JPH09318244A - Air liquefying and separating device and method therefor - Google Patents

Air liquefying and separating device and method therefor

Info

Publication number
JPH09318244A
JPH09318244A JP13382096A JP13382096A JPH09318244A JP H09318244 A JPH09318244 A JP H09318244A JP 13382096 A JP13382096 A JP 13382096A JP 13382096 A JP13382096 A JP 13382096A JP H09318244 A JPH09318244 A JP H09318244A
Authority
JP
Japan
Prior art keywords
nitrogen
oxygen
liquefied
pressure column
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13382096A
Other languages
Japanese (ja)
Other versions
JP3667875B2 (en
Inventor
Atsushi Inoue
篤 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP13382096A priority Critical patent/JP3667875B2/en
Publication of JPH09318244A publication Critical patent/JPH09318244A/en
Application granted granted Critical
Publication of JP3667875B2 publication Critical patent/JP3667875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • F25J3/04515Simultaneously changing air feed and products output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To intermittently manufacture oxygen gas by providing a nitrogen circulating system for circulating the nitrogen whose amount is corresponding substantially to the half of the amount of liquefied nitrogen extracted from a device at the time of using oxygen. SOLUTION: Liquefied nitrogen is obtained through heat exchange between liquefied oxygen, running out into a condensing evaporator 15 at the bottom of a low-pressure tower, and nitrogen gas in the top part of a high-pressure tower 14 while the liquefied oxygen itself is evaporated to obtain oxygen gas and a part of the oxygen gas is extracted to obtain product oxygen gas through the cold heat exchanging unit 10b of a main heat exchanger 10 and the hot heat exchanging unit 10a of the same to increase the temperature of the same through heat exchange between material air at substantially a normal temperature. The nitrogen gas, led out into a flow passage 35 from the top of the low-pressure tower, is heated to the normal temperature through the cold heat exchanging unit 10b and the hot heat exchanging unit 10a, then, is conducted to the outside of the system through a flow passage 36. A part of the nitrogen gas, branched from the flow passage 36 into a flow passage 39, is introduced into a nitrogen compressor 40 to compress and pressurize it, then, is introduced from a flow passage 41 into the hot heat exchanging unit 10 and the cold heat exchanging unit 10b again to introduce it into the top of the high-pressure tower 14 after effecting heat exchange between feedback gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気を原料として
主として酸素を製造する装置及び方法に関し、詳しく
は、酸素ガスの需要変動に対応して製品酸素ガスを増減
量し、安定して供給し得る装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for producing oxygen mainly from air as a raw material. More specifically, the product oxygen gas is increased / decreased in response to fluctuations in demand for oxygen gas, and is stably supplied. Apparatus and method for obtaining the same.

【0002】本発明は、特に電炉の操業等、酸素ガスを
特定時間帯のみ断続的に使用する産業に用いられる酸素
ガスの供給用として好適な装置及び方法に関する。ま
た、電炉よりさらに多量の酸素ガスを断続的に使用する
酸素燃焼・金属溶融システムへの酸素供給用として好適
な装置及び方法に関する。
[0002] The present invention relates to an apparatus and method suitable for supplying oxygen gas, which is particularly used in industries such as electric furnace operation where oxygen gas is intermittently used only in a specific time zone. Further, the present invention relates to an apparatus and method suitable for supplying oxygen to an oxygen combustion / metal melting system that intermittently uses a larger amount of oxygen gas than an electric furnace.

【0003】[0003]

【従来の技術】従来、上記のような金属精錬等の酸素使
用分野には、酸素使用精錬炉等の近辺に液化酸素貯槽を
設置し、酸素使用時は、これを気化して使用していた。
また、同様に、酸素使用先の近くにPSA装置を設置し
て、これを断続使用している。
2. Description of the Related Art Conventionally, in the field of using oxygen such as metal refining as described above, a liquefied oxygen storage tank has been installed in the vicinity of a refining furnace using oxygen, and when oxygen is used, it is vaporized and used. .
Similarly, a PSA device is installed near the place where oxygen is used, and this is used intermittently.

【0004】また、従来の需要変動対応型空気液化分離
装置は、酸素の需要が減少したときは、これを液化酸素
として取り出して貯留し、酸素需要が増大したときは、
この貯留液化酸素を逆送入して気化してガス酸素として
取り出し、液化酸素の寒冷は、窒素を液化して取り出す
ことによって振替えて寒冷損失を防ぐ方式が一般的に行
われている。
Further, the conventional demand fluctuation type air liquefaction separation apparatus takes out and stores it as liquefied oxygen when the demand for oxygen decreases, and when the demand for oxygen increases,
The stored liquefied oxygen is reversely sent to be vaporized and taken out as gaseous oxygen, and the cooling of the liquefied oxygen is generally performed by liquefying and taking out nitrogen to transfer it to prevent a cold loss.

【0005】[0005]

【発明が解決しようとする課題】液化酸素気化供給方式
は、酸素ガスの断続使用には都合がよいが、液化・運搬
に要する費用がかかるためコスト高になる。
Although the liquefied oxygen vaporization supply system is convenient for intermittent use of oxygen gas, it is expensive because of the cost required for liquefaction and transportation.

【0006】PSA装置の場合は、断続使用のため、稼
動率が低いだけでなく、起動・停止に無駄が生じるなど
の不都合があり、稼動率を上げるために酸素ガスを圧縮
貯留すると、大容量の高圧ガスホルダーが必要になる。
In the case of the PSA device, since it is used intermittently, not only the operating rate is low, but also there is inconvenience such as wasting in starting and stopping, and if oxygen gas is compressed and stored to increase the operating rate, a large capacity is required. Requires a high pressure gas holder.

【0007】さらに、従来の空気液化分離装置は、精留
塔として棚段(シーブトレイ)式の精留塔を採用してい
るため、需要変動対応に限界があった。すなわち、シー
ブトレイ精留塔の減量限界は、60〜75%程度であ
り、一方、空気圧縮機の減量限界も、1基使用の場合は
75%程度であるため、従来の需要変動対応空気液化分
離装置の減量限界は、75%程度に減量した原料空気を
導入し、製品酸素を液化酸素で貯留しても、製品酸素ガ
スの減量限界は65〜70%であった。
Furthermore, since the conventional air liquefaction separation apparatus employs a tray (sieve tray) type rectification column as the rectification column, there is a limit to the demand fluctuation. That is, the weight reduction limit of the sieve tray rectification column is about 60 to 75%, while the weight reduction limit of the air compressor is about 75% when one unit is used. Regarding the weight reduction limit of the apparatus, even if the raw material air reduced to about 75% was introduced and the product oxygen was stored as liquefied oxygen, the reduction limit of the product oxygen gas was 65 to 70%.

【0008】また、増量限界は、装置固有の余裕度にも
よるが、原料空気を空気圧縮機の最大量(100%)導
入し、同時に、貯留液化酸素を精留塔へ導入する運転を
行っても、基準運転時酸素量の130%採取が限界であ
った。
The increase limit depends on the margin inherent in the apparatus, but the maximum amount (100%) of the feed air is introduced into the air compressor, and at the same time, the stored liquefied oxygen is introduced into the rectification column. However, the limit was 130% of the oxygen amount during the standard operation.

【0009】このため、上記のような酸素ガスを断続的
に使用する金属の精錬等の分野に対しては、空気液化分
離装置によるオンサイト供給の例は無かった。
Therefore, in the field of refining metals that use oxygen gas intermittently as described above, there has been no example of on-site supply by an air liquefaction separation device.

【0010】さらにまた、従来の需要変動対応型空気液
化分離装置の一般的方法である寒冷振替方式は、酸素の
需要変動に対応して運転条件を変更すると、それに伴い
殆どの場合、精留塔内部の状態が変化し、塔内組成分布
が変化するため、製品純度に影響が生じ、これを抑える
ために変動幅が制限されたり、酸素収率が低下する不都
合があった。特に、アルゴン採取設備を併設している装
置においては、低圧塔内部の組成変動は、アルゴン採取
にとって大きな障害となるため、対策が考究されてい
た。
Furthermore, the cold transfer method, which is a general method of the conventional air liquefaction separation apparatus for demand fluctuation, changes the operating condition in response to the fluctuation of oxygen demand, and in most cases, the rectification column is accompanied by it. Since the internal state changes and the composition distribution in the column changes, the product purity is affected, and in order to suppress this, the fluctuation range is limited, and the oxygen yield is lowered. In particular, in an apparatus equipped with an argon sampling facility, composition fluctuations inside the low-pressure column are a major obstacle to the sampling of argon, so measures have been considered.

