplied to the space 19b at a temperature of about -176 ° C. Therefore, the nitrogen gas introduced into the liquefier 19a of the condenser 19 is liquefied and returned from the pipe 26 below the liquefier 19a to the upper space 18f of the rectification column 18, while being contained in the nitrogen gas. Low boiling point gases such as helium and hydrogen are not liquefied, and liquefier 1
It is discharged from the lower part of 9a into the atmosphere through the pipe 27.

【0024】精溜塔18の上部空間18fに戻された液
体窒素は、酸素及び低沸点成分、その他水分や二酸化炭
素等が除去された高純度なものとなっており、一部は液
状のまま前記の還流液として上部精溜部18cへと流下
され、残部は上部空間18fの中程から配管28により
取り出されて主熱交換器16に送られる。主熱交換器1
6に導入された高純度窒素ガスは、前記配管15により
主熱交換器16に導入された原料空気と熱交換され常温
となり、配管29により約1000Nm3 /hの製品高
純度窒素ガスとして圧力約7.5ATAで取り出され
る。
The liquid nitrogen returned to the upper space 18f of the rectification column 18 is of high purity in which oxygen, low boiling point components, other water, carbon dioxide, etc. have been removed, and part of it remains liquid. The reflux liquid is flown down to the upper rectifying portion 18c, and the rest is taken out from the middle of the upper space 18f through the pipe 28 and sent to the main heat exchanger 16. Main heat exchanger 1
The high-purity nitrogen gas introduced into No. 6 is heat-exchanged with the raw material air introduced into the main heat exchanger 16 through the pipe 15 to reach room temperature, and the pressure of about 1000 Nm 3 / h of product high-purity nitrogen gas through the pipe 29. It is taken out at 7.5 ATA.

【0025】凝縮器19の冷熱源として使用された酸素
リッチ液体空気は気化され、配管30により廃ガスとし
て取り出される。この廃ガスは、液体窒素貯槽20から
配管31を経て送られてくる窒素ガスと共に主熱交換器
16に導入され、原料空気と熱交換される。熱交換後、
廃ガスは配管32により取り出され、冷却・除炭・乾燥
ユニット14の再生ガスとして使用され、最終的には配
管33により大気中に排出される。
The oxygen-rich liquid air used as the cold heat source of the condenser 19 is vaporized and taken out as waste gas through the pipe 30. This waste gas is introduced into the main heat exchanger 16 together with the nitrogen gas sent from the liquid nitrogen storage tank 20 through the pipe 31, and is heat-exchanged with the raw material air. After heat exchange,
The waste gas is taken out through a pipe 32, used as a regeneration gas for the cooling / carburizing / drying unit 14, and finally discharged into the atmosphere through a pipe 33.

【0026】尚、液体窒素貯槽20からの低温窒素ガス
は、液体窒素貯槽20の内部圧力が異常に高くなった時
に限って、配管31中の弁34を開くことで主熱交換器
16に供給されるようになっている。また、液体窒素貯
槽20から精溜塔18の中間部空間18eに液体窒素が
供給されるが、これは貯槽上部の窒素ガスの圧力によっ
て行われる。この窒素ガス圧力は、液体窒素貯槽20に
設けられた加圧サイクルラインにより一定化されてい
る。即ち、液体窒素貯槽20の底部から液体窒素の一部
を配管35により取り出し、その液体窒素を熱交換器3
6により大気と熱交換して気化し、液体窒素貯槽20内
の圧力が所定値を下回った時に開放される圧力調整弁3
7を介して、その加圧窒素ガスを配管38を通して液体
窒素貯槽20に戻すこととしている。液体窒素貯槽20
内の液体窒素が減少した場合には、例えばタンクローリ
ー等から配管39を通して液体窒素が適宜補充される。
The low temperature nitrogen gas from the liquid nitrogen storage tank 20 is supplied to the main heat exchanger 16 by opening the valve 34 in the pipe 31 only when the internal pressure of the liquid nitrogen storage tank 20 becomes abnormally high. It is supposed to be done. Further, liquid nitrogen is supplied from the liquid nitrogen storage tank 20 to the intermediate space 18e of the rectification tower 18, which is performed by the pressure of the nitrogen gas in the upper portion of the storage tank. This nitrogen gas pressure is made constant by a pressurization cycle line provided in the liquid nitrogen storage tank 20. That is, a part of the liquid nitrogen is taken out from the bottom of the liquid nitrogen storage tank 20 through the pipe 35, and the liquid nitrogen is transferred to the heat exchanger 3
The pressure regulating valve 3 which is opened when the pressure in the liquid nitrogen storage tank 20 falls below a predetermined value by being heat-exchanged with the atmosphere and vaporized by 6
The pressurized nitrogen gas is returned to the liquid nitrogen storage tank 20 through the pipe 38 via the pipe 7. Liquid nitrogen storage tank 20
When the liquid nitrogen in the inside decreases, for example, the liquid nitrogen is appropriately replenished through a pipe 39 from a tank truck or the like.

【0027】以上述べた窒素ガス製造装置の構成要素の
うち、主熱交換器16、精溜塔18、凝縮器19、液体
窒素貯槽20及びそれらの連絡配管は、コールドボック
ス40と呼ばれる断熱容器、好ましくは真空断熱容器内
にまとめて収容されている。従って、窒素ガス製造装置
の主要構成要素は大気からの熱の影響を受けず、効率的
に高純度窒素ガスを製造することが可能となる。特に、
液体窒素貯槽20をコールドボックス40内に収容した
結果、液体窒素貯槽20から精溜塔18に送られる液体
窒素の冷熱が浪費されず、液体窒素を精溜塔20の冷熱
源として有効に利用することが可能となっている。ま
た、複数の構成要素を1個のコールドボックス40内に
収めることで、装置全体がコンパクトとなり、設置スペ
ースが少なくてすみ、現場での設置作業も容易となる。
Among the components of the nitrogen gas production apparatus described above, the main heat exchanger 16, the rectifying tower 18, the condenser 19, the liquid nitrogen storage tank 20 and their connecting pipes are heat-insulating containers called cold boxes 40, It is preferably housed together in a vacuum insulation container. Therefore, the main components of the nitrogen gas production apparatus are not affected by the heat from the atmosphere, and it is possible to efficiently produce high-purity nitrogen gas. In particular,
As a result of housing the liquid nitrogen storage tank 20 in the cold box 40, the cold heat of the liquid nitrogen sent from the liquid nitrogen storage tank 20 to the rectification tower 18 is not wasted, and the liquid nitrogen is effectively used as a cold heat source of the rectification tower 20. It is possible. Further, by accommodating a plurality of constituent elements in one cold box 40, the entire apparatus becomes compact, the installation space is small, and the installation work on site becomes easy.

【0028】このような窒素ガス製造装置において製造
される窒素ガスは、下の表1に示すように、不純物が極
めて少ない高純度のものである。
As shown in Table 1 below, the nitrogen gas produced in such a nitrogen gas producing apparatus is of high purity with very few impurities.

【0029】[0029]

【表1】 [Table 1]

【0030】また、上記の高純度の窒素ガスを製造する
のに用いられる液体窒素貯槽20の液体窒素は、表2に
示すような比較的不純物の多い普通純度のもので足る。
Further, the liquid nitrogen in the liquid nitrogen storage tank 20 used for producing the above-mentioned high-purity nitrogen gas may be a normal-purity liquid nitrogen containing a relatively large amount of impurities as shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】このように、本発明の高純度窒素ガス製造
装置によれば、入手が容易な普通純度の液体窒素を少量
使用し、その使用量の約10倍の高純度窒素ガスを製造
することが可能である。
As described above, according to the high-purity nitrogen gas production apparatus of the present invention, a small amount of liquid nitrogen of ordinary purity, which is easily available, is used, and high-purity nitrogen gas of about 10 times the amount used is produced. Is possible.

【0033】図2は、本発明による高純度窒素ガス製造
装置の第2の実施例を示すフローダイヤグラムである。
この窒素ガス製造装置は、凝縮器19により液化された
高純度の液体窒素を取り出して高純度液体窒素貯槽50
に貯蔵させている点を除き、先に説明した図1の窒素ガ
ス製造装置と実質的に同等である。従って、図1の窒素
ガス製造装置と同一又は相当部分には同一符号を付し、
その説明は省略する。
FIG. 2 is a flow diagram showing a second embodiment of the high-purity nitrogen gas producing apparatus according to the present invention.
This nitrogen gas producing apparatus takes out the high-purity liquid nitrogen liquefied by the condenser 19 and extracts the high-purity liquid nitrogen storage tank 50.
It is substantially the same as the nitrogen gas production apparatus of FIG. 1 described above except that it is stored in. Therefore, the same or corresponding parts as those of the nitrogen gas production apparatus of FIG.
The description is omitted.

【0034】前記高純度液体窒素貯槽50はコールドボ
ックス40内に設置されている。また、精溜塔18の上
部空間18fには、凝縮器19からの高純度液体窒素を
受ける液体窒素貯溜部18gが設けられており、この液
体窒素貯溜部18gに貯溜された高純度液体窒素を配管
51により取り出し、高純度液体窒素貯槽50に導入し
貯蔵するようになっている。配管51には弁52が介設
されており、この弁52の開度を調整することで、液体
窒素のうち環流液とする分量と高純度液体窒素貯槽50
への供給量との割合を調節することができる。
The high-purity liquid nitrogen storage tank 50 is installed in the cold box 40. Further, in the upper space 18f of the rectification column 18, a liquid nitrogen storage portion 18g for receiving the high-purity liquid nitrogen from the condenser 19 is provided, and the high-purity liquid nitrogen stored in the liquid nitrogen storage portion 18g is supplied to the liquid nitrogen storage portion 18g. The pipe 51 is taken out, introduced into the high-purity liquid nitrogen storage tank 50, and stored. A valve 52 is provided in the pipe 51. By adjusting the opening degree of the valve 52, the amount of the liquid nitrogen that serves as a reflux liquid and the high-purity liquid nitrogen storage tank 50 are provided.
It is possible to adjust the ratio with the supply amount to.

【0035】この高純度液体窒素貯槽50に貯蔵された
高純度液体窒素は必要に応じて、貯槽底部から配管53
により取り出され、コールドボックス40外の熱交換器
54で大気と熱交換されて気化され、常温とされた後、
配管55を通り製品高純度窒素ガス取出用配管29に導
入されるようになっている。
The high-purity liquid nitrogen stored in the high-purity liquid nitrogen storage tank 50 is, if necessary, supplied from the bottom of the storage tank to a pipe 53.
After being taken out by the heat exchanger 54, the heat exchanger 54 outside the cold box 40 exchanges heat with the atmosphere to be vaporized and brought to room temperature,
The product is introduced into the product high-purity nitrogen gas extraction pipe 29 through the pipe 55.

【0036】図示実施例においては、製品高純度窒素ガ
ス取出用配管29内の圧力が低下した場合に開放される
圧力調整弁56が配管55に設けられている。従って、
高純度液体窒素貯槽50からの高純度窒素ガスは、使用
点での高純度窒素ガス使用量が増加して精溜塔18の配
管28からの高純度窒素ガスだけでは不十分である場
合、或いは、精溜塔18や圧縮機10が故障して高純度
窒素ガスの製造が停止した場合等のバックアップガスと
して使用される。
In the illustrated embodiment, a pipe 55 is provided with a pressure adjusting valve 56 which is opened when the pressure in the product high-purity nitrogen gas extracting pipe 29 is lowered. Therefore,
When the high-purity nitrogen gas from the high-purity liquid nitrogen storage tank 50 increases the amount of high-purity nitrogen gas used at the point of use and the high-purity nitrogen gas from the pipe 28 of the rectification column 18 is insufficient, or It is used as a backup gas when, for example, the production of high-purity nitrogen gas is stopped due to a failure of the rectification column 18 or the compressor 10.

【0037】高純度液体窒素貯槽50から高純度液体窒
素を熱交換器54に送り出すための力は、貯槽内部の高
純度窒素ガスの圧力による。このため、この貯槽50に
は、前述した液体窒素貯槽20についての加圧サイクル
ラインと同様な加圧サイクルラインが設けられている。
即ち、高純度液体窒素貯槽50の底部から高純度液体窒
素の一部を配管57により取り出し、その高純度液体窒
素を熱交換器58により大気と熱交換して気化し、貯槽
50内の圧力が所定値を下回った時に開放される圧力調
整弁59を介して、その加圧高純度窒素ガスを配管60
を通して貯槽50に戻すようになっている。
The force for sending the high-purity liquid nitrogen from the high-purity liquid nitrogen storage tank 50 to the heat exchanger 54 depends on the pressure of the high-purity nitrogen gas inside the storage tank. Therefore, the storage tank 50 is provided with a pressurization cycle line similar to the pressurization cycle line for the liquid nitrogen storage tank 20 described above.
That is, a part of the high-purity liquid nitrogen is taken out from the bottom of the high-purity liquid nitrogen storage tank 50 through the pipe 57, the high-purity liquid nitrogen is heat-exchanged with the atmosphere by the heat exchanger 58 to be vaporized, and the pressure inside the storage tank 50 is The pressurized high-purity nitrogen gas is piped 60 through a pressure regulating valve 59 which is opened when the pressure falls below a predetermined value.
It is designed to be returned to the storage tank 50 through.

【0038】また、この高純度液体窒素貯槽50の内部
圧力が異常に高くなった場合、内部の高純度窒素ガスは
貯槽頂部から配管61により取り出され、熱交換器62
により大気と熱交換されて常温とされた後、圧力調整弁
63が介設された配管64を通して、製品高純度窒素ガ
ス取出用配管29に送り出される。
When the internal pressure of the high-purity liquid nitrogen storage tank 50 becomes abnormally high, the internal high-purity nitrogen gas is taken out from the top of the storage tank through the pipe 61, and the heat exchanger 62 is discharged.
After being heat-exchanged with the atmosphere to reach normal temperature, the product is sent to the product high-purity nitrogen gas extracting pipe 29 through the pipe 64 in which the pressure adjusting valve 63 is interposed.

【0039】図2に示す実施例の場合、高純度液体窒素
貯槽50内に貯蔵された高純度液体窒素は窒素ガスの形
で取り出されるよう構成されているが、気化させること
なく、高純度液体窒素のまま取り出すようにしてもよ
い。
In the case of the embodiment shown in FIG. 2, the high-purity liquid nitrogen stored in the high-purity liquid nitrogen storage tank 50 is constructed so as to be taken out in the form of nitrogen gas, but the high-purity liquid nitrogen is not vaporized. The nitrogen may be taken out as it is.

【0040】[0040]

【発明の効果】以上述べたように、本発明による高純度
窒素ガス製造装置は、入手が容易な普通純度の液体窒素
を少量使用するだけで、多量の高純度窒素ガスを製造す
ることが可能であり、近年の半導体製造分野における厳
しい要請を満足するものである。
As described above, the apparatus for producing high-purity nitrogen gas according to the present invention can produce a large amount of high-purity nitrogen gas by using a small amount of liquid nitrogen of ordinary purity which is easily available. It satisfies the recent strict demands in the field of semiconductor manufacturing.

【0041】また、装置の主要構成要素がコールドボッ
クス(断熱容器)内に収容されるので、装置のコンパク
ト化が図られ、取扱いが容易となり、冷熱源の浪費も防
止される。
Further, since the main constituent elements of the apparatus are housed in the cold box (heat insulating container), the apparatus can be made compact, the handling becomes easy, and the waste of the cold heat source can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による高純度窒素ガス製
造装置を概略的に示すフローダイヤグラムである。
FIG. 1 is a flow diagram schematically showing a high-purity nitrogen gas production apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例による高純度窒素ガス製
造装置を概略的に示すフローダイヤグラムである。
FIG. 2 is a flow diagram schematically showing a high-purity nitrogen gas production apparatus according to a second embodiment of the present invention.

【図3】従来の窒素ガス製造装置を概略的に示すフロー
ダイヤグラムである。
FIG. 3 is a flow diagram schematically showing a conventional nitrogen gas production apparatus.

【符号の説明】[Explanation of symbols]

10…圧縮機、12…コンバータ、14…冷却・除炭・
乾燥ユニット、16…主熱交換器、18…精溜塔、18
b…下部精溜部、18c…上部精溜部、19…凝縮器、
20…液体窒素貯槽、40…コールドボックス(断熱容
器)、50…高純度液体窒素貯槽。
10 ... Compressor, 12 ... Converter, 14 ... Cooling / Carburizing /
Drying unit, 16 ... Main heat exchanger, 18 ... Fractionation tower, 18
b ... lower rectifying section, 18c ... upper rectifying section, 19 ... condenser,
20 ... Liquid nitrogen storage tank, 40 ... Cold box (heat insulation container), 50 ... High purity liquid nitrogen storage tank.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外部より取り入れた原料空気を圧縮する
圧縮機と、 前記圧縮機により圧縮された原料空気中の一酸化炭素及
び水素を酸化してそれぞれ二酸化炭素及び水とするコン
バータと、 前記コンバータで処理後に原料空気中にできた二酸化炭
素及び水と原料空気中に初めから存在する二酸化炭素及
び水を除去する除炭・乾燥装置と、 前記除炭・乾燥装置からの原料空気を冷却する主熱交換
器と、 前記主熱交換器からの原料空気を精溜分離して上部に窒
素ガスを送り、底部に液体空気を貯溜する精溜塔と、 前記精溜塔の上部の窒素ガスから低沸点成分を除去すべ
く、窒素ガスのみを液化する凝縮器と、 前記精溜塔内で原料空気の精溜に用いられる、製品高純
度窒素ガスよりも純度の低い普通純度の液体窒素を供給
する液体窒素貯槽と、 前記主熱交換器、前記精溜塔、前記凝縮器及び前記液体
窒素貯槽を収容する断熱容器と、を備える高純度窒素ガ
ス製造装置であって、 前記精溜塔内部に下部精溜部及び上部精溜部を設け、 前記液体窒素貯槽からの普通純度の液体窒素を前記下部
精溜部の上部に導入し、 前記凝縮器により液化された高純度液体窒素を前記上部
精溜部の上部に還流させ、 前記精溜塔の底部に貯溜した液体空気を前記凝縮器に導
入して窒素ガスの液化のための冷熱源とし、 前記凝縮器で前記液体空気を気化して成る廃ガスと前記
液体窒素貯槽の上部からの窒素ガスとを前記主熱交換器
に導入して原料空気と熱交換させ、 前記精溜塔の上部に溜まった高純度窒素ガスを前記主熱
交換器に導入して原料空気と熱交換させた後に、製品高
純度窒素ガスとして取り出すようにしたこと、を特徴と
する高純度窒素ガス製造装置。
1. A compressor for compressing raw material air taken from the outside, a converter for oxidizing carbon monoxide and hydrogen in the raw material air compressed by the compressor to carbon dioxide and water, respectively, and the converter. Decarburizing / drying device that removes carbon dioxide and water formed in the raw material air after treatment with carbon dioxide and water that originally existed in the raw material air, and mainly cools the raw material air from the decarburizing / drying device. A heat exchanger, a rectifying tower for rectifying and separating raw material air from the main heat exchanger, sending nitrogen gas to the upper part, and storing liquid air at the bottom part, and a rectifying tower from the nitrogen gas at the upper part of the rectifying tower. A condenser for liquefying only nitrogen gas in order to remove the boiling point component, and a high- purity product used for rectifying raw material air in the rectifying tower.
Liquid nitrogen storage tank for supplying liquid nitrogen having a normal purity lower than that of nitrogen gas , and a heat insulating container for housing the main heat exchanger, the rectification column, the condenser and the liquid nitrogen storage tank. A purity nitrogen gas production apparatus, wherein a lower rectification section and an upper rectification section are provided inside the rectification column, and liquid nitrogen of ordinary purity from the liquid nitrogen storage tank is introduced into the upper part of the lower rectification section, High-purity liquid nitrogen liquefied by the condenser is refluxed to the upper part of the upper rectification section, and liquid air stored at the bottom of the rectification column is introduced into the condenser to cool and liquefy nitrogen gas. As a source, waste gas obtained by vaporizing the liquid air in the condenser and nitrogen gas from the upper part of the liquid nitrogen storage tank are introduced into the main heat exchanger to exchange heat with the raw material air, and the rectification column The high-purity nitrogen gas accumulated in the upper part of the main heat exchanger A high-purity nitrogen gas production apparatus, wherein the high-purity nitrogen gas is taken out as a product high-purity nitrogen gas after being introduced into the device and heat-exchanged with the raw material air.
【請求項2】 前記断熱容器内に、前記凝縮器により液
化された高純度液体窒素の一部を取り出して貯蔵する高
純度液体窒素貯槽を設け、必要に応じて高純度液体窒素
又は高純度窒素ガスを外部に取り出すことができるよう
にしたことを特徴とする請求項1記載の高純度窒素ガス
製造装置。
2. A high-purity liquid nitrogen storage tank for extracting and storing a part of the high-purity liquid nitrogen liquefied by the condenser is provided in the heat insulating container, and high-purity liquid nitrogen or high-purity nitrogen is provided as necessary. The high-purity nitrogen gas production apparatus according to claim 1, wherein the gas can be taken out.
JP15075993A 1993-06-22 1993-06-22 High-purity nitrogen gas production equipment Expired - Fee Related JP3514485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15075993A JP3514485B2 (en) 1993-06-22 1993-06-22 High-purity nitrogen gas production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15075993A JP3514485B2 (en) 1993-06-22 1993-06-22 High-purity nitrogen gas production equipment

Publications (2)

Publication Number Publication Date
JPH0719723A JPH0719723A (en) 1995-01-20
JP3514485B2 true JP3514485B2 (en) 2004-03-31

Family

ID=15503799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15075993A Expired - Fee Related JP3514485B2 (en) 1993-06-22 1993-06-22 High-purity nitrogen gas production equipment

Country Status (1)

Country Link
JP (1) JP3514485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006444A (en) * 2019-12-20 2020-04-14 中国舰船研究设计中心 Method for removing carbon dioxide gas by freezing liquid oxygen cold energy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3447437B2 (en) * 1995-07-26 2003-09-16 日本エア・リキード株式会社 High-purity nitrogen gas production equipment
JP3737957B2 (en) 2000-04-25 2006-01-25 Hoya株式会社 Rimless glasses
DE10158330A1 (en) * 2001-11-28 2003-06-18 Linde Ag Method and device for producing a high-purity cryogenic liquid product from a less pure cryogenic feed liquid
FR2855598B1 (en) * 2003-05-28 2005-10-07 Air Liquide METHOD AND INSTALLATION FOR SUPPLYING PRESSURE GAS RELIEF BY CRYOGENIC LIQUID VAPORIZATION
CN104251600A (en) * 2013-06-26 2014-12-31 航天长征化学工程股份有限公司 Liquid nitrogen washing device
CN110195962A (en) * 2019-06-05 2019-09-03 杭州凯德空分设备有限公司 Rubbish landfill gas, biogas or chemical industry tail gas extract high-purity carbon dioxide process equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006444A (en) * 2019-12-20 2020-04-14 中国舰船研究设计中心 Method for removing carbon dioxide gas by freezing liquid oxygen cold energy
CN111006444B (en) * 2019-12-20 2021-07-13 中国舰船研究设计中心 Method for removing carbon dioxide gas by freezing liquid oxygen cold energy

Also Published As

Publication number Publication date
JPH0719723A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
JPH08175806A (en) Method and plant for manufacturing gaseous oxygen under pressure
US4192662A (en) Process for liquefying and rectifying air
JP3514485B2 (en) High-purity nitrogen gas production equipment
JPH09264667A (en) Manufacturing device for extra-high purity nitrogen and oxygen
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JP2893562B2 (en) Ultra high purity nitrogen production method and apparatus
JPH0933166A (en) Method and apparatus for producing ultrahigh-purity nitrogen
KR101238063B1 (en) Nitrogen generating device and apparatus for use therefor
JPH09184681A (en) Method for manufacturing super high-purity oxygen and nitrogen
JPH05312469A (en) Apparatus and method for liquefying and separating air
JP3472631B2 (en) Air separation equipment
JPH08291967A (en) Method and apparatus for separating the air
JP3447437B2 (en) High-purity nitrogen gas production equipment
JPH07151459A (en) Method and equipment for preparing at least one gas from airunder pressure
JP3373013B2 (en) Nitrogen gas production equipment
KR100427138B1 (en) Air separation method and apparatus therefor
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP2022156743A (en) Air liquefaction separation device and standby method of the same
JPH0252980A (en) Air separating device
JPH09318244A (en) Air liquefying and separating device and method therefor
JPH0712455A (en) Nitrogen gas manufacturing device
JP3476526B2 (en) Nitrogen gas production equipment
JP2000180051A (en) Manufacture of ultrahigh purity nitrogen
JP3532293B2 (en) Air separation equipment
JP2810819B2 (en) Nitrogen production method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees