JPH02118391A - Manufacturing device for liquid air - Google Patents
Manufacturing device for liquid airInfo
- Publication number
- JPH02118391A JPH02118391A JP63271825A JP27182588A JPH02118391A JP H02118391 A JPH02118391 A JP H02118391A JP 63271825 A JP63271825 A JP 63271825A JP 27182588 A JP27182588 A JP 27182588A JP H02118391 A JPH02118391 A JP H02118391A
- Authority
- JP
- Japan
- Prior art keywords
- air
- adsorption tower
- line
- enters
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000001179 sorption measurement Methods 0.000 claims abstract description 57
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 230000008929 regeneration Effects 0.000 claims description 43
- 238000011069 regeneration method Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 6
- 230000001172 regenerating effect Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000013526 supercooled liquid Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0208—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/66—Regenerating the adsorption vessel, e.g. kind of reactivation gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/40—Separating high boiling, i.e. less volatile components from air, e.g. CO2, hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation Of Gases By Adsorption (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体空気を製造する装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an apparatus for producing liquid air.
従来、ガスを液化させる装置として、液体窒素製造装置
および液体酸素製造装置が公知である。BACKGROUND ART Liquid nitrogen production devices and liquid oxygen production devices are conventionally known as devices for liquefying gas.
また、これらの装置を液体空気製造装置として転用する
ことも各種文献によって公知となっている。It is also known from various documents that these devices can be used as liquid air production devices.
この公知の液体空気製造装置の構成と作用を第5図によ
って説明する。The structure and operation of this known liquid air production device will be explained with reference to FIG.
同図において、1は原料空気圧縮機、2は吸着塔部で、
原料空気圧縮機1により吸着塔部2での吸む圧力まで加
圧された原料空気は、吸着塔部2で不要成分である水分
および炭酸ガスを吸着除去される。In the figure, 1 is a raw material air compressor, 2 is an adsorption tower section,
The raw air compressed by the raw air compressor 1 to the pressure taken in by the adsorption tower section 2 is adsorbed and removed in the adsorption tower section 2 to remove unnecessary components such as moisture and carbon dioxide.
この吸着塔部2から出た空気は、循環空気圧縮機3によ
りさらに液化操作に適した圧力まで加圧された後コール
ドボックスA内に入る。The air discharged from the adsorption tower section 2 is further pressurized by the circulating air compressor 3 to a pressure suitable for liquefaction operation, and then enters the cold box A.
このコールドボックスA内には、冷却手段として人口側
から順に、予冷器4、冷凍機5から寒冷を受けるフレオ
ン冷却器6、第1乃至第3各熱交換器7.8.9が設け
られ、コールドボックスA内に導入された空気が、液化
ラインL1に入ってこれら各冷却手段の高温部を通過す
る間に冷却されて液、化する。Inside this cold box A, a precooler 4, a Freon cooler 6 that receives cold from the refrigerator 5, and first to third heat exchangers 7, 8, and 9 are provided as cooling means in order from the population side, The air introduced into the cold box A enters the liquefaction line L1 and is cooled and liquefied while passing through the high temperature parts of these cooling means.
10は膨張タービンで、第1熱交換器7から出た空気の
一部がこの膨張タービン10により膨張されて寒冷を与
えられる。この寒冷空気は、各冷却手段の低温部を通る
戻りラインL2に入って各冷却手段に寒冷を与えた後、
循環空気として循環空気圧縮機3の吸込側に戻される。Reference numeral 10 denotes an expansion turbine, in which a portion of the air discharged from the first heat exchanger 7 is expanded and cooled. After this cold air enters the return line L2 passing through the low temperature section of each cooling means and gives cold to each cooling means,
It is returned to the suction side of the circulating air compressor 3 as circulating air.
第3熱交換器9から出た液体空気は、減圧弁11により
減圧され、フラッシュボトル12経由で製品タンク13
に送られる。The liquid air coming out of the third heat exchanger 9 is depressurized by the pressure reducing valve 11 and passed through the flash bottle 12 to the product tank 13.
sent to.