【0011】そこで本発明は、比較的簡単な装置構成で
酸素ガスの大幅な需要変動に対応する装置として、又は
酸素ガスを断続使用する用途に対応する装置としての空
気液化分離装置を提供し、また、その装置を用いて液化
酸素と液化窒素の振替運転を行っても精留塔内の組成分
布を略一定に保ち、変動対応幅の広い運転が可能な空気
分離方法を提供することを目的とする。
Therefore, the present invention provides an air liquefaction / separation device as a device that responds to large fluctuations in demand of oxygen gas with a relatively simple device configuration, or as a device that responds to applications in which oxygen gas is intermittently used, Further, an object of the present invention is to provide an air separation method capable of maintaining a substantially constant composition distribution in the rectification column even when performing a transfer operation of liquefied oxygen and liquefied nitrogen using the apparatus, and capable of operating in a wide range of fluctuation. And

【0012】[0012]

【課題を解決するための手段】上記した目的を達成する
ための本発明の装置構成は、原料空気を圧縮する空気圧
縮機、圧縮空気を精製する前処理装置、圧縮精製空気を
冷却する熱交換器、圧縮精製冷却空気を導入してこれを
精留分離する高圧塔及び低圧塔からなる複精留塔を有
し、精留分離により酸素、窒素等を採取し、操業変更を
伴う空気液化分離装置において、前記低圧塔上部から窒
素ガスを導出して前記熱交換器で原料空気と熱交換させ
て昇温する流路、前記熱交換器を導出した昇温窒素ガス
の少なくとも一部を導入して昇圧する窒素圧縮機、前記
窒素圧縮機を導出した加圧窒素ガスを再度前記熱交換器
に導入し冷却後前記高圧塔へ導入する流路、前記高圧塔
上部から導出した窒素ガスを前記熱交換器で昇温し中間
温度で導出し、これを膨張させる膨張タービン、該膨張
タービンを導出した低温窒素ガスを前記熱交換器へ導入
して寒冷を回収する流路、低圧塔底部の液化酸素を導出
して貯留する液化酸素貯槽、該液化酸素貯槽から液化酸
素を導出して前記低圧塔下部へ導入する液化酸素ポンプ
及び流路、高圧塔頂部から液化窒素を導出して貯留する
液化窒素貯槽、該液化窒素貯槽から液化窒素を導出して
前記低圧塔頂部へ導入する流路、を有することを特徴と
する。
The apparatus configuration of the present invention for achieving the above-mentioned object is an air compressor for compressing raw material air, a pretreatment device for purifying compressed air, and a heat exchange for cooling compressed purified air. It has a double rectification column consisting of a high-pressure column and a low-pressure column that introduces a refining unit and compressed and purified cooling air to rectify and separate it. In the apparatus, a flow path for introducing nitrogen gas from the upper part of the low-pressure column and raising the temperature by exchanging heat with the raw air in the heat exchanger, and introducing at least a part of the heated nitrogen gas discharged from the heat exchanger. A nitrogen compressor for boosting pressure, a flow path for introducing pressurized nitrogen gas discharged from the nitrogen compressor into the heat exchanger again after cooling and introducing it into the high pressure column, and nitrogen gas discharged from the upper part of the high pressure column as the heat The temperature is raised in the exchanger and it is derived at the intermediate temperature. Expansion turbine for expansion, flow path for introducing low temperature nitrogen gas derived from the expansion turbine into the heat exchanger to recover refrigeration, liquefied oxygen storage tank for deriving and storing liquefied oxygen at the bottom of the low pressure column, the liquefied oxygen storage tank Liquefied oxygen pump and flow path to derive liquefied oxygen from the liquefied nitrogen to the lower part of the low pressure column, liquefied nitrogen storage tank to derive and store liquefied nitrogen from the top of the high-pressure tower, liquefied nitrogen from the liquefied nitrogen storage tank to lower the low pressure It is characterized by having a flow path to be introduced to the top of the tower.

【0013】そして、前記原料空気を圧縮する空気圧縮
機は、複数個の圧縮機又は50%以下まで減量し得る圧
縮機であることを特徴とする。
The air compressor for compressing the raw material air is a plurality of compressors or a compressor capable of reducing the amount to 50% or less.

【0014】さらに、前記複精留塔を使用した空気液化
分離装置が、アルゴン塔を付設したことを特徴とする。
Further, the air liquefaction / separation apparatus using the double rectification column is characterized by being equipped with an argon column.

【0015】また、前記高圧塔及び低圧塔の少なくとも
1個が充填塔であることを特徴とする。
Further, at least one of the high pressure column and the low pressure column is a packed column.

【0016】またさらに、前記高圧塔から導出した窒素
を前記熱交換器を経、中間温度に昇温して導出する流路
と前記窒素圧縮機を導出した窒素を前記熱交換器を経、
前記高圧塔に導入する流路が同一流路であることを特徴
とする。
Furthermore, the nitrogen discharged from the high-pressure column is passed through the heat exchanger, the flow path for raising the temperature to an intermediate temperature and discharged, and the nitrogen discharged from the nitrogen compressor are passed through the heat exchanger,
The flow paths introduced into the high-pressure column are the same flow path.

【0017】またさらに、前記膨張タービンを導出した
低温窒素ガスを前記熱交換器へ導入して寒冷を回収する
流路が、前記低圧塔上部から窒素ガスを導出して、原料
空気と熱交換して昇温する熱交換器に連結する流路に合
流する流路であることを特徴とする。
Furthermore, a flow path for introducing the low temperature nitrogen gas discharged from the expansion turbine into the heat exchanger to recover refrigeration draws nitrogen gas from the upper part of the low pressure column and exchanges heat with the raw material air. It is characterized in that it is a flow passage that joins a flow passage connected to a heat exchanger that heats up.

【0018】また、上記した目的を達成するための本発
明方法の構成は、原料空気を圧縮、精製、冷却して精留
塔に導入し、液化精留分離により酸素、窒素等を採取
し、操業変更を伴う空気液化分離方法において、酸素ガ
ス採取時は、前記熱交換器から導出する窒素ガスの少な
くとも一部を加圧して再度前記熱交換器に導入し冷却後
前記高圧塔に導入し、前記膨張タービンを停止し、液化
酸素貯槽から液化酸素を前記低圧塔下部へ導入し、導入
液化酸素量に見合う液化窒素を高圧塔頂部から導出し、
前記低圧塔下部から酸素ガスを導出して前記熱交換器で
昇温して製品として採取し、酸素ガス非採取時は、原料
空気導入量を後記する液化酸素採取量に応じて減量し、
前記高圧塔上部から加圧窒素ガスを導出し、中間温度に
昇温後、膨張タービンに導入して膨張降温させ、発生寒
冷を回収して放出し、前記液化窒素貯槽からの液化窒素
を前記低圧塔頂部に導入し、前記低圧塔底部に生成した
液化酸素を導出して前記液化酸素貯槽に貯留することを
特徴とする。
Further, the constitution of the method of the present invention for achieving the above object is to compress, purify and cool the raw material air and introduce it into the rectification column to collect oxygen, nitrogen and the like by liquefaction rectification separation, In the air liquefaction separation method involving the operation change, at the time of oxygen gas sampling, at least a part of the nitrogen gas discharged from the heat exchanger is pressurized and introduced again into the heat exchanger, and after cooling, is introduced into the high-pressure column, The expansion turbine is stopped, liquefied oxygen is introduced from the liquefied oxygen storage tank to the lower part of the low pressure column, and liquefied nitrogen corresponding to the amount of liquefied oxygen introduced is discharged from the top part of the high pressure column,
Oxygen gas is discharged from the lower part of the low-pressure column and collected as a product by raising the temperature in the heat exchanger.When not collecting oxygen gas, the amount of raw air introduced is reduced in accordance with the amount of liquefied oxygen to be described later,
Depressurized nitrogen gas from the upper part of the high-pressure column, heated to an intermediate temperature, introduced into an expansion turbine for expansion and cooling, recovering and releasing generated cold, and discharging the liquefied nitrogen from the liquefied nitrogen storage tank to the low pressure. It is characterized in that it is introduced at the top of the column and the liquefied oxygen generated at the bottom of the low pressure column is discharged and stored in the liquefied oxygen storage tank.

【0019】また、前記精留塔が充填塔であり、かつ前
記原料空気の最大導入量と最小導入量の比が、1:0.
35程度であることを特徴とする。
Further, the rectification column is a packed column, and the ratio of the maximum introduction amount and the minimum introduction amount of the raw material air is 1: 0.
It is characterized by being about 35.

【0020】また、前記酸素ガス採取運転を主として昼
間に行い、酸素ガス非採取運転は、主として夜間に行う
ことを特徴とする。
The oxygen gas sampling operation is mainly performed in the daytime, and the oxygen gas non-sampling operation is mainly performed in the nighttime.

【0021】また、原料空気導入量を酸素採取量に応じ
て減量し、前記低圧塔上部から導出して熱交換器へ導入
して原料空気と熱交換し、熱交換器から導出する窒素ガ
スの少なくとも一部を加圧して再度前記熱交換器に導入
し冷却後、該加圧窒素ガスの少なくとも一部を該熱交換
器の中間部から分岐導出し、膨張タービンに導入して膨
張降温させ、発生寒冷を回収して放出し、前記液化窒素
貯槽からの液化窒素を前記低圧塔頂部に導入するととも
に、前記低圧塔底部に生成した液化酸素を導出して前記
液化酸素貯槽に貯留し、該低圧塔下部から製品酸素ガス
を導出することを特徴とする方法である。また、上記熱
交換器の中間部から分岐導出し、膨張タービンに導入し
た加圧窒素ガスの残りは、熱交換器冷熱交換部に入り沸
点付近まで冷却されて前記高圧塔頂部に導入することを
特徴とする方法である。
Further, the amount of introduced raw material air is reduced according to the amount of oxygen collected, introduced from the upper part of the low pressure column and introduced into a heat exchanger to exchange heat with the raw material air, and nitrogen gas discharged from the heat exchanger is removed. After cooling at least a part of the pressurized nitrogen gas introduced into the heat exchanger again, at least a part of the pressurized nitrogen gas is branched out from the intermediate part of the heat exchanger and introduced into an expansion turbine to expand and cool the temperature. The generated cold is collected and released, and liquefied nitrogen from the liquefied nitrogen storage tank is introduced to the top of the low-pressure column, and the liquefied oxygen generated at the bottom of the low-pressure column is led out and stored in the liquefied oxygen storage tank. The method is characterized in that product oxygen gas is discharged from the lower part of the tower. Further, the remainder of the pressurized nitrogen gas that is branched out from the intermediate part of the heat exchanger and introduced into the expansion turbine enters the heat exchanger cold heat exchange part, is cooled to around the boiling point, and is introduced into the high pressure column top part. This is a characteristic method.

【0022】[0022]

【発明の実施の形態】本発明は、上記の構成とすること
により実施されるが、この構成の特徴は、空気液化分離
装置により酸素ガスを需要変動に対応して断続的に又は
増減量して製造するため、酸素ガス採取時に液化酸素を
導入し、振替に液化窒素を導出するに際し、その略半量
に相当する量の窒素ガスを循環させる窒素循環系統を設
け、これにより酸素ガス採取の増減量幅を従来装置より
大幅に広げたことにある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is carried out by adopting the above-mentioned structure. The feature of this structure is that the air liquefaction / separation device intermittently increases or decreases the oxygen gas in response to demand fluctuations. For the purpose of manufacturing, the introduction of liquefied oxygen at the time of sampling oxygen gas, and the introduction of liquefied nitrogen for transfer, a nitrogen circulation system that circulates the amount of nitrogen gas equivalent to about half of that is provided, thereby increasing or decreasing oxygen gas sampling. This is because the quantity range has been expanded significantly compared to conventional equipment.

【0023】また、酸素ガス採取時の精留塔負荷が、充
填塔の場合は、減量運転が約30%程度まで可能である
ことに着目して、精留塔を充填塔とし、この条件での運
転を行うことにより、酸素ガスの断続生産を可能とした
ものである。すなわち、酸素ガス採取の減量下限がゼロ
採取のとき、精留塔の負荷で最大負荷容量の30%程度
にまで減量して所定時間運転することができるようにな
った。この減量下限は、通常のシーブトレイ使用の棚段
塔では60〜75%であるので、上記窒素循環を含むプ
ロセスと、負荷変動の許容下限が約30%の充填塔とを
組み合わせたことにより、増減量幅が従来装置に比して
格段に拡大した。
Further, in the case of a packed column, the rectification column load at the time of collecting oxygen gas is focused on that the reduction operation can be performed up to about 30%. By carrying out the above operation, it is possible to intermittently produce oxygen gas. That is, when the lower limit of the oxygen gas collection is zero, the rectification column load can be reduced to about 30% of the maximum load capacity and the operation can be performed for a predetermined time. The lower limit of this reduction is 60 to 75% in the tray column using the usual sieve tray. Therefore, it is possible to increase or decrease by combining the process including the above nitrogen circulation and the packed column with the allowable lower limit of the load fluctuation of about 30%. The quantity range has expanded dramatically compared to conventional equipment.

【0024】酸素ガス最大採取時と最小採取時(非採取
時)との時間比及び時間帯の選択は任意であるが、最大
酸素ガス採取運転時の時間当たりの所要電力は、非採取
運転時の約1/2となるので、例えば、夜間に酸素非採
取運転を行って液化酸素を貯留し、昼間は、最大酸素採
取運転を行うことにより、電力料金の安い夜間電力を有
効使用する夜間電力利用型装置として用いることがで
き、これにより、生産コスト低減の多大な効果を上げる
ことができる。
The time ratio between the maximum sampling of oxygen gas and the minimum sampling (non sampling) and the selection of the time zone are arbitrary, but the power required per hour during the maximum oxygen gas sampling operation is Approximately 1/2 of that, so, for example, by performing non-oxygen sampling operation at night to store liquefied oxygen and performing maximum oxygen sampling operation in the daytime, nighttime electricity that effectively uses nighttime electricity with a low electricity rate It can be used as a usage-type device, which can greatly reduce the production cost.

【0025】酸素ガス採取運転は、液化酸素を導入し、
液化窒素を抜き出す運転となるが、このため、高圧塔か
ら低圧塔へ供給される還流窒素量が少量になるので、膨
張タービンを停止し、なお不足する還流窒素量を、循環
により補償する。この際、運転を維持するための寒冷
は、導入・導出される液化酸素・液化窒素の熱量差によ
り供給される。
In the oxygen gas sampling operation, liquefied oxygen is introduced,
The operation is to take out liquefied nitrogen, but the amount of reflux nitrogen supplied from the high-pressure column to the low-pressure column becomes small, so the expansion turbine is stopped and the amount of reflux nitrogen that is still insufficient is compensated for by circulation. At this time, the cold for maintaining the operation is supplied due to the difference in heat quantity between the liquefied oxygen and the liquefied nitrogen that are introduced and discharged.

【0026】酸素ガス非採取運転では、液化酸素抜き出
し、液化窒素導入運転となり、上記と逆の状態となる。
したがって、高圧塔から窒素ガスを抜き出し、膨張ター
ビンにより寒冷を発生する。
In the oxygen gas non-collecting operation, liquefied oxygen is withdrawn and liquefied nitrogen is introduced, which is the reverse of the above.
Therefore, nitrogen gas is extracted from the high-pressure column and cold is generated by the expansion turbine.

【0027】酸素ガス採取運転と酸素ガス非採取運転と
を交互に行う場合は、24時間/日運転に必要な寒冷の
総量を、10時間/日で発生させる必要があるため、酸
素連続供給装置に比して大容量の膨張タービンを必要と
する。このタービン流量を確保するため、循環窒素系統
を形成して循環窒素ガスにより寒冷を供給する。
When the oxygen gas sampling operation and the oxygen gas non-sampling operation are alternately performed, it is necessary to generate the total amount of cold required for 24 hours / day operation at 10 hours / day. Requires a large capacity expansion turbine. In order to secure this turbine flow rate, a circulating nitrogen system is formed and cold is supplied by circulating nitrogen gas.

【0028】空気分離装置が小容量の場合、すなわち、
必要寒冷量が一定量以下の場合は、下部塔から抜き出さ
れる窒素で賄うことができるので、循環窒素系統を運転
する必要はない。
When the air separation device has a small capacity, that is,
When the required amount of cold is less than a certain amount, it is not necessary to operate the circulating nitrogen system because the nitrogen extracted from the lower tower can cover the required amount.

【0029】以下、本発明を図面に基づいてさらに詳細
に説明する。まず、装置構成及びプロセスを、原料空気
導入から製品酸素採取への流路に従って説明する。
The present invention will be described below in more detail with reference to the drawings. First, the device configuration and process will be described according to the flow path from the introduction of raw material air to the product oxygen collection.

【0030】流路1からの原料空気は、分岐流路2で分
岐して空気圧縮機Aに導入され、所定圧、例えば6kg
/cm2 に加圧圧縮され流路4へ導出する。分岐した他
方の原料空気は、他方の空気圧縮機Bに導入され前記空
気圧縮機Aと同圧に圧縮されて流路6へ導出する。上記
流路4及び流路6の圧縮空気は、合流して流路7から、
含有する水分、炭酸ガスを除去する前処理装置8に導入
される。該前処理装置8は、主としてモレキュラーシー
ブを充填し、切換え使用する複数個の吸着塔で構成され
るもので、1塔が原料空気を導入して該原料空気中の炭
酸ガス、水分を吸着除去し、その間、他の吸着塔は再生
工程にあり、前行程で吸着した炭酸ガス、水分を再生ガ
スに同伴して導出する。
The raw material air from the flow path 1 is branched by the branch flow path 2 and introduced into the air compressor A, and a predetermined pressure, for example, 6 kg.
It is pressurized and compressed to / cm 2 and led to the flow path 4. The other branched source air is introduced into the other air compressor B, compressed to the same pressure as the air compressor A, and led out to the flow path 6. The compressed air in the flow channels 4 and 6 merges and flows from the flow channel 7,
The water is introduced into a pretreatment device 8 for removing contained water and carbon dioxide. The pretreatment device 8 is mainly composed of a plurality of adsorption towers which are filled with molecular sieves and switched and used. One tower introduces raw material air to adsorb and remove carbon dioxide gas and water in the raw material air. However, during that time, the other adsorption towers are in the regeneration process, and the carbon dioxide gas and the moisture adsorbed in the previous step are carried out along with the regeneration gas.

【0031】上記前処理装置8を導出した圧縮精製空気
は、流路9から主熱交換器10の温熱交換部10a及び
冷熱交換部10bを経てその圧力における液化温度付近
まで冷却され、流路12から複精留塔13の下部に位置
する高圧塔14の下部に導入される。
The compressed and purified air discharged from the pretreatment device 8 is cooled from the flow passage 9 to near the liquefaction temperature at the pressure through the hot heat exchange portion 10a and the cold heat exchange portion 10b of the main heat exchanger 10, and the flow passage 12 is obtained. Is introduced into the lower part of the high pressure column 14 located in the lower part of the double rectification column 13.

【0032】高圧塔14に導入された圧縮精製冷却空気
は、塔内で気液接触を行い窒素富化ガスとなりながら上
昇し、頂部の凝縮蒸発器15で液化して還流液となり、
塔内を気液接触しながら降下する。
The compressed and purified cooling air introduced into the high-pressure column 14 rises while making gas-liquid contact in the column to become a nitrogen-enriched gas, and is liquefied in the top condenser evaporator 15 to become a reflux liquid,
It descends while making gas-liquid contact in the tower.

【0033】高圧塔14底部に留出した酸素富化液化空
気は、流路16から導出して過冷却器17で過冷却され
て流路18へ導出し、弁19で膨張降圧して一部気化し
て低圧塔20中部へ導入される。低圧塔20に導入され
た酸素富化液化空気は、塔内を上昇ガスと気液接触しな
がら降下し、次第に酸素富化して塔底に至り、液化酸素
として留出する。該低圧塔20の塔底の液化酸素は、塔
底部の凝縮蒸発器15で前記高圧塔14頂部の窒素ガス
と熱交換してこれを液化窒素とし、自身は気化して上昇
ガスとなり、また、酸素ガス採取運転では、その一部は
製品ガスとして流路21から取り出される。
The oxygen-enriched liquefied air distilled at the bottom of the high-pressure column 14 is discharged from the flow path 16, supercooled by the supercooler 17 and discharged to the flow path 18, expanded and reduced in pressure by the valve 19, and partly expanded. It is vaporized and introduced into the middle part of the low pressure column 20. The oxygen-enriched liquefied air introduced into the low-pressure column 20 descends while making gas-liquid contact with the rising gas in the column, gradually enriches in oxygen, reaches the bottom of the column, and distills out as liquefied oxygen. The liquefied oxygen at the bottom of the low-pressure column 20 exchanges heat with the nitrogen gas at the top of the high-pressure column 14 in the condenser / evaporator 15 at the bottom of the column to make it liquefied nitrogen, which itself is vaporized to become a rising gas, and In the oxygen gas sampling operation, a part thereof is taken out from the flow path 21 as a product gas.

【0034】凝縮蒸発器15で凝縮した液化窒素は、一
部が前記高圧塔14頂部に還流液として戻されるが、一
部は流路22から導出して前記過冷却器17で過冷却さ
れ、弁23で膨張し低圧塔20の頂部へ還流液として導
入される。
A part of the liquefied nitrogen condensed in the condenser evaporator 15 is returned to the top of the high pressure column 14 as a reflux liquid, but a part thereof is led out from the flow path 22 and supercooled in the supercooler 17. It is expanded by the valve 23 and introduced as a reflux liquid to the top of the low pressure column 20.

【0035】上記流路22の液化窒素は、運転条件によ
っては一部系外へ導出する。すなわち、酸素ガス採取運
転時は、一部分岐して流路24を経て液化窒素貯槽25
に導入され貯留される。貯留された液化窒素は、酸素ガ
ス非採取運転時に流路26から弁27を経て膨張降圧
後、前記低圧塔20の頂部へ導入され還流液となる。
The liquefied nitrogen in the flow path 22 is partially led out of the system depending on operating conditions. That is, during the oxygen gas sampling operation, the liquefied nitrogen storage tank 25 is partially branched and passed through the flow path 24.
It is introduced and stored in. The stored liquefied nitrogen is expanded and reduced in pressure from the flow path 26 through the valve 27 during the oxygen gas non-collecting operation, and then introduced into the top of the low pressure column 20 to become a reflux liquid.

【0036】前記低圧塔20底部の凝縮蒸発器15に留
出した液化酸素は、前記高圧塔14頂部の窒素ガスと熱
交換しこれを凝縮して液化窒素とするとともに、自身は
気化して酸素ガスとなり、その一部は前記流路21から
導出して主熱交換器10の冷熱交換部10b、温熱交換
部10aを経、原料空気と熱交換して常温付近の温度に
昇温し、製品酸素ガスとして導出される。
The liquefied oxygen distilled into the condensation evaporator 15 at the bottom of the low-pressure column 20 exchanges heat with the nitrogen gas at the top of the high-pressure column 14 to condense it into liquefied nitrogen, which itself is vaporized to oxygen. The gas becomes a gas, and a part of the gas is discharged from the flow path 21 and passes through the cold heat exchange section 10b and the hot heat exchange section 10a of the main heat exchanger 10 to exchange heat with the raw material air to heat up to a temperature near room temperature. It is derived as oxygen gas.

【0037】製品酸素ガスの大量採取時は、液化酸素貯
槽29から液化酸素を導出し、液化酸素ポンプ30によ
り昇圧して流路31を経て前記凝縮蒸発器15に導入
し、前記高圧塔14頂部の窒素ガスと熱交換させて気化
し、流路21から製品酸素ガスとして導出する。
When a large amount of product oxygen gas is sampled, liquefied oxygen is discharged from the liquefied oxygen storage tank 29, pressurized by the liquefied oxygen pump 30, and introduced into the condenser / evaporator 15 via the flow path 31. Is vaporized by exchanging heat with the nitrogen gas, and is discharged from the flow path 21 as product oxygen gas.

【0038】また、酸素ガス非採取運転時は、凝縮蒸発
器15から液化酸素を流路28を経て抜き出し前記液化
酸素貯槽29に貯留する。
During the oxygen gas non-collecting operation, liquefied oxygen is extracted from the condenser / evaporator 15 through the flow path 28 and stored in the liquefied oxygen storage tank 29.

【0039】前記低圧塔20頂部からは、製品窒素ガス
及び排窒素ガスを取り出す。本形態例では製品窒素ガス
と排窒素ガスとを分離せず、同一流路から取り出す場合
について例示する。すなわち、流路35に導出した窒素
ガスは、前記冷熱交換部10b、温熱交換部10aを経
て常温付近まで昇温し、流路36から系外へ導出され
る。
Product nitrogen gas and exhaust nitrogen gas are taken out from the top of the low-pressure column 20. In this embodiment, the case where the product nitrogen gas and the exhaust nitrogen gas are not separated but taken out from the same flow path will be exemplified. That is, the nitrogen gas led out to the flow path 35 is heated to near room temperature through the cold heat exchange section 10b and the hot heat exchange section 10a, and is taken out of the system from the flow path 36.

【0040】上記流路36から流路39へ分岐した前記
窒素ガスの一部は、窒素圧縮機40に導入され、約6k
g/cm2 に加圧圧縮され、この加圧窒素ガスは、流路
41から再度前記温熱交換部10a、冷熱交換部10b
に導入され、帰還ガスと熱交換して低温となり、高圧塔
14頂部へ導入される。
A part of the nitrogen gas branched from the flow path 36 to the flow path 39 is introduced into the nitrogen compressor 40, and about 6 k
The compressed nitrogen gas is pressurized and compressed to g / cm 2, and the pressurized nitrogen gas is supplied from the flow path 41 again to the hot heat exchange section 10a and the cold heat exchange section 10b.
Is introduced into the upper part of the high pressure column 14 and becomes a low temperature by exchanging heat with the return gas.

【0041】酸素ガス非採取時は、高圧塔14頂部の加
熱源としての窒素が不要となるので、上記窒素圧縮機4
0による送ガスは不要となり、弁38を閉として前記流
路39からの窒素はゼロとなり、窒素圧縮機40は停止
する。
Since nitrogen as a heat source at the top of the high-pressure column 14 is not required when oxygen gas is not collected, the nitrogen compressor 4 is used.
The gas supply by 0 becomes unnecessary, the valve 38 is closed, the nitrogen from the flow path 39 becomes zero, and the nitrogen compressor 40 is stopped.

【0042】このとき、生成酸素は、液化酸素の状態で
系外へ取り出されるので、そのために必要な寒冷を補給
するため、高圧塔14頂部から前記流路41を経て窒素
ガスを導出し、前記冷熱交換部10bで中間温度まで昇
温後、流路45へ分岐して開状態の弁46を経て膨張タ
ービン47で略大気圧まで降圧し、この低温窒素ガスを
流路48から前記流路36を経、前記冷熱交換部10
b、前記温熱交換部10aで寒冷を回収されて流路36
から系外へ導出される。すなわち、液化酸素採取時は、
膨張タービン47を含む窒素循環系統を形成して寒冷を
発生補給する。
At this time, the produced oxygen is taken out of the system in the state of liquefied oxygen. Therefore, in order to replenish the cold required for this, nitrogen gas is discharged from the top of the high pressure column 14 through the flow path 41, and After the temperature is raised to an intermediate temperature in the cold heat exchange section 10b, the flow is branched to the flow path 45, the pressure is reduced to approximately atmospheric pressure by the expansion turbine 47 via the valve 46 in the open state, and the low temperature nitrogen gas is supplied from the flow path 48 to the flow path 36. Through the cold heat exchange section 10
b, the cold is recovered in the heat exchange section 10a, and the flow path 36
From outside the system. That is, when collecting liquefied oxygen,
A nitrogen circulation system including the expansion turbine 47 is formed to generate and supplement cold.

【0043】さらに、中間量の酸素ガスを採取する場合
は、前記流路36の窒素ガスを所定量分岐して弁38、
流路39を経て窒素圧縮機40で昇圧し、流路41を通
って温熱交換部10aを経て中間温度まで降温し、その
少なくとも一部を流路45へ分岐して弁46を経て、膨
張タービン47を経て前記同様膨張し、流路48へ導出
し、流路36へ合流して前記冷熱交換部10b及び温熱
交換器部10aで寒冷を回収して系外へ導出される。
Further, in the case of collecting an intermediate amount of oxygen gas, the nitrogen gas in the flow path 36 is branched by a predetermined amount and the valve 38,
The pressure is increased by the nitrogen compressor 40 through the flow path 39, the temperature is lowered through the flow path 41 through the heat exchanging section 10a to the intermediate temperature, at least a part of which is branched to the flow path 45, the valve 46, and the expansion turbine. After expanding through 47, it expands to the flow path 48, merges into the flow path 36, collects cold in the cold heat exchange section 10b and the hot heat exchanger section 10a, and is discharged to the outside of the system.

【0044】また、条件によっては、上記主熱交換器1
0の中間部から流路45に分岐導出し膨張タービン47
に導入した窒素ガスの残りは、該主熱交換器10の冷熱
交換部10bに入り沸点付近まで冷却され、弁42で圧
力調整後、前記高圧塔14頂部に導入する。
Depending on the conditions, the main heat exchanger 1 may also be used.
From the middle part of 0 to the flow path 45 and branch out to the expansion turbine 47.
The rest of the nitrogen gas introduced into the main heat exchanger 10 enters the cold heat exchange section 10b of the main heat exchanger 10, is cooled to near the boiling point, and is adjusted in pressure by the valve 42, and then introduced into the top of the high pressure column 14.

【0045】[0045]

【実施例】次に、酸素ガス増量採取時、非採取時、中間
量採取時の実施例における運転状態について説明する。
まず、酸素ガス増量採取時の実施例として製品酸素ガス
10,000Nm3 /hを採取する場合につき説明す
る。
[Examples] Next, the operating states in the examples when the oxygen gas increase sampling is performed, when the oxygen gas is not collected, and when the intermediate amount is collected will be described.
First, a case where a product oxygen gas of 10,000 Nm 3 / h is sampled will be described as an example at the time of collecting the oxygen gas increase amount.

【0046】原料空気の圧縮機は、一方の空気圧縮機A
のみが稼動状態にあり、大気空気17,500Nm3
hを約6kg/cm2 に加圧圧縮され系内へ導入され
る。該圧縮空気は、前処理装置8で炭酸ガス、水分を除
去されて主熱交換器10に導入され、液化寸前の温度に
冷却されて複精留塔13の高圧塔14の下部へ導入され
塔内を上昇する。塔頂部から降下してきた還流液は、塔
底部で酸素富化液化空気となり塔底部に留出する。この
酸素富化液化空気9,300Nm3 /hは、塔底部から
流路16へ導出し、過冷却器17、流路18を経て、弁
19で膨張して低圧塔20へ導入され、該塔内で精留分
離される。
The compressor for the raw air is one of the air compressors A
Only the operating condition, atmospheric air 17,500 Nm 3 /
h is compressed to about 6 kg / cm 2 and introduced into the system. The compressed air is removed of carbon dioxide gas and water in the pretreatment device 8 and introduced into the main heat exchanger 10, cooled to a temperature just before liquefaction, and introduced into the lower part of the high pressure column 14 of the double rectification column 13 and the column. Rise inside. The reflux liquid that has descended from the top of the column becomes oxygen-enriched liquefied air at the bottom of the column and distills to the bottom of the column. This oxygen-enriched liquefied air 9,300 Nm 3 / h is led out to the flow path 16 from the bottom of the tower, is expanded by the valve 19 through the supercooler 17 and the flow path 18, and is introduced into the low pressure tower 20. It is rectified and separated inside.

【0047】高圧塔14で塔頂に分離した高純度窒素
は、凝縮蒸発器15で液化されて液化窒素となり、再度
該高圧塔内を還流液となり降下するが、その一部の液化
窒素11,900Nm3 /hは、流路22から導出し、
更に分岐してその一部の液化窒素4,900Nm3 /h
は、過冷却器17を経、弁23で膨張降圧して低圧塔2
0内へ膨張導入され還流液となり、塔内を降下する。分
岐した他の一部の液化窒素7,000Nm3 /hは、流
路24から液化窒素貯槽25へ導入され貯留される。
The high-purity nitrogen separated at the top of the high-pressure column 14 is liquefied in the condenser evaporator 15 to become liquefied nitrogen, which again becomes a reflux liquid in the high-pressure column and descends. 900 Nm 3 / h is derived from the flow path 22,
It is further branched and part of it is liquefied nitrogen 4,900 Nm 3 / h
Goes through the supercooler 17 and expands and is reduced in pressure by the valve 23 to reduce pressure in the low-pressure tower 2
It is expanded and introduced into 0, becomes a reflux liquid, and descends in the tower. Another part of the branched liquefied nitrogen of 7,000 Nm 3 / h is introduced from the flow path 24 into the liquefied nitrogen storage tank 25 and stored therein.

【0048】低圧塔20内の精留により塔下部に分離し
た酸素ガス10,000Nm3 /hは、流路21に導出
され、主熱交換器10で圧縮精製空気と熱交換して昇温
し、製品酸素ガスとして取り出される。
The oxygen gas 10,000 Nm 3 / h separated into the lower part of the low pressure column 20 by rectification is introduced into the flow path 21 and heat-exchanged with the compressed purified air in the main heat exchanger 10 to raise the temperature. , As product oxygen gas.

【0049】このとき、上記製品として不足する酸素ガ
スは、液化酸素貯槽29から液化酸素ポンプ30で汲み
出し、流路31を経て低圧塔20底部の凝縮蒸発器15
に導入され、前記高圧塔14頂部の窒素ガスと熱交換
し、気化して酸素ガスとなり上記製品酸素ガスとなる。
At this time, the oxygen gas deficient as the product is pumped out from the liquefied oxygen storage tank 29 by the liquefied oxygen pump 30, passes through the flow path 31, and the condensation evaporator 15 at the bottom of the low pressure column 20.
And is heat-exchanged with nitrogen gas at the top of the high-pressure column 14 to be vaporized into oxygen gas, which is the product oxygen gas.

【0050】低圧塔20頂部に分離した窒素ガス10,
800Nm3 /hは、該塔頂部に設けられた流路35か
ら導出され、過冷却器17を経て主熱交換器10に導入
され、略常温まで昇温して導出し、2分してその一方の
窒素ガス7,000Nm3 /hは系外へ放出する。分岐
した他方の窒素ガス3,800Nm3 /hは、弁38、
流路39を経て窒素圧縮機40へ入り、約6kg/cm
2 に加圧圧縮され、前記主熱交換器10で冷却され弁4
2、流路41を経て高圧塔14頂部へ導入され、前記凝
縮蒸発器15の加熱源となる。
Nitrogen gas 10 separated at the top of the low-pressure column 20,
800 Nm 3 / h is led out from the flow path 35 provided at the top of the tower, introduced into the main heat exchanger 10 through the supercooler 17, heated up to about room temperature and led out, and after 2 minutes, On the other hand, 7,000 Nm 3 / h of nitrogen gas is released outside the system. The other branched nitrogen gas of 3,800 Nm 3 / h was measured by the valve 38,
Approximately 6 kg / cm enters the nitrogen compressor 40 through the flow path 39.
It is pressurized and compressed to 2 and cooled in the main heat exchanger 10 and the valve 4
2. It is introduced into the top of the high-pressure column 14 via the flow path 41 and serves as a heating source for the condensation evaporator 15.

【0051】次に、酸素ガス非採取時の実施例として、
製品液化酸素9,100Nm3 /hのみを製品として採
取する場合につき説明する。上記酸素ガス採取時の場合
と異なる部分のみを説明し、運転状態が同様の部分は省
略する。
Next, as an example when oxygen gas is not collected,
The case where only product liquefied oxygen of 9,100 Nm 3 / h is collected as a product will be described. Only the part different from the case of the above oxygen gas collection will be described, and the part having the same operating condition will be omitted.

【0052】原料空気45,500Nm3 /hは、空気
圧縮機A,B双方により加圧圧送されて導入される。高
圧塔14底部から流路16を経て低圧塔20へ導出する
酸素富化液化空気は、24,200Nm3 /hであり、
該高圧塔14頂部から導出し、低圧塔20頂部へ導入す
る液化窒素量は3,300Nm3 /hである。しかし、
この液化窒素量では低圧塔20の還流液が不足するの
で、前記液化窒素貯槽25から液化窒素9,800Nm
3 /hを自圧で送出し、高圧塔14頂部へ導入する。
The raw material air 45,500 Nm 3 / h is pressurized and fed by both air compressors A and B and introduced. The oxygen-enriched liquefied air discharged from the bottom of the high-pressure column 14 to the low-pressure column 20 via the flow path 16 is 24,200 Nm 3 / h,
The amount of liquefied nitrogen discharged from the top of the high-pressure column 14 and introduced into the top of the low-pressure column 20 is 3,300 Nm 3 / h. But,
Since the amount of liquefied nitrogen is insufficient for the reflux liquid of the low-pressure column 20, the liquefied nitrogen storage tank 25 will produce 9,800 Nm of liquefied nitrogen.
3 / h is sent under its own pressure and introduced into the top of the high-pressure column 14.

【0053】低圧塔20頂部から導出する窒素ガス2
8,200Nm3 /hは、流路35、主熱交換器10を
経て系外へ導出される。また、高圧塔14頂部からは、
窒素ガス18,000Nm3 /hが流路41、弁42、
冷熱交換部10bを経て、中間温度まで昇温し流路45
から弁46を経て、膨張タービン47に導入され膨張降
圧降温し、流路48から流路36の上記低圧塔20頂部
から導出する窒素ガス28,200Nm3 /hと合流
し、再度熱交換部10b、10aに入り発生寒冷を原料
空気に伝達する。
Nitrogen gas 2 discharged from the top of the low pressure column 20
8,200 Nm 3 / h is led out of the system via the flow path 35 and the main heat exchanger 10. Also, from the top of the high pressure tower 14,
Nitrogen gas of 18,000 Nm 3 / h is used for the flow path 41, the valve 42,
After passing through the cold heat exchange section 10b, the temperature is raised to an intermediate temperature and the flow path 45
Through the valve 46 to the expansion turbine 47 to be expanded, reduced and reduced in temperature, and combined with the nitrogen gas 28, 200 Nm 3 / h discharged from the flow passage 48 from the top of the low pressure column 20 of the flow passage 36, and then the heat exchange portion 10b again. 10a enters to transfer the generated cold to the raw material air.

【0054】上記実施例は、製品として酸素ガスを全く
採取せず、液化酸素としてのみ採取し貯留する運転なの
で、前記実施例とで2実施例を組み合わせて運転を行え
ば、例えば、精錬作業を昼間のみ行うような場合、酸素
ガスを昼間のみ供給し、夜間は、液化酸素のみを生産し
貯留する断続供給可能な空気液化分離装置として用いる
ことができる。
In the above-mentioned embodiment, oxygen gas is not collected as a product, but only as liquefied oxygen is collected and stored. Therefore, if the operation is carried out by combining the two embodiments with the above-mentioned embodiment, for example, refining work can be performed. In the case of carrying out only during the daytime, it can be used as an air liquefaction separation device capable of supplying intermittently only during the daytime and producing and storing only liquefied oxygen at night, which can be intermittently supplied.

【0055】次に、酸素ガス中間量採取時の実施例とし
て製品酸素ガス4,500Nm3 /hを採取する場合に
つき説明する。前記空気圧縮機A、Bは双方約70%運
転を行う。すなわち、空気圧縮機Aにより12,200
Nm3 /h、空気圧縮機Bにより19,600Nm3
h、合計31,800Nm3 /hの約6kg/cm2
加圧圧縮された原料空気は、流路7から流路9、12を
経て高圧塔14へ導入される。
Next, as an example of collecting the intermediate amount of oxygen gas, the case of collecting 4,500 Nm 3 / h of product oxygen gas will be described. Both of the air compressors A and B operate at about 70%. That is, 12,200 by the air compressor A
Nm 3 / h, the air compressor B 19,600Nm 3 /
The raw material air, which is pressurized and compressed to about 6 kg / cm 2 of h, 31,800 Nm 3 / h in total, is introduced from the flow passage 7 into the high pressure column 14 through the flow passages 9 and 12.

【0056】高圧塔14塔底から22,300Nm3
hの酸素富化液化空気が低圧塔20中部へ送られる。低
圧塔20頂部への還流用液化窒素は、高圧塔14頂部か
ら9,500Nm3 /hが、また、液化窒素貯槽25か
ら2,300Nm3 /hが導入される。
High-pressure tower 14 From the bottom of the tower 22,300 Nm 3 /
The oxygen enriched liquefied air of h is sent to the middle part of the low pressure column 20. As for the liquefied nitrogen for reflux to the top of the low-pressure column 20, 9,500 Nm 3 / h is introduced from the top of the high-pressure column 14 and 2,300 Nm 3 / h from the liquefied nitrogen storage tank 25.

【0057】低圧塔20頂部からは、製品窒素ガスと排
窒素ガス合わせて25,000Nm3 /hが導出され、
流路35、主熱交換器10を経て、常温まで昇温後1,
000Nm3 /hが流路36から弁38を経て流路39
へ分岐し、前記窒素圧縮機40で約6kg/cm2 に加
圧圧縮され流路41へ導出する。次いで、前記主熱交換
器10の温熱交換部10aに入り、中間温度まで冷却後
導出し、膨張タービン47へ導入され、膨張降圧降温し
て流路48へ導出し、前記流路35の窒素ガス25,0
00Nm3 /hと合流して26,000Nm3 /hとな
り主熱交換器10で寒冷を回収されて、上記1000N
3 /hを分岐循環した残り25000Nm3 /hが前
記のように放出される。
From the top of the low-pressure column 20, 25,000 Nm 3 / h of the product nitrogen gas and the exhaust nitrogen gas was discharged,
After passing through the flow path 35 and the main heat exchanger 10, after warming to room temperature 1,
000 Nm 3 / h flows from the flow path 36 through the valve 38 to the flow path 39
And is pressurized and compressed to about 6 kg / cm 2 by the nitrogen compressor 40 and led out to the flow path 41. Then, it enters into the heat exchanging section 10a of the main heat exchanger 10, is cooled to an intermediate temperature, is led out, is introduced into the expansion turbine 47, is expanded and reduced in temperature, is led down to the flow path 48, and is discharged into the nitrogen gas in the flow path 35. 25,0
Refrigeration is recovered in 26,000Nm 3 / h next main heat exchanger 10 merges with 00Nm 3 / h, the 1000N
The remaining 25000Nm 3 / h branched circulated m 3 / h is discharged as described above.

【0058】低圧塔20の塔底部からは酸素ガスが4,
500Nm3 /hが導出され、流路21を経て製品とし
て取り出される。
Oxygen gas from the bottom of the low pressure column 20 is 4,
500 Nm 3 / h is derived and taken out as a product through the flow path 21.

【0059】さらに、低圧塔20の塔底部に留出した液
化酸素2,100Nm3 /hが導出され、流路28を経
て液化酸素貯槽29に貯留される。
Further, liquefied oxygen of 2,100 Nm 3 / h distilled at the bottom of the low-pressure column 20 is discharged and stored in the liquefied oxygen storage tank 29 through the flow path 28.

【0060】上記3個の実施例につき各々のガスの流量
を比較すると、表1のようになる。
Table 1 shows a comparison of the gas flow rates of the above three embodiments.

【0061】[0061]

【表1】 [Table 1]

【0062】以上説明した各部の流量から明らかなよう
に、3種の運転パターンの何れの場合の運転緒元におい
ても、低圧塔20内の上昇ガス量と降下液量の比(L/
V)は、略同じ値である。すなわち、何れの場合も、塔
内上半分の部分で0.45〜0.47、下半分の部分で
1.32〜1.36である。これは、各種運転パターン
を選択しても、低圧塔20の塔内の精留状態が略同一状
態であることを示しており、したがって、製品ガスの採
取量が大きく変化しても、さらに、断続運転を行って
も、同一品質の製品が得られることを示している。
As is clear from the flow rates of the respective parts described above, the ratio (L / L) between the amount of rising gas and the amount of falling liquid in the low-pressure column 20 in any of the three operating patterns.
V) is approximately the same value. That is, in any case, the upper half of the column has 0.45 to 0.47 and the lower half has 1.32 to 1.36. This indicates that even if various operation patterns are selected, the rectification state inside the low-pressure column 20 is substantially the same, so that even if the amount of product gas collected changes significantly, It shows that products of the same quality can be obtained even if intermittent operation is performed.

【0063】これは、特にアルゴン採取系統を付設した
空気液化分離装置においては極めて重要な要件である。
すなわち、低圧塔20中部からアルゴンフィードガスを
抜き出し、粗アルゴン塔(図示せず)へ供給して粗アル
ゴンを採取するには、このアルゴンフィードガスを常に
一定の状態で送出し得ることが要件となる。本発明にお
いて、前記窒素圧縮機40、膨張タービン47を含む窒
素循環系統を設け、更に液化酸素貯槽29、液化窒素貯
槽25を設け、これらを利用して需要に合わせて最適運
転条件を設定することにより、酸素ガス断続採取運転さ
らにはアルゴン採取運転を含む各種需要変動パターンに
対応した運転を行うことができる。
This is a very important requirement especially in an air liquefaction separation apparatus equipped with an argon sampling system.
That is, in order to extract the argon feed gas from the middle part of the low-pressure column 20 and supply it to the crude argon column (not shown) to collect the crude argon, it is a requirement that this argon feed gas can be always delivered in a constant state. Become. In the present invention, a nitrogen circulation system including the nitrogen compressor 40 and the expansion turbine 47 is provided, and further a liquefied oxygen storage tank 29 and a liquefied nitrogen storage tank 25 are provided, and these are used to set the optimum operating conditions according to demand. As a result, it is possible to perform the operation corresponding to various demand fluctuation patterns including the oxygen gas intermittent sampling operation and further the argon sampling operation.

【0064】[0064]

【発明の効果】以上説明したように、本発明の方法・装
置によれば、通常の液化酸素−液化窒素振替型需要変動
対応空気液化分離装置に、酸素使用時に該装置から抜き
出す液化窒素量の略半分に相当する量の窒素を循環する
窒素循環系統を設けたことにより、酸素ガスを断続的に
製造することが可能になった。
As described above, according to the method / apparatus of the present invention, a conventional liquefied oxygen-liquefied nitrogen transfer type demand fluctuation compliant air liquefaction separation apparatus can be used to control the amount of liquefied nitrogen extracted from the apparatus when oxygen is used. By providing a nitrogen circulation system that circulates nitrogen in an amount corresponding to about half, it has become possible to intermittently produce oxygen gas.

【0065】また、精留塔を充填塔とすることにより、
酸素ガス採取時の精留塔負荷が、シーブトレイの60〜
75%に対して、充填塔式精留塔の減量下限界が約30
%程度での運転が可能であることに着目して、この条件
での運転を行うことにより、酸素ガスの断続生産をも可
能としたものである。
By using a rectification column as a packed column,
The fractionator load when collecting oxygen gas is 60 ~
75%, the lower limit of weight reduction of packed column type rectification column is about 30
By paying attention to the fact that the operation can be performed at about%, the intermittent production of oxygen gas is also possible by performing the operation under this condition.

【0066】したがって、本発明の方法・装置によれ
ば、通常の需要変動対応型空気液化分離装置の条件を満
たす運転は勿論、酸素ガスの断続生産が可能になった。
さらに、これを利用して昼間は酸素ガス採取運転(液化
酸素注入,液化窒素貯留)、夜間は酸素ガス非採取運転
(液化酸素貯留,液化窒素注入)を行うことにより、夜
間電力利用の低コスト生産が可能となった。
Therefore, according to the method / apparatus of the present invention, it is possible to perform the intermittent production of oxygen gas as well as the operation satisfying the conditions of the normal demand fluctuation type air liquefaction separation apparatus.
Furthermore, by using this, by performing oxygen gas sampling operation (liquefied oxygen injection, liquefied nitrogen storage) in the daytime and oxygen gas non-collection operation (liquefied oxygen storage, liquefied nitrogen injection) at night, low cost of electricity use at night Production is now possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の空気液化分離装置の一例を示す系統
図である。
FIG. 1 is a system diagram showing an example of an air liquefaction separation device of the present invention.

【符号の説明】[Explanation of symbols]

A,B…空気圧縮機、8…前処理装置、10…主熱交換
器、10a…温熱交換部、10b…冷熱交換部、17…
過冷却器、13…複精留塔、14…高圧塔、15…凝縮
蒸発器、20…低圧塔、19,23,27,38,4
2,46…弁,25…液化窒素貯槽,29…液化酸素貯
槽,30…液化酸素ポンプ、40…窒素圧縮機、47…
膨張タービン
A, B ... Air compressor, 8 ... Pretreatment device, 10 ... Main heat exchanger, 10a ... Warm heat exchange section, 10b ... Cold heat exchange section, 17 ...
Supercooler, 13 ... Double rectification column, 14 ... High pressure column, 15 ... Condensing evaporator, 20 ... Low pressure column, 19, 23, 27, 38, 4
2, 46 ... Valve, 25 ... Liquefied nitrogen storage tank, 29 ... Liquefied oxygen storage tank, 30 ... Liquefied oxygen pump, 40 ... Nitrogen compressor, 47 ...
Expansion turbine

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 原料空気を圧縮する空気圧縮機、圧縮空
気を精製する前処理装置、圧縮精製空気を冷却する熱交
換器、圧縮精製冷却空気を導入してこれを精留分離する
高圧塔及び低圧塔からなる複精留塔を有し、精留分離に
より酸素、窒素等を採取し、操業変更を伴う空気液化分
離装置において、 前記低圧塔上部から窒素ガスを導出して前記熱交換器で
原料空気と熱交換させて昇温する流路、 前記熱交換器を導出した昇温窒素ガスの少なくとも一部
を導入して昇圧する窒素圧縮機、 前記窒素圧縮機を導出した加圧窒素ガスを再度前記熱交
換器に導入して冷却後前記高圧塔へ導入する流路、 前記高圧塔上部から導出した窒素ガスを前記熱交換器で
昇温して中間温度で導出し、これを膨張させる膨張ター
ビン、 該膨張タービンを導出した低温窒素ガスを前記熱交換器
へ導入して寒冷を回収する流路、 低圧塔底部の液化酸素を導出して貯留する液化酸素貯
槽、該液化酸素貯槽から液化酸素を導出して前記低圧塔
下部へ導入する液化酸素ポンプ及び流路、 高圧塔頂部から液化窒素を導出して貯留する液化窒素貯
槽、該液化窒素貯槽から液化窒素を導出して前記低圧塔
頂部へ導入する流路、を有することを特徴とする空気液
化分離装置。
1. An air compressor for compressing raw material air, a pretreatment device for purifying compressed air, a heat exchanger for cooling compressed purified air, a high pressure column for introducing compressed purified cooling air and rectifying and separating it. Having a double rectification column consisting of a low-pressure column, oxygen, nitrogen, etc. are collected by rectification separation, and in an air liquefaction separation device accompanied by a change in operation, the nitrogen gas is derived from the upper part of the low-pressure column and the heat exchanger is used. A flow path that heats up by exchanging heat with the raw material air, a nitrogen compressor that introduces at least a part of the heated nitrogen gas that has led out the heat exchanger to raise the pressure, and a pressurized nitrogen gas that has led out the nitrogen compressor. A flow path that is introduced into the heat exchanger again and then cooled and then introduced into the high-pressure column, nitrogen gas derived from the upper part of the high-pressure column is heated at the heat exchanger and derived at an intermediate temperature, and expansion is performed to expand the nitrogen gas. Turbine, low temperature nitrogen derived from the expansion turbine A flow path for introducing gas into the heat exchanger to recover refrigeration, a liquefied oxygen storage tank for deriving and storing liquefied oxygen at the bottom of the low-pressure column, liquefied oxygen from the liquefied oxygen storage tank for introduction into the lower part of the low-pressure column A liquefied oxygen pump and a flow path, a liquefied nitrogen storage tank for discharging and storing liquefied nitrogen from the top of the high-pressure column, and a flow path for discharging liquefied nitrogen from the liquefied nitrogen storage tank and introducing it to the top of the low-pressure column. Air liquefaction separator.
【請求項2】 前記原料空気を圧縮する空気圧縮機は、
複数個の圧縮機又は50%以下まで減量し得る圧縮機で
あることを特徴とする請求項1記載の空気液化分離装
置。
2. An air compressor for compressing the raw material air,
The air liquefaction separation device according to claim 1, wherein the air liquefaction separation device is a plurality of compressors or a compressor capable of reducing the amount to 50% or less.
【請求項3】 前記複精留塔を使用した空気液化分離装
置が、さらにアルゴン塔を付設したことを特徴とする請
求項1記載の空気液化分離装置。
3. The air liquefaction separation device according to claim 1, wherein the air liquefaction separation device using the double rectification column is further provided with an argon column.
【請求項4】 前記高圧塔、低圧塔及びアルゴン塔の少
なくとも1個が充填塔であることを特徴とする請求項3
記載の空気液化分離装置。
4. The high pressure column, the low pressure column and at least one of the argon columns are packed columns.
The air liquefaction separation device described.
【請求項5】 原料空気を圧縮、精製、冷却して精留塔
に導入し、液化精留分離により酸素、窒素等を採取し、
操業変更を伴う空気液化分離方法において、 酸素ガス採取時は、熱交換器から導出する窒素ガスの少
なくとも一部を加圧して再度前記熱交換器に導入し冷却
後高圧塔に導入し、 窒素ガスを膨張させる膨張タービンを停止し、 液化酸素貯槽から液化酸素を低圧塔下部へ導入し、 導入液化酸素量に見合う液化窒素を高圧塔頂部から導出
し、 前記低圧塔下部から酸素ガスを導出して前記熱交換器で
昇温して製品として採取し、 酸素ガス非採取時は、原料空気導入量を後記する液化酸
素採取量に応じて減量し、 前記高圧塔上部から窒素ガスを導出し、中間温度に昇温
後、膨張タービンに導入して膨張降温させ、発生寒冷を
回収して放出し、 液化窒素貯槽からの液化窒素を前記低圧塔頂部に導入
し、 前記低圧塔底部に生成した液化酸素を導出して前記液化
酸素貯槽に貯留することを特徴とする空気液化分離方
法。
5. The raw material air is compressed, purified, cooled, introduced into a rectification column, and oxygen, nitrogen, etc. are collected by liquefaction rectification separation,
In the air liquefaction separation method with operation change, when collecting oxygen gas, pressurize at least part of the nitrogen gas discharged from the heat exchanger, introduce it again into the heat exchanger, and after cooling, introduce it into the high pressure column. The expansion turbine that expands the liquid is stopped, liquefied oxygen is introduced from the liquefied oxygen storage tank to the lower part of the low-pressure column, liquefied nitrogen corresponding to the amount of liquefied oxygen introduced is discharged from the top of the high-pressure column, and oxygen gas is discharged from the lower part of the low-pressure column. The temperature is raised in the heat exchanger and collected as a product.When not collecting oxygen gas, the amount of raw air introduced is reduced in accordance with the amount of liquefied oxygen collected to be described later, and nitrogen gas is discharged from the upper part of the high pressure column, After raising the temperature, it is introduced into an expansion turbine to expand and lower the temperature, and the generated cold is recovered and released, and liquefied nitrogen from a liquefied nitrogen storage tank is introduced into the low pressure column top section and liquefied oxygen generated in the low pressure column bottom section. Derive Cryogenic air separation method characterized by storing the serial liquid oxygen storage tank.
【請求項6】 前記精留塔が充填塔であり、かつ、前記
原料空気の最大導入量と最小導入量との比が、1:0.
35程度であることを特徴とする請求項5記載の空気液
化分離方法。
6. The rectification column is a packed column, and the ratio of the maximum introduction amount and the minimum introduction amount of the raw material air is 1: 0.
It is about 35, The air liquefaction separation method of Claim 5 characterized by the above-mentioned.
【請求項7】 前記酸素ガス採取運転を主として昼間に
行い、酸素ガス非採取又は酸素ガス減量採取運転は主と
して夜間に行うことを特徴とする請求項5記載の空気液
化分離方法。
7. The air liquefaction separation method according to claim 5, wherein the oxygen gas sampling operation is performed mainly in the daytime, and the oxygen gas non-sampling or oxygen gas reduction sampling operation is performed mainly at night.
【請求項8】 原料空気を圧縮、精製、冷却して精留塔
に導入し、液化精留分離により酸素、窒素等を採取し、
操業変更を伴う空気液化分離方法において、 原料空気導入量を酸素採取量に応じて減量し、 低圧塔上部から導出して熱交換器へ導入して原料空気と
熱交換し、熱交換器から導出した窒素ガスの少なくとも
一部を加圧して、再度前記熱交換器に導入し冷却後、該
加圧窒素ガスの少なくとも一部を熱交換器の中間部から
導出し、膨張タービンに導入して膨張降温させ、発生寒
冷を回収して放出し、 液化窒素貯槽からの液化窒素を前記低圧塔頂部に導入す
るとともに、 前記低圧塔底部に生成した液化酸素を導出して液化酸素
貯槽に貯留し、 該低圧塔下部から製品酸素ガスを導出することを特徴と
する空気液化分離方法。
8. The raw material air is compressed, purified, cooled, introduced into a rectification column, and oxygen, nitrogen, etc. are collected by liquefaction rectification separation,
In the air liquefaction separation method that involves a change in operation, the amount of feed air introduced is reduced according to the amount of oxygen collected, and it is led from the upper part of the low-pressure column and introduced into the heat exchanger to exchange heat with the feed air, and from the heat exchanger. At least a part of the nitrogen gas is pressurized, introduced again into the heat exchanger and cooled, and then at least a part of the pressurized nitrogen gas is led out from the intermediate part of the heat exchanger and introduced into the expansion turbine to expand. The temperature is lowered, the generated cold is recovered and released, and the liquefied nitrogen from the liquefied nitrogen storage tank is introduced into the top of the low-pressure column, and the liquefied oxygen generated in the bottom of the low-pressure column is discharged and stored in the liquefied oxygen storage tank. An air liquefaction separation method, characterized in that product oxygen gas is discharged from the lower part of the low pressure column.
JP13382096A 1996-05-28 1996-05-28 Air liquefaction separation method Expired - Fee Related JP3667875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13382096A JP3667875B2 (en) 1996-05-28 1996-05-28 Air liquefaction separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13382096A JP3667875B2 (en) 1996-05-28 1996-05-28 Air liquefaction separation method

Publications (2)

Publication Number Publication Date
JPH09318244A true JPH09318244A (en) 1997-12-12
JP3667875B2 JP3667875B2 (en) 2005-07-06

Family

ID=15113812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13382096A Expired - Fee Related JP3667875B2 (en) 1996-05-28 1996-05-28 Air liquefaction separation method

Country Status (1)

Country Link
JP (1) JP3667875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532529A (en) * 2002-07-09 2005-10-27 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Manufacturing plant operating method and manufacturing plant
WO2007129152A1 (en) * 2006-04-26 2007-11-15 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process
WO2008059399A2 (en) * 2006-11-16 2008-05-22 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
JP2011505537A (en) * 2007-11-26 2011-02-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Adaptation of oxy-combustion plants to energy utilization and the amount of CO2 to be captured
FR2949845A1 (en) * 2009-09-09 2011-03-11 Air Liquide METHOD FOR OPERATING AT LEAST ONE AIR SEPARATION APPARATUS AND A COMBUSTION UNIT OF CARBON FUELS

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532529A (en) * 2002-07-09 2005-10-27 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Manufacturing plant operating method and manufacturing plant
WO2007129152A1 (en) * 2006-04-26 2007-11-15 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process
WO2008059399A2 (en) * 2006-11-16 2008-05-22 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
WO2008059399A3 (en) * 2006-11-16 2008-11-27 Air Liquide Cryogenic air separation process and apparatus
JP2011505537A (en) * 2007-11-26 2011-02-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Adaptation of oxy-combustion plants to energy utilization and the amount of CO2 to be captured
FR2949845A1 (en) * 2009-09-09 2011-03-11 Air Liquide METHOD FOR OPERATING AT LEAST ONE AIR SEPARATION APPARATUS AND A COMBUSTION UNIT OF CARBON FUELS
WO2011030035A3 (en) * 2009-09-09 2013-12-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for operating at least one air separation apparatus and oxygen consumption unit

Also Published As

Publication number Publication date
JP3667875B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US10969168B2 (en) System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
JPH07109348B2 (en) Method and apparatus for high pressure low temperature distillation of air
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
JPH04283390A (en) Air rectification method and equipment for producing gaseous oxygen in variable amount
EP0798524B1 (en) Ultra high purity nitrogen and oxygen generator unit
JP5005894B2 (en) Nitrogen generation method and apparatus used therefor
JP3190016B2 (en) Low-temperature distillation method for feed air producing high-pressure nitrogen
JPH09318244A (en) Air liquefying and separating device and method therefor
JPH10132458A (en) Method and equipment for producing oxygen gas
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JPH0545050A (en) Method for liquefying permanent gas using cryogenic cold of liquefied natural gas
US4530708A (en) Air separation method and apparatus therefor
JP4230213B2 (en) Air liquefaction separation apparatus and method
JP3514485B2 (en) High-purity nitrogen gas production equipment
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
US20120125044A1 (en) Feed compression method and apparatus for air separation process
JPH09217982A (en) Method for liquefying and separating air and apparatus therefor
JP3976188B2 (en) Product gas production method using air separation device
JP6159242B2 (en) Air separation method and apparatus
JP3999865B2 (en) Liquid oxygen purification method and apparatus used therefor
JPH07127971A (en) Argon separator
JP3539709B2 (en) Air separation equipment
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
JPH11325716A (en) Separation of air
JP2001033155A (en) Air separator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees