JPH0128311B2 - - Google Patents

Info

Publication number
JPH0128311B2
JPH0128311B2 JP56005795A JP579581A JPH0128311B2 JP H0128311 B2 JPH0128311 B2 JP H0128311B2 JP 56005795 A JP56005795 A JP 56005795A JP 579581 A JP579581 A JP 579581A JP H0128311 B2 JPH0128311 B2 JP H0128311B2
Authority
JP
Japan
Prior art keywords
nitrogen
air
natural gas
lower column
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56005795A
Other languages
Japanese (ja)
Other versions
JPS57120077A (en
Inventor
Teruji Kaneko
Shoichi Hatori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP579581A priority Critical patent/JPS57120077A/en
Publication of JPS57120077A publication Critical patent/JPS57120077A/en
Publication of JPH0128311B2 publication Critical patent/JPH0128311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • F25J3/04272The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は、液化天然ガス(以下LNGという)
の寒冷を利用して電力消費量の低減化を図る空気
の液化分離方法に関するものである。
[Detailed Description of the Invention] The present invention relates to liquefied natural gas (hereinafter referred to as LNG)
The present invention relates to a method for liquefying and separating air, which uses the cold temperature of air to reduce power consumption.

従来よりLNGの寒冷を空気液化分離装置に与
えて動力の低減化を図る方法は種々提案されてお
り、一部実施されているがLNGの冷熱は一般に
下部塔上部に発生する高純度窒素を液化する際に
利用されていた。このため、原料空気量が多く従
つて、これを圧縮するに要する動力が大きくな
り、満足できるものではなかつた。例えば、これ
を第1図によつて説明すると、管1より圧縮機2
に導びかれた原料空気は5Kg/cm2に圧縮されて再
生式熱交換器3に入り、分離低温ガスによつて冷
却されかつ水分炭酸ガス等の不純物を除去した
後、管4より下部塔5下部に供給される。下部塔
5に供給された原料空気は精溜され、上部に窒素
が又底部に酸素リツチの液体空気が生成される
が、このうち液体空気は管6を通り弁7で膨張し
た後、上部塔8にフイードされ、精溜される。次
に下部塔5中部より液体窒素が管9より導出され
弁10にて膨張した後、管11より上部塔8上部
に供給されると共に下部塔5上部からは管12を
介して製品液体窒素が採取される。又管13より
窒素が導出され、管14に一部を分岐した後管1
5を経て再生式熱交換器3を流れ、原料空気を冷
却して加温されて管16より第1冷却器17に導
入される。第1冷却器17は、第2冷却器18と
共にLNGの冷熱をフロン等の冷媒を介して冷却
するもので冷媒は熱交換器19においてLNGと
熱交換して管20を流れ第1、2各冷却器17,
18を冷却し、循環ポンプ21により熱交換器1
9に戻るサイクルが形成される。第1冷却器17
で冷却された前記窒素は前記管14に分岐された
後、過冷器22、第2熱交換器24、第1熱交換
器23を経た分岐窒素流れと合流し、管25より
窒素圧縮機の低圧段26に吸入され圧縮される。
この圧縮窒素はついで管27を介して第2冷却器
18に入り冷却された後、後記する未凝縮窒素と
合流して管28より窒素圧縮機の高圧段29に入
り更に圧縮される。窒素圧縮機で約60Kg/cm2に圧
縮された窒素は、管30と管31に2分され管3
0の窒素流れはLNG熱交換器32で冷却された
後、前記第1熱交換器23を通つた管31の窒素
流れと合流して第2熱交換器24に導入される。
第2熱交換器24で更に冷却された窒素は弁33
で膨張された後気液分離器34に導入され、液体
窒素と未凝縮窒素に分離される。このうち液体窒
素は管35より導出され過冷器22、管36を通
り弁37で膨張されて下部塔5に導入され、又未
凝縮窒素は気液分離器34の頂部から抜き出さ
れ、第2、第1各熱交換器24,23を逆流して
前記第2冷却器18を出た窒素流れに合流され
る。
Various methods have been proposed and some have been implemented to reduce power by applying cold LNG to the air liquefaction separation equipment, but the cold heat of LNG is generally used to liquefy high-purity nitrogen generated at the top of the lower column. It was used when For this reason, the amount of raw material air is large, and the power required to compress it becomes large, which is not satisfactory. For example, to explain this using FIG. 1, from the pipe 1 to the compressor 2
The raw material air led to the 5 is supplied to the lower part. The raw air supplied to the lower column 5 is rectified to produce nitrogen-rich liquid air at the top and oxygen-rich liquid air at the bottom.The liquid air passes through a pipe 6 and expands at a valve 7, and then passes through the upper column. 8 and is distilled. Next, liquid nitrogen is led out from the middle of the lower column 5 through a pipe 9, expanded at a valve 10, and then supplied to the upper part of the upper column 8 through a pipe 11, and product liquid nitrogen is passed from the upper part of the lower column 5 through a pipe 12. collected. Further, nitrogen is led out from the pipe 13, and a part of the nitrogen is branched into the pipe 14, and then the pipe 1
5 and flows through the regenerative heat exchanger 3, the raw air is cooled and heated, and then introduced into the first cooler 17 through the pipe 16. The first cooler 17, together with the second cooler 18, cools the cold energy of LNG through a refrigerant such as fluorocarbon. cooler 17,
18, and the circulation pump 21 cools the heat exchanger 1.
A cycle back to 9 is formed. First cooler 17
After being branched into the pipe 14, the nitrogen cooled in It is sucked into the low pressure stage 26 and compressed.
This compressed nitrogen then enters the second cooler 18 through a pipe 27 and is cooled, and then joins with uncondensed nitrogen (described later), enters the high pressure stage 29 of the nitrogen compressor through a pipe 28, and is further compressed. Nitrogen compressed to approximately 60Kg/cm 2 by a nitrogen compressor is divided into two pipes 30 and 31, and pipe 3
After being cooled in the LNG heat exchanger 32, the nitrogen stream at 0 is combined with the nitrogen stream in the tube 31 passing through the first heat exchanger 23 and introduced into the second heat exchanger 24.
Nitrogen further cooled in the second heat exchanger 24 is transferred to the valve 33
After being expanded, it is introduced into a gas-liquid separator 34, where it is separated into liquid nitrogen and uncondensed nitrogen. Among them, liquid nitrogen is led out from the pipe 35, passes through the subcooler 22 and the pipe 36, is expanded by the valve 37, and is introduced into the lower column 5, and uncondensed nitrogen is extracted from the top of the gas-liquid separator 34, and is introduced into the lower column 5. 2. It flows back through the first heat exchangers 24 and 23 and is combined with the nitrogen flow exiting the second cooler 18.

次に上部塔8では精溜により上部に窒素が下部
に酸素が分離されるが酸素は凝縮部より液体酸素
として管38より採取され、窒素は頂部より管3
9を介して導出された後再生式熱交換器3を流
れ、該器3内を冷却すると共に原料空気が残して
いた水分、炭酸ガスを同伴して管40より系外に
放出される。又、LNGは管41よりLNG熱交換
器32に供給され該器32内を流れる窒素に寒冷
を与えた後管42を介して冷媒との熱交換器19
に導入されて冷媒を冷却し、天然ガスとして管4
3より供給される。
Next, in the upper column 8, nitrogen is separated into the upper part and oxygen is separated into the lower part by rectification.The oxygen is collected as liquid oxygen from the condensing part through the pipe 38, and the nitrogen is collected from the top through the pipe 38.
After being led out through air 9, the air flows through the regenerative heat exchanger 3, cooling the inside of the vessel 3, and is discharged out of the system through a pipe 40, accompanied by moisture and carbon dioxide gas left behind in the raw material air. Further, LNG is supplied from a pipe 41 to an LNG heat exchanger 32, and after cooling the nitrogen flowing inside the vessel 32, it is transferred to a heat exchanger 19 with a refrigerant via a pipe 42.
The refrigerant is introduced into the pipe 4 as natural gas to cool the refrigerant.
Supplied from 3.

以上に説明した従来方法においては、下部塔5
の高純度窒素をサイクルさせる過程でLNGの寒
冷により液化して採取しており、このため原料空
気量は製品酸素を生産するに要する量よりも多く
必要になる。例えば、製品酸素を9000m3/h、製
品窒素を9600m3/h生産する場合、従来54500Nm3/
hの原料空気が必要であつた。
In the conventional method explained above, the lower column 5
The high-purity nitrogen is collected by liquefying it by cooling the LNG during the cycling process, so the amount of feed air required is greater than the amount required to produce the product oxygen. For example, when producing 9000 m 3 /h of oxygen product and 9600 m 3 /h of nitrogen product, conventional production of 54500Nm 3 /h
h of raw material air was required.

本発明は、前記同様の製品を生産するに要する
原料空気量を減少せしめて動力の低減化を図るこ
とを目的としたものでその特徴は前記サイクル窒
素ガスに上部塔頂部より取り出した低圧窒素を冷
却かつ圧縮してフイードするようにしたものであ
る。以下に本発明の実施例を第2図により説明す
るが、第1図と同一個所は同一番号を付し説明を
省略する。
The purpose of the present invention is to reduce the amount of feed air required to produce the same product as described above, thereby reducing power consumption. It is designed to be cooled and compressed before being fed. An embodiment of the present invention will be described below with reference to FIG. 2, where the same parts as in FIG. 1 are given the same numbers and the explanation will be omitted.

第2図において、下部塔5上部の製品液体窒素
を採取する管12に管51を連設し、液体窒素の
一部が管51、弁52を経て上部塔8頂部の高純
度窒素部53に送られ、精溜されて管54より高
純度窒素が導出される。この窒素は再生式熱交換
器3に入つて該器3を冷却しほぼ常温まで加温さ
れた後、管55を経て高純度窒素冷却器56に導
入される。高純度窒素冷却器56は前記第1、2
冷却器17,18と同様LNG熱交換器19を流
れるLNGの冷熱によつて冷却されるもので冷媒
回路20に管を連設し、冷却器17,18および
56とLNG熱交換器19とを冷媒が循環するよ
う構成される。高純度窒素冷却器56で冷却され
た窒素はついで低圧圧縮機57に吸引されて下部
塔圧力まで圧縮された後、下部塔5上部より管1
3により導出され、管15、再生式熱交換器3を
経て管16を流れる窒素にフイードされる。この
合流窒素は第1冷却器17に流れて冷却された
後、以後は第1図で説明したと同様の工程を経て
液化された後、下部塔5上部に供給される。
In FIG. 2, a pipe 51 is connected to the pipe 12 that collects the product liquid nitrogen from the upper part of the lower column 5, and a part of the liquid nitrogen passes through the pipe 51 and the valve 52 to the high-purity nitrogen section 53 at the top of the upper column 8. The nitrogen gas is sent and rectified, and high-purity nitrogen is led out from the pipe 54. This nitrogen enters the regenerative heat exchanger 3, cools the vessel 3, warms it to approximately room temperature, and then is introduced into the high purity nitrogen cooler 56 through the pipe 55. The high-purity nitrogen cooler 56
Like the coolers 17 and 18, they are cooled by the cold heat of LNG flowing through the LNG heat exchanger 19, and a pipe is connected to the refrigerant circuit 20 to connect the coolers 17, 18, and 56 to the LNG heat exchanger 19. The refrigerant is configured to circulate. The nitrogen cooled by the high-purity nitrogen cooler 56 is then sucked into the low-pressure compressor 57 and compressed to the lower column pressure.
3 and is fed to the nitrogen flowing through the pipe 15 and the regenerative heat exchanger 3 through the pipe 16. After this combined nitrogen flows into the first cooler 17 and is cooled, it is thereafter liquefied through the same steps as explained in FIG. 1 and then supplied to the upper part of the lower column 5.

ここで、この種の装置において液体酸素を9000
m3/h、液体窒素を9600m3/h製品として採取する
場合、循環窒素を形成するために精溜塔から抜き
出す窒素量は29000m3/hである。従来はこの窒素
は下部塔5で生成される窒素ですべてまかなつて
いたが本発明方法ではこのうちの一部、例えば製
品窒素量に見合う量だけ上部塔8頂部で生成する
窒素でまかなわれる。即ち、前記精溜塔からの抜
出窒素量29000m3/hのうち、下部塔5の管13よ
り19400m3/h導出してそのうちの7000m3/hを管1
4に分岐し、残部の12400m3/hが管15を経て再
生式熱交換器3で加温され、循環窒素の主流れが
形成される。次に不足分9600m3/hは上部塔8頂
部より管54を介して導出され、再生式熱交換器
3で加温された後、冷却器56を経て圧縮機57
で下部塔5より導出された前記窒素主流れと見合
う圧力まで加圧されて該主流れにフイードされ
る。
Here, in this type of equipment, liquid oxygen is
m 3 /h, if liquid nitrogen is taken as 9600 m 3 /h product, the amount of nitrogen withdrawn from the rectification column to form circulating nitrogen is 29000 m 3 /h. Conventionally, this nitrogen was entirely covered by the nitrogen produced in the lower column 5, but in the method of the present invention, a portion of this, for example, an amount corresponding to the amount of product nitrogen, is covered by the nitrogen produced at the top of the upper column 8. . That is, of the 29,000 m 3 /h of nitrogen extracted from the rectification column, 19,400 m 3 /h is drawn out from the pipe 13 of the lower column 5, and 7,000 m 3 /h of that is transferred to the pipe 1.
4, and the remaining 12400 m 3 /h is heated via pipe 15 in regenerative heat exchanger 3 to form the main flow of circulating nitrogen. Next, the shortfall of 9,600 m 3 /h is led out from the top of the upper column 8 through a pipe 54, heated in a regenerative heat exchanger 3, and then passed through a cooler 56 to a compressor 57.
It is pressurized to a pressure corresponding to the nitrogen main stream discharged from the lower column 5 and fed to the main stream.

以上のように本発明方法によると、原料空気量
を9500m3/h減少し、45000Nm3/hとすることがで
き、従つて空気圧縮機2における空気量減少によ
る動力低減と、窒素圧縮機57において9600m3/
hの窒素を低温圧縮する動力増加とを相殺し、低
温圧縮がもたらす効果分の動力が節減できる。例
えば前記した条件で空気を5Kg/cm2に圧縮した場
合、従来法によると54500Nm3/hの原料空気を圧
縮するに要する動力は4500KWHである。これに
対し本発明方法によると、原料空気45000Nm3/h
圧縮するに要する動力が3720KWH、9600m3/hの
窒素を−132℃の低温圧縮により4.6Kg/cm2Gまで
圧縮するに要する動力が550KWHであるから合
計4270KWHですみ、約5%の動力節減ができ
る。
As described above, according to the method of the present invention, the amount of feed air can be reduced by 9,500 m 3 /h to 45,000 Nm 3 /h, and therefore the power is reduced by reducing the amount of air in the air compressor 2, and the nitrogen compressor 57 9600m 3 /
This offsets the increase in power for compressing nitrogen at low temperature in h, and the power for the effect brought about by low-temperature compression can be saved. For example, when air is compressed to 5Kg/cm 2 under the above conditions, the power required to compress 54500Nm 3 /h of raw air according to the conventional method is 4500KWH. On the other hand, according to the method of the present invention, the raw air is 45000Nm 3 /h.
The power required for compression is 3720KWH, and the power required to compress 9600m 3 /h of nitrogen to 4.6Kg/cm 2 G by low-temperature compression at -132℃ is 550KWH, so the total amount is 4270KWH, which is a power saving of approximately 5%. Can be done.

又、本発明方法によると副産物としてアルゴン
を採取する場合に効果をもたらす特徴がある。即
ち、従来法によると廃ガス中の酸素分は約6.5%
であるのに対し、本発明方法によると約1.7%で
あり、従つて廃ガス中に逃げるアルゴンが少くな
る。又、下部塔および上部塔上部の精溜条件も従
来法に比して有利となり、これはアルゴン収率の
向上をもたらすので原料空気量の減少にかかわら
ず従来法より多いアルゴンを採取することができ
る。
Furthermore, the method of the present invention has a feature that is effective when collecting argon as a by-product. In other words, according to the conventional method, the oxygen content in the waste gas is approximately 6.5%.
In contrast, according to the method of the present invention, it is about 1.7%, and therefore less argon escapes into the waste gas. In addition, the rectification conditions at the top of the lower column and the upper column are more advantageous than in the conventional method, which improves the argon yield, making it possible to collect more argon than in the conventional method despite the reduction in the amount of feed air. can.

以上の説明から明らかなように、本発明の特徴
はサイクル窒素ガスを形成する窒素ガスの一部を
上部塔で生成する高純度窒素を低温圧縮してまか
なうようにしたものであり、従つてこれを逸脱し
ない範囲においての設計変更が可能である。例え
ば上部塔頂部の窒素を過冷器22を経て第1、2
熱交換器23,24を逆流する窒素流れの回路を
通した後、加圧して下部塔5より導出し、再生式
熱交換器3、冷却器17を流れるサイクル窒素の
冷却器17の前で合流せしめる方法でもよい。
又、サイクル窒素系によつて液化された窒素は、
弁37を介して全量、下部塔5に導入されている
が製品窒素を管36より分岐して採取し、残部を
下部塔5に導入することもできる。
As is clear from the above description, the feature of the present invention is that a part of the nitrogen gas forming the cycle nitrogen gas is supplied by low-temperature compression of high-purity nitrogen produced in the upper column. Design changes are possible within the range. For example, the nitrogen at the top of the upper column is passed through the subcooler 22 to the first and second
After passing through the circuit of the nitrogen flow counterflowing through the heat exchangers 23 and 24, it is pressurized and led out from the lower column 5, and is combined before the cooler 17 with the cycle nitrogen flowing through the regenerative heat exchanger 3 and the cooler 17. It may also be a method of coercion.
In addition, the nitrogen liquefied by the cycle nitrogen system is
Although the entire amount is introduced into the lower column 5 via the valve 37, the product nitrogen may be branched off from the pipe 36 and collected, and the remainder may be introduced into the lower column 5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す系統図、第2図は本発明
の実施例の系統図である。 2は圧縮機、3は再生式熱交換器、5は下部
塔、8は上部塔、17,18は冷却器、19は熱
交換器、22は過冷器、23,24は熱交換器、
32はLNG熱交換器、34は気液分離器、56
は高純度窒素冷却器、57は低圧圧縮機である。
FIG. 1 is a system diagram showing a conventional example, and FIG. 2 is a system diagram of an embodiment of the present invention. 2 is a compressor, 3 is a regenerative heat exchanger, 5 is a lower column, 8 is an upper column, 17 and 18 are coolers, 19 is a heat exchanger, 22 is a subcooler, 23 and 24 are heat exchangers,
32 is an LNG heat exchanger, 34 is a gas-liquid separator, 56
is a high-purity nitrogen cooler, and 57 is a low-pressure compressor.

Claims (1)

【特許請求の範囲】 1 空気液化分離装置の精溜塔下部塔より導出し
た窒素を液化天然ガスの寒冷を利用した冷却と、
圧縮、膨張により液化した後、前記下部塔に導入
するよう構成された窒素液化サイクルを有する空
気の液化精溜法において、前記下部塔より導出す
る液体窒素の一部を上部塔頂部に供給し、精溜し
て高純度窒素を得ると共に、該高純度窒素を低温
下で下部塔圧力まで圧縮した後、前記下部塔より
導出して窒素液化サイクルを形成する窒素にフイ
ードすることにより該窒素液化サイクルを形成す
る窒素の一部を、上部塔頂部より導出する窒素で
まかなうようにしたことを特徴とする液化天然ガ
スの寒冷を利用した空気の液化分離方法。 2 前記上部塔頂部より導出される高純度窒素が
原料空気と熱交換して加温された後、液化天然ガ
スの寒冷を利用して冷却され、かつ圧縮されて窒
素液化サイクルにフイードされることを特徴とす
る特許請求の範囲第1項記載の液化天然ガスの寒
冷を利用した空気の液化分離方法。 3 前記上部塔頂部より導出される高純度窒素
を、窒素液化サイクルの圧縮ガスと熱交換した後
圧縮し、下部塔より導出されて原料空気との熱交
換によつて加温された窒素に合流させて窒素液化
サイクルにフイードすることを特徴とする特許請
求の範囲第1項記載の液化天然ガスの寒冷を利用
した空気の液化分離方法。 4 前記窒素液化サイクルで得られた液体窒素の
一部を製品として採取し、残部を下部塔へ導入す
ることを特徴とする特許請求の範囲第1項又は第
2項又は第3項記載の液化天然ガスの寒冷を利用
した空気の液化分離方法。
[Claims] 1. Cooling nitrogen extracted from the lower column of the rectification column of the air liquefaction separation device using the cooling of liquefied natural gas;
In an air liquefaction rectification method having a nitrogen liquefaction cycle configured to be introduced into the lower column after being liquefied by compression and expansion, a part of the liquid nitrogen derived from the lower column is supplied to the top of the upper column, The nitrogen liquefaction cycle is performed by rectifying to obtain high-purity nitrogen, compressing the high-purity nitrogen to the pressure of the lower column at low temperature, and then feeding it to the nitrogen that is led out from the lower column to form the nitrogen liquefaction cycle. A method for liquefying and separating air using the cooling of liquefied natural gas, characterized in that a part of the nitrogen forming the liquefied natural gas is supplied by nitrogen extracted from the top of the upper column. 2. After the high-purity nitrogen derived from the top of the upper column is heated by exchanging heat with the feed air, it is cooled using the refrigeration of liquefied natural gas, compressed, and fed into the nitrogen liquefaction cycle. A method for liquefying and separating air using cooling of liquefied natural gas according to claim 1. 3. The high-purity nitrogen drawn out from the top of the upper column is compressed after exchanging heat with the compressed gas of the nitrogen liquefaction cycle, and merged with the nitrogen drawn out from the lower column and heated by heat exchange with the feed air. 2. A method for liquefying and separating air using refrigeration of liquefied natural gas according to claim 1, wherein the liquefied natural gas is fed into a nitrogen liquefaction cycle. 4. Liquefaction according to claim 1, 2, or 3, characterized in that a part of the liquid nitrogen obtained in the nitrogen liquefaction cycle is collected as a product, and the remainder is introduced into the lower column. A method for liquefying and separating air using the cold of natural gas.
JP579581A 1981-01-17 1981-01-17 Air liquified separation utilizing chilling of liquified natural gas Granted JPS57120077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP579581A JPS57120077A (en) 1981-01-17 1981-01-17 Air liquified separation utilizing chilling of liquified natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP579581A JPS57120077A (en) 1981-01-17 1981-01-17 Air liquified separation utilizing chilling of liquified natural gas

Publications (2)

Publication Number Publication Date
JPS57120077A JPS57120077A (en) 1982-07-26
JPH0128311B2 true JPH0128311B2 (en) 1989-06-01

Family

ID=11621008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP579581A Granted JPS57120077A (en) 1981-01-17 1981-01-17 Air liquified separation utilizing chilling of liquified natural gas

Country Status (1)

Country Link
JP (1) JPS57120077A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712331B2 (en) * 2006-06-30 2010-05-11 Air Products And Chemicals, Inc. System to increase capacity of LNG-based liquefier in air separation process
US8601833B2 (en) 2007-10-19 2013-12-10 Air Products And Chemicals, Inc. System to cold compress an air stream using natural gas refrigeration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214238A (en) * 1975-07-24 1977-02-03 Arita Kosei Sheath heater terminal mouth closing
JPS5382687A (en) * 1976-12-28 1978-07-21 Nippon Oxygen Co Ltd Air liquefaction rectifying method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214238A (en) * 1975-07-24 1977-02-03 Arita Kosei Sheath heater terminal mouth closing
JPS5382687A (en) * 1976-12-28 1978-07-21 Nippon Oxygen Co Ltd Air liquefaction rectifying method

Also Published As

Publication number Publication date
JPS57120077A (en) 1982-07-26

Similar Documents

Publication Publication Date Title
CA2063928C (en) Process for low-temperature air fractionation
US4617037A (en) Nitrogen production method
US4575388A (en) Process for recovering argon
JPH0875349A (en) Air separation method for obtaining gaseous oxygen product at supply pressure
JP6351895B1 (en) Nitrogen production method and nitrogen production apparatus
US4964901A (en) Low-temperature separation of air using high and low pressure air feedstreams
US4192662A (en) Process for liquefying and rectifying air
JPH09269189A (en) Preparation of nitrogen and nitrogen generator
JPH0140269B2 (en)
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JPH0128311B2 (en)
JP3992387B2 (en) Air separation device
JP4230094B2 (en) Nitrogen production method and apparatus
SU787829A1 (en) Method of producing liquid and gaseous components of air
JPH1163812A (en) Manufacture and device for low-purity oxygen
JPH1163811A (en) Method and device for manufacturing low impurity oxygen
JP2003156284A (en) Nitrogen producing method and device
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JPS61276680A (en) Method of liquefying and separating air
JPH0427476B2 (en)
JPH0814458B2 (en) Nitrogen production method
JP2917033B2 (en) Air liquefaction separation method and apparatus
JPH0129505Y2 (en)
JPH0440627B2 (en)
JPH0195280A (en) Chilling separating method and device for carbon monoxide