ところで、吸着塔部2は二つの吸着塔2a、2aを有し
、一方の吸着塔2aで吸着作用が行なわれる間、他方の
吸着塔2aで、吸着した不要成分を墳外に排出する再生
操作が行なわれる。この吸着塔再生操作は、低圧の再生
ガスを、吸着塔2aの再生ガス入口から送入することに
よって行なわれる。By the way, the adsorption tower section 2 has two adsorption towers 2a, 2a, and while adsorption is performed in one adsorption tower 2a, the other adsorption tower 2a performs a regeneration operation to discharge adsorbed unnecessary components out of the tomb. will be carried out. This adsorption tower regeneration operation is performed by feeding low-pressure regeneration gas from the regeneration gas inlet of the adsorption tower 2a.
従来、この吸着塔再生のための再生ガスとしては、吸着
塔2aから出た空気の一部が使用される。Conventionally, a part of the air discharged from the adsorption tower 2a is used as the regeneration gas for regenerating the adsorption tower.
すなわち、吸着塔部出口と再生ガス入口とを再生空気ラ
イン14で接続し、吸着塔部2における吸着工程中の吸
着塔2aから出た空気の一部を再生側版む塔2aに送入
するようにしている。That is, the outlet of the adsorption tower part and the regeneration gas inlet are connected by the regeneration air line 14, and a part of the air discharged from the adsorption tower 2a during the adsorption process in the adsorption tower part 2 is sent to the regeneration side printing tower 2a. That's what I do.
この場合、再生に適した圧力(0,1〜0.3Kg /
ai G )が吸着塔出口圧力よりも低いため、再生
空気ライン14に減圧弁15を設け、この減圧弁15に
よって再生用空気を減圧する構成をとっている。In this case, the pressure suitable for regeneration (0.1~0.3Kg/
ai G) is lower than the adsorption tower outlet pressure, a pressure reducing valve 15 is provided in the regeneration air line 14, and the pressure of the regeneration air is reduced by the pressure reducing valve 15.
ところが、この構成によると、吸着塔部2の入口側で原
料空気圧縮機1によって吸着圧力まで加圧された空気の
一部を、すぐ出口側で吸着塔再生のために減圧しなけれ
ばならないため、この分、圧縮機動力が無駄となり、エ
ネルギー損失が大きいものとなっていた。However, according to this configuration, a part of the air that has been pressurized to the adsorption pressure by the feed air compressor 1 at the entrance side of the adsorption tower section 2 must be immediately depressurized at the exit side for regeneration of the adsorption tower. Therefore, the compressor power is wasted, resulting in a large energy loss.
そこで本発明は、このような吸着塔再生のためだけの減
圧を排して圧縮機動力の無駄をなくし、エネルギー効率
を上げることができる液体空気製造装置を提供するもの
である。Accordingly, the present invention provides a liquid air production apparatus that can eliminate such reduced pressure only for regenerating the adsorption tower, eliminate waste of compressor power, and increase energy efficiency.
本発明は、原料空気を加圧する圧縮機と、この圧縮機か
ら出た原料空気中から不要成分を吸着除去する吸着塔と
、この吸着塔から出た空気を冷却して液化させる冷却手
段と、この冷却手段に導入される空気の一部を膨張させ
て低温化させ冷却手段に寒冷源として供給する膨張手段
とを具備し、かつ、この膨張手段から冷却手段に供給さ
れた空気の一部を上記吸着塔の再生ガス入口に導く吸着
塔再生空気ラインが設けられてなるものである。The present invention includes a compressor that pressurizes raw air, an adsorption tower that adsorbs and removes unnecessary components from the air that comes out of the compressor, and a cooling means that cools and liquefies the air that comes out of the adsorption tower. an expansion means that expands a part of the air introduced into the cooling means to lower the temperature and supply the cooling means as a cold source, and a part of the air supplied from the expansion means to the cooling means. An adsorption tower regeneration air line leading to the regeneration gas inlet of the adsorption tower is provided.
また本発明は、上記構成に加えて、吸着塔再生操作ライ
ン中の空気の一部を圧縮機の吸込側に導く分岐ラインが
設けられてなるものである。In addition to the above configuration, the present invention is further provided with a branch line that guides a part of the air in the adsorption tower regeneration operation line to the suction side of the compressor.
請求項1の基本構成により、膨張手段により膨張(減圧
)されて冷却手段に対する寒冷源として使用された空気
の一部を吸着塔再生用空気として有効利用できるため、
吸着塔出口側の空気を減圧して吸着塔に再生ガスとして
戻す場合のような圧縮機動力の無駄がなくなり、エネル
ギー効率が良いものとなる。According to the basic configuration of claim 1, a part of the air that has been expanded (depressurized) by the expansion means and used as a cold source for the cooling means can be effectively used as air for regenerating the adsorption tower.
There is no waste of compressor power, which is the case when the air on the outlet side of the adsorption tower is depressurized and returned to the adsorption tower as regeneration gas, resulting in good energy efficiency.
また、請求項2の構成によると、低温度でがっ乾燥した
再生用空気の一部が圧縮機の吸込側に戻されるため、原
料空気の温度と湿度が低下する。Further, according to the second aspect of the present invention, a part of the low-temperature and extremely dry regeneration air is returned to the suction side of the compressor, so that the temperature and humidity of the raw air are reduced.
従って、圧縮機の負荷が小・さくなり、圧縮機動力が減
少するため、エネルギー効率が一層良いものとなる。Therefore, the load on the compressor is reduced and the compressor power is reduced, resulting in even better energy efficiency.
本発明の実施例を第1図乃至第4図によって説明する。 Embodiments of the present invention will be described with reference to FIGS. 1 to 4.
第1実施例(第1図参照)
第1図において、21は原料空気を吸む圧力まで加圧す
る原料空気圧縮機、22は原料空気中がら不要成分を吸
着除去する二つの吸着塔22a。First Embodiment (See Figure 1) In Figure 1, 21 is a raw air compressor that pressurizes raw air to a suction pressure, and 22 is two adsorption towers 22a that adsorb and remove unnecessary components from the raw air.
22aを備えた吸着塔部、23は吸着塔部22がら出た
空気を液化に適した圧力まで加圧する循環空気圧縮機で
ある。An adsorption tower section 22a is provided, and a circulating air compressor 23 pressurizes the air discharged from the adsorption tower section 22 to a pressure suitable for liquefaction.
この循環空気圧縮機23で加圧された空気はコ−ルドボ
ックスBに入り、各冷却手段、すなわち予冷器24、冷
凍機25を寒冷発生源とするフレオン冷却器26、ml
乃至第3各熱交換器27゜28.29の順で液化ライン
L1を通る。The air pressurized by the circulating air compressor 23 enters the cold box B, and the Freon cooler 26, which uses each cooling means, namely the precooler 24 and the refrigerator 25 as cold generation sources, enters the cold box B.
It passes through the liquefaction line L1 in this order through the third heat exchanger 27°, 28.29°.
ここで、液化ラインL1を通る空気の一部は、第1熱交
換器27の出口側から低温側の第1膨張タービン30に
入り、ここで断熱膨張されて寒冷を発生した後、戻りラ
インL2に入り、第3熱交換器29→第2熱交換器28
−第1熱交換器27−予冷器24を通ってこれらに寒冷
を与えた後、循環空気として循環空気圧縮機23の吸込
側に戻る。Here, a part of the air passing through the liquefaction line L1 enters the first expansion turbine 30 on the low temperature side from the outlet side of the first heat exchanger 27, and is adiabatically expanded there to generate cold air, and then returns to the return line L2. enters the third heat exchanger 29 → second heat exchanger 28
After passing through the first heat exchanger 27 and the precooler 24 and cooling them, the air returns to the suction side of the circulating air compressor 23 as circulating air.
また、この戻りラインL2を通る空気の一部は、第1熱
交換器27の出口側から高温側の第2膨張タービン31
に入り、ここで再び断熱膨張されて寒冷を発生した後、
第2、第1両熱交換器28゜27および予冷器24の低
温部を、戻りラインL2とは別の吸着塔再生圧力ライン
(以下、単に再生空気ラインという)L3に入る。Further, a part of the air passing through the return line L2 is transferred from the outlet side of the first heat exchanger 27 to the second expansion turbine 31 on the high temperature side.
where it is adiabatically expanded again and generates cold.
The low-temperature parts of both the second and first heat exchangers 28, 27 and the precooler 24 enter an adsorption tower regeneration pressure line (hereinafter simply referred to as regeneration air line) L3, which is separate from the return line L2.
このil生空気ラインL3は、吸着塔22aの再生ガス
入口に接続され、上記のように熱交換器28.27およ
び予冷器24に寒冷を与えた後、再生側吸着塔22aに
再生用空気として供給される。This IL raw air line L3 is connected to the regeneration gas inlet of the adsorption tower 22a, and after cooling the heat exchanger 28, 27 and the precooler 24 as described above, it is supplied to the regeneration side adsorption tower 22a as regeneration air. Supplied.
また、この再生空気ラインL3には分岐ラインL4が接
続され、再生用空気の一部、すなわち吸着塔22aに供
給された分の残りの空気がこの分岐ラインL4経由で原
料圧縮機21の吸込側に供給されるようになっている。Further, a branch line L4 is connected to this regeneration air line L3, and a part of the regeneration air, that is, the remaining air that has been supplied to the adsorption tower 22a, is passed through this branch line L4 to the suction side of the raw material compressor 21. is being supplied to.
一方、この実施例においては、コールドボックスB内に
おける第3熱交換器29の出口側に過冷却器32が設け
られ、第3熱交換器29を出た液体空気が、この過冷却
器32により製品タンク35の圧力下における沸点以下
の温度まで過冷却されるようになっている。On the other hand, in this embodiment, a supercooler 32 is provided on the outlet side of the third heat exchanger 29 in the cold box B, and the liquid air leaving the third heat exchanger 29 is cooled by the supercooler 32. The product is supercooled to a temperature below the boiling point under the pressure of the product tank 35.
この過冷却された液体空気は減圧弁34によりタンク圧
力まで減圧された後、製品として同タンク35に送り込
まれる。This supercooled liquid air is reduced in pressure to the tank pressure by the pressure reducing valve 34, and then sent to the same tank 35 as a product.
このように、液体空気がタンク圧力下における沸点以下
の温度まで過冷却された後、減圧弁34に入るため、同
減圧弁34での減圧時に液体空気のガス化が起こらず、
従って運転開始当初から一定組成の製品液体空気を製造
することができる。In this way, since the liquid air enters the pressure reducing valve 34 after being supercooled to a temperature below the boiling point under the tank pressure, gasification of the liquid air does not occur when the pressure is reduced in the pressure reducing valve 34.
Therefore, product liquid air having a constant composition can be produced from the beginning of operation.
過冷却器32から出た液体空気の一部は膨張弁33で膨
張してさらに低温化し、過冷却器32および第3熱交換
器29の低温部を通ってこれらに寒冷を与えた後、再生
空気ラインL3に入り、第2膨張タービン31から出た
空気と合流して吸着塔22aに向かう。A portion of the liquid air coming out of the supercooler 32 is expanded in the expansion valve 33 to further reduce the temperature, passes through the low temperature section of the supercooler 32 and the third heat exchanger 29, cools them, and is then regenerated. It enters the air line L3, merges with the air coming out of the second expansion turbine 31, and heads toward the adsorption tower 22a.
このように、第2膨張タービン31および膨張弁33で
膨張(減圧)されて冷却手段に寒冷を与えた空気、すな
わち空気の液化に寄与した空気の一部を吸着塔22aの
再生用空気として使用するため、吸着塔から出た空気の
一部をすぐ減圧して再生用空気として吸着塔に戻す場合
のような圧縮機動力の無駄使いがなくなる。従って、装
置全体のエネルギー効率が良いものとなる。In this way, the air that has been expanded (depressurized) by the second expansion turbine 31 and the expansion valve 33 and has cooled the cooling means, that is, a part of the air that has contributed to the liquefaction of the air, is used as regeneration air for the adsorption tower 22a. Therefore, there is no need to waste compressor power, which would be the case when part of the air coming out of the adsorption tower is immediately decompressed and returned to the adsorption tower as regeneration air. Therefore, the energy efficiency of the entire device is improved.
また、コールドボックスBから出た低温かつ乾燥した吸
着塔再生用空気の一部を原料空気圧縮機21の吸込側に
戻すため、この再生用空気によって原料空気の温度およ
び湿度が低くなる。従って、同圧縮機21の負荷が小さ
くなるため、圧縮機動力が減少し、エネルギー効率が一
層良いものとなる。Furthermore, since a portion of the low temperature and dry adsorption tower regeneration air discharged from the cold box B is returned to the suction side of the raw air compressor 21, the temperature and humidity of the raw air are lowered by this regeneration air. Therefore, the load on the compressor 21 is reduced, the compressor power is reduced, and energy efficiency is further improved.
第2実施例(第2図参照) 第1実施例との相違点のみを説明する。Second embodiment (see Figure 2) Only the differences from the first embodiment will be explained.
第1実施例では、第1熱交換器27を通過した原料空気
の一部を、相対的に低温側であるTS1膨張タービン3
0で断熱膨張させてさらに寒冷を与えた後、各熱交換器
29,28.27に通し、これらにより寒冷を奪われて
高温化した空気を再び高温側の第2膨張タービン31で
吸着塔再生圧力まで膨張させて再生空気ラインL3に送
るようにした。In the first embodiment, a part of the raw air that has passed through the first heat exchanger 27 is transferred to the TS1 expansion turbine, which is on the relatively low temperature side.
After being adiabatically expanded at 0 and further given cold, the air is passed through each heat exchanger 29, 28, 27, and the air which has been deprived of cold and has become high temperature is again regenerated in the adsorption tower by the second expansion turbine 31 on the high temperature side. The air was expanded to pressure and sent to the regeneration air line L3.
これに対し、第2実施例では、第2図に示すようにフレ
オン冷却器26を出たばかりの比較的高温の空気の一部
を高温側の第2膨張タービン31で膨張させた後、第2
熱交換器28の出口側で二つの流れに分け、その一方を
戻りラインL2により循環圧縮機23に戻し、他方を低
温側の第1膨張タービン30に導入して再度膨張させた
後、再生空気ラインL3に送るようにしている。On the other hand, in the second embodiment, as shown in FIG.
It is divided into two streams at the outlet side of the heat exchanger 28, one of which is returned to the circulation compressor 23 via the return line L2, and the other is introduced into the first expansion turbine 30 on the low temperature side and expanded again, and then the regenerated air is I am trying to send it to line L3.
この構成によっても第1実施例の場合と同様の作用効果
を得ることができる。With this configuration as well, the same effects as in the first embodiment can be obtained.
第3実施例(第3図参照)および第4実施例(第4図参
照)
この両実施例では、循環空気圧縮機を設けずに、原料空
気圧縮機21を循環空気圧縮機として兼用する構成を前
提としている。Third Embodiment (See Figure 3) and Fourth Embodiment (See Figure 4) In both of these embodiments, a circulating air compressor is not provided, and the raw material air compressor 21 is also used as a circulating air compressor. It is assumed that
この前提において、第3実施例では液化ラインL1を通
る原料空気の一部を、フレオン冷却器26の出口側で第
2膨張タービン31に、また第1熱交換器27の出口側
で第1膨張タービン30にそれぞれ導入して吸着塔再生
圧力まで別々に膨張させた後、再生空気ラインL3に送
るようにしている。On this premise, in the third embodiment, a part of the raw material air passing through the liquefaction line L1 is transferred to the second expansion turbine 31 on the outlet side of the Freon cooler 26, and to the first expansion turbine 31 on the outlet side of the first heat exchanger 27. After being introduced into the turbine 30 and expanded separately to the adsorption tower regeneration pressure, the air is sent to the regeneration air line L3.
なお、膨張弁33で膨張された液体空気を戻りラインL
2により原料空気圧縮機21の吸込側に戻すようにして
いる。Note that the liquid air expanded by the expansion valve 33 is transferred to the return line L.
2, the raw material air is returned to the suction side of the raw air compressor 21.
一方、第4実施例においては、フレオン冷紐器26から
出た空気の一部を、第2膨張タービン31−第2熱交換
器28→第1膨張タービン30の経路で低温化させた後
、第3熱交換器29の入口側で再生空気ライン兼用戻り
ラインL5に送るようにしている。On the other hand, in the fourth embodiment, after a part of the air coming out of the Freon cold stringer 26 is lowered in temperature through the path from the second expansion turbine 31 to the second heat exchanger 28 to the first expansion turbine 30, At the inlet side of the third heat exchanger 29, the air is sent to a return line L5 which also serves as a regeneration air line.
再生空気ライン兼用戻りラインL5は、膨張弁33−過
冷却器32→第3熱交換器29−第2熱交換器28−第
1熱交換器27−予冷器24の各低温部を通り、膨張弁
33および膨張タービン31.30により吸着塔再生圧
力まで減圧された空気を吸着塔22aの再生ガス入口に
送り、残りを循環空気として分岐ライン上6経由で原料
空気圧縮機21の吸込側に戻す。The regeneration air line/return line L5 passes through each low temperature section of the expansion valve 33 - supercooler 32 -> third heat exchanger 29 - second heat exchanger 28 - first heat exchanger 27 - precooler 24, and expands. The air reduced in pressure to the adsorption tower regeneration pressure by the valve 33 and expansion turbine 31, 30 is sent to the regeneration gas inlet of the adsorption tower 22a, and the remaining air is returned to the suction side of the raw air compressor 21 via the branch line 6 as circulating air. .
上記のように本発明によるときは、コールドボックス内
において膨張手段により膨張(減圧)されて冷却手段に
対する寒冷源として使用された空気の一部を吸む塔再生
ガスとして有効利用できるため、吸着塔出口側の空気を
減圧して吸着塔に再生ガスとして戻す場合のような圧縮
機動力の無駄使いがなくなり、エネルギー効率が良いも
のとなる。As described above, according to the present invention, a part of the air that has been expanded (depressurized) by the expansion means in the cold box and used as a cold source for the cooling means can be effectively used as the regeneration gas for the absorption tower. There is no need to waste compressor power, which is the case when the air on the outlet side is decompressed and returned to the adsorption tower as regeneration gas, resulting in better energy efficiency.
また、請求項2の構成によると、吸着塔再生に使用され
る分の残りの空気を圧縮機の吸込側に戻すため、低温度
でかつ乾燥した再生用空気によって原料空気の温度と湿
度を低下させることができる。従って、圧縮機の負荷が
小さくなり、圧縮機動力が減少するため、エネルギー効
率が一層良いものとなる。Further, according to the structure of claim 2, since the remaining air used for regenerating the adsorption tower is returned to the suction side of the compressor, the temperature and humidity of the raw air are reduced by the low-temperature and dry regeneration air. can be done. Therefore, the load on the compressor is reduced and the compressor power is reduced, resulting in even better energy efficiency.
第1図は本発明の第1実施例、第2図は同第2実施例、
第3図は同第3実施例、第4図は同第4実施例をそれぞ
れ示すフローシート、第5図は従来公知の液体空気製造
装置のフローシートである。
21・・・原料空気圧縮機、22a・・・吸着塔、24
・・・冷却手段としての予冷器、26・・・同フレオン
冷却器、27,28.29・・・同第1乃至第3各熱交
換器、32・・・同過冷却器、30.31・・・膨張手
段としての膨張タービン、34・・・同膨張弁、L3・
・・再生空気ライン、L5・・・再生空気ライン兼用戻
りライン、L4.L6・・・分岐ライン。FIG. 1 shows a first embodiment of the present invention, FIG. 2 shows a second embodiment of the invention,
FIG. 3 is a flow sheet showing the third embodiment, FIG. 4 is a flow sheet showing the fourth embodiment, and FIG. 5 is a flow sheet of a conventionally known liquid air production apparatus. 21... Raw material air compressor, 22a... Adsorption tower, 24
... Precooler as a cooling means, 26 ... Freon cooler, 27, 28.29 ... Each of the first to third heat exchangers, 32 ... Supercooler, 30.31 . . . Expansion turbine as expansion means, 34 . . . Expansion valve, L3.
... Regeneration air line, L5 ... Return line that also serves as regeneration air line, L4. L6...branch line.
Claims (1)
原料空気中から不要成分を吸着除去する吸着塔と、この
吸着塔から出た空気を冷却して液化させる冷却手段と、
この冷却手段に導入される空気の一部を膨張させて低温
化させ冷却手段に寒冷源として供給する膨張手段とを具
備し、かつ、この膨張手段から冷却手段に供給された空
気の一部を上記吸着塔の再生ガス入口に導く吸着塔再生
空気ラインが設けられてなることを特徴とする液体空気
製造装置。 2、吸着塔再生空気ライン中の空気の一部を圧縮機の吸
込側に導く分岐ラインが設けられてなることを特徴とす
る請求項1記載の液体空気製造装置。[Claims] 1. A compressor that pressurizes raw air, an adsorption tower that adsorbs and removes unnecessary components from the air that comes out of the compressor, and cools and liquefies the air that comes out of the adsorption tower. cooling means;
an expansion means that expands a part of the air introduced into the cooling means to lower the temperature and supply the cooling means as a cold source, and a part of the air supplied from the expansion means to the cooling means. A liquid air production apparatus characterized in that an adsorption tower regeneration air line leading to the regeneration gas inlet of the adsorption tower is provided. 2. The liquid air production apparatus according to claim 1, further comprising a branch line that guides a part of the air in the adsorption tower regeneration air line to the suction side of the compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63271825A JPH0668430B2 (en) | 1988-10-26 | 1988-10-26 | Liquid air production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63271825A JPH0668430B2 (en) | 1988-10-26 | 1988-10-26 | Liquid air production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02118391A true JPH02118391A (en) | 1990-05-02 |
JPH0668430B2 JPH0668430B2 (en) | 1994-08-31 |
Family
ID=17505377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63271825A Expired - Fee Related JPH0668430B2 (en) | 1988-10-26 | 1988-10-26 | Liquid air production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0668430B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011073909A (en) * | 2009-09-30 | 2011-04-14 | Hitachi Ltd | Co2 recovery process and co2 recovery apparatus |
CN102564065A (en) * | 2012-01-15 | 2012-07-11 | 罗良宜 | Energy saving air liquefaction separation device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8156899B2 (en) | 2004-12-13 | 2012-04-17 | Innovive Inc. | Containment systems and components for animal husbandry: nested covers |
US7954455B2 (en) | 2005-06-14 | 2011-06-07 | Innovive, Inc. | Cage cover with filter, shield and nozzle receptacle |
CA2683257A1 (en) | 2007-04-11 | 2008-10-23 | Innovive, Inc. | Animal husbandry drawer caging |
JP5952287B2 (en) | 2010-10-11 | 2016-07-13 | イノビーブ,インコーポレイティド | Rodent containment cage monitoring device and method |
-
1988
- 1988-10-26 JP JP63271825A patent/JPH0668430B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011073909A (en) * | 2009-09-30 | 2011-04-14 | Hitachi Ltd | Co2 recovery process and co2 recovery apparatus |
CN102564065A (en) * | 2012-01-15 | 2012-07-11 | 罗良宜 | Energy saving air liquefaction separation device |
Also Published As
Publication number | Publication date |
---|---|
JPH0668430B2 (en) | 1994-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3086857B2 (en) | Method for generating cold, cooling cycle using this method, and air rectification method and apparatus using this method | |
US4575388A (en) | Process for recovering argon | |
CN109690215A (en) | Industrial gasses place produces integrated with liquid hydrogen | |
EP1055894B1 (en) | Air separation method and air separation plant | |
US5505050A (en) | Process and installation for the distillation of air | |
CN1096578A (en) | Method and device for producing gaseous oxygen and/or gaseous nitrogen by pressurized fractionation of air | |
JPH02118391A (en) | Manufacturing device for liquid air | |
JP3208547B2 (en) | Liquefaction method of permanent gas using cold of liquefied natural gas | |
US4696689A (en) | Method and apparatus for separating of product gas from raw gas | |
JP2001141359A (en) | Air separator | |
JP3142669B2 (en) | Air separation equipment | |
JPH0789014B2 (en) | Method of using external cold heat source in air separation device | |
JP2001133143A (en) | Air separating facility | |
JPH0710226Y2 (en) | Air liquefaction separation device | |
JPH08159653A (en) | Method and device for manufacturing liquid hydrogen | |
JPH0784979B2 (en) | Method for producing liquid air by LNG cold heat and expander cycle | |
JPS63143482A (en) | Tsa adsorption type air low-temperature separator | |
US20240279825A1 (en) | Apparatus and process for absorption chiller utilization for environmentally friendly hydrogen production | |
JP3537199B2 (en) | Air separation method and air separation device used in the method | |
JP2755953B2 (en) | Nitrogen gas production method | |
JPH0711382B2 (en) | Liquid air production equipment | |
JP2002097011A (en) | Apparatus for producing dry ice or the like | |
JPS6357713B2 (en) | ||
JP2005090915A (en) | Air separator and air separating method | |
JPS6338632B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |