JPH07101617B2 - Open type alkaline storage battery - Google Patents

Open type alkaline storage battery

Info

Publication number
JPH07101617B2
JPH07101617B2 JP61314832A JP31483286A JPH07101617B2 JP H07101617 B2 JPH07101617 B2 JP H07101617B2 JP 61314832 A JP61314832 A JP 61314832A JP 31483286 A JP31483286 A JP 31483286A JP H07101617 B2 JPH07101617 B2 JP H07101617B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
sintered
hydrogen
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61314832A
Other languages
Japanese (ja)
Other versions
JPS63166164A (en
Inventor
利雄 村田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP61314832A priority Critical patent/JPH07101617B2/en
Publication of JPS63166164A publication Critical patent/JPS63166164A/en
Publication of JPH07101617B2 publication Critical patent/JPH07101617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は開放形アルカリ蓄電池、特に開放形ニッケル−
カドミウム蓄電池に関するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an open-type alkaline storage battery, particularly an open-type nickel battery.
It concerns a cadmium storage battery.

従来の技術 従来、非常用電源などの分野に用いられてきた開放形ニ
ッケル−カドミウム蓄電池の使用条件の1つとして、定
電圧浮動充電システムがある。このシステムは次のよう
な原理に基づくものである。即ち、充電状態のニッケル
−カドミウム蓄電池を開回路状態で放置しておくと、自
己放電によって次第に容量が減少してしまうことはよく
知られている。この自己放電は、いわば金属の腐食反応
における局部電池機構と同様の電気化学反応であるの
で、電気防食と同様の原理によって自己放電を防ぐこと
ができる。即ち、正極板においては充電生成物であるNi
OOHが還元されて放電しないような貴な電位に保持し、
一方負極板においては充電生成物であるCdが酸化されて
放電しないような卑な電位に保持すればよい。このこと
を正確に行なうには、ポテンシオスタットを用いて正極
板および負極板をそれぞれ好ましい定電位に設定すれば
よいのであるが、実用電池でこのような方法を行なうの
は装置が高価になるなどの欠点があるので、現実には別
の方法がとられる。即ち、焼結式カドミウム負極板に
は、水素過電圧の低い金属ニッケルが焼結体として多量
に存在するために、負極板の水素過電圧は低い。それ故
に、充電済の開放形の焼結式ニッケル−カドミウム蓄電
池に例えば1.40V/セル程度の定電圧を印加しておくと、
負極板の水素過電圧が低いために、負極板の分極は極め
て小さく、負極板の電位は水素発生反応の平衡電位に極
めて近い定電位にとどまる。その結果、正極板の電位は
水素発生反応の平衡電位を基準として+1.40Vに近い値
になる。充電状態の正極活物質であるNiOOHは、この電
位では放電しないので、正極板は自己放電を免れる。ま
た充電状態の負極活物質であるCdの平衡電位は、水素発
生反応の平衡電位よりも約20mV貴であるから、負極板が
水素発生反応を起こし得る電位では、負極板の自己放電
は当然起こらない。
2. Description of the Related Art A constant voltage floating charging system is one of the usage conditions of open nickel-cadmium storage batteries that have been used in the field of emergency power sources. This system is based on the following principle. That is, it is well known that if a charged nickel-cadmium storage battery is left in an open circuit state, the capacity gradually decreases due to self-discharge. Since this self-discharge is, so to speak, an electrochemical reaction similar to the local battery mechanism in the metal corrosion reaction, it is possible to prevent self-discharge by the same principle as electrocorrosion. That is, in the positive electrode plate, the charge product Ni
Hold at a noble potential where OOH is reduced and does not discharge,
On the other hand, in the negative electrode plate, it may be maintained at a base potential such that Cd which is a charge product is oxidized and is not discharged. To do this accurately, it is sufficient to set the positive electrode plate and the negative electrode plate to their preferred constant potentials using potentiostats, but it is expensive to carry out such a method with a practical battery. However, in reality, another method is adopted. That is, since a large amount of metallic nickel having a low hydrogen overvoltage is present as a sintered body in the sintered cadmium negative electrode plate, the hydrogen overvoltage of the negative electrode plate is low. Therefore, if a constant voltage of, for example, 1.40 V / cell is applied to a charged open-type sintered nickel-cadmium storage battery,
Since the hydrogen overvoltage of the negative electrode plate is low, the polarization of the negative electrode plate is extremely small, and the potential of the negative electrode plate remains a constant potential very close to the equilibrium potential of the hydrogen generation reaction. As a result, the potential of the positive electrode plate becomes a value close to +1.40 V based on the equilibrium potential of the hydrogen generation reaction. Since NiOOH, which is the positive electrode active material in the charged state, does not discharge at this potential, the positive electrode plate escapes self-discharge. Further, the equilibrium potential of Cd, which is the negative electrode active material in the charged state, is about 20 mV higher than the equilibrium potential of the hydrogen generation reaction.Therefore, self-discharge of the negative electrode plate does not occur at the potential at which the negative electrode plate can cause the hydrogen generation reaction. Absent.

このような原理で、開放形アルカリ蓄電池の自己放電が
防がれる。そしてこのような目的で定電圧が印加されて
いると、電池には充電方向の電流が流れ込み、またその
電流は電池温度等によって変動するので、印加する電圧
は浮動充電電圧と呼ばれる。
By such a principle, self-discharge of the open alkaline storage battery can be prevented. When a constant voltage is applied for such a purpose, a current flows in the battery in the charging direction, and the current fluctuates depending on the battery temperature and the like. Therefore, the applied voltage is called a floating charging voltage.

発明が解決しようとする問題点 しかしながら、本発明者が詳細に調べたところ、上述し
たような浮動充電システムを例えば10年以上の長期間
や、あるいは例えば50℃以上の高温下というような厳し
い条件のもとで作動させると、正極板の容量のみが減少
するという従来報告されていない不都合が生ずる場合が
あることがわかった。この現象は、発明者の調査によれ
ば、高温下で長期間にわたって浮動充電を続けると、負
極板の水素直電圧が上昇することに起因すると考えられ
る。水素過電圧が上昇する原因は、負極板の金属ニッケ
ル焼結体の水素発生反応に対する電極触媒活性が低下し
たり、金属ニッケルの表面が水素過電圧の高い金属カド
ミウムで被覆されて水素発生反応の起こるサイドが少な
くなることにあると考えられる。その結果、負極板は浮
動充電中に一定の電位を維持することが不可能となり、
次第に卑な電位へと分極する。このとき、一定の浮動充
電電圧が印加されたままであるならば、正極板の電位は
負極板の分極の増加とともに次第に卑にシフトする結
果、ついてはNiOOHの平衡電位よりも卑になり、正極板
は自己放電することになる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, as a result of detailed investigation by the present inventor, the floating charging system as described above is subjected to severe conditions such as a long period of 10 years or more, or a high temperature of 50 ° C. or more, for example. It has been found that when operated under the condition, there is a case where only the capacity of the positive electrode plate decreases, which has not been reported previously. According to the research conducted by the inventor, this phenomenon is considered to result from an increase in the direct hydrogen voltage of the negative electrode plate when the floating charging is continued for a long period of time at a high temperature. The reason why the hydrogen overvoltage rises is that the electrocatalytic activity for the hydrogen generation reaction of the metal nickel sintered body of the negative electrode plate decreases, or the surface of the metal nickel is covered with metal cadmium having a high hydrogen overvoltage and the hydrogen generation reaction occurs. It is thought that there is less. As a result, the negative electrode plate cannot maintain a constant potential during floating charging,
It gradually polarizes to a base potential. At this time, if a constant floating charging voltage is still applied, the potential of the positive electrode plate gradually shifts to the base as the polarization of the negative plate increases, and as a result, it becomes base to the equilibrium potential of NiOOH, and the positive electrode plate becomes It will self-discharge.

このような不都合を防ぐために、浮動充電電圧を高く設
定しておくと、高温下で長期間使用して負極板の水素過
電圧が上昇し、負極板が卑に分極しても、正極板の電位
をNiOOHの平衡電位よりも貴に保持することが可能であ
る。しかし、この場合には、負極板の水素過電圧が上昇
する前には、負極板の分極が極めて小さいので、正極板
の電位が必要以上に貴になる。それ故、電池に流れる電
流が過大になり、正極板からの酸素発生および負極板か
らの水素発生の速度が著しく大きくなって、電解液量の
減少速度が大きくなり、電池への補水を頻繁に必要とす
る不都合が生ずる。
In order to prevent such inconvenience, if the floating charging voltage is set high, the hydrogen overvoltage of the negative electrode plate rises after long-term use at high temperature, and even if the negative electrode plate is polarized negatively, the potential of the positive electrode plate will increase. Can be kept nobler than the equilibrium potential of NiOOH. However, in this case, since the polarization of the negative electrode plate is extremely small before the hydrogen overvoltage of the negative electrode plate increases, the potential of the positive electrode plate becomes more noble than necessary. Therefore, the current flowing through the battery becomes excessively large, the rate of oxygen generation from the positive electrode plate and the rate of hydrogen generation from the negative electrode plate are significantly increased, the rate of decrease in the amount of electrolyte is increased, and replenishment of water to the battery is frequently The required inconvenience occurs.

以上の理由から、高温下で長期間浮動充電しても、正極
板の容量が減少しない開放形アルカリ蓄電池が望まれて
いた。
For the above reasons, there has been a demand for an open-type alkaline storage battery in which the capacity of the positive electrode plate does not decrease even when it is floating-charged at a high temperature for a long time.

本発明は、上記したような従来技術の問題点を解決する
ことを目的とするものである。
The present invention is intended to solve the above-mentioned problems of the prior art.

問題点を解決するための手段 即ち、本発明は、骨格の表面にニッケル層が存在する非
焼結式導電性多孔体に主として水酸化ニッケルを担持さ
せてなる電極を、電解液中に浸漬すると共に、焼結式カ
ドミウム負極板と電気的に接続し、かつ前記電極の体積
を焼結式カドミウム負極板の全体積の1/100以上とする
ことによって、上述の目的を達成するものである。
Means for Solving the Problems That is, according to the present invention, an electrode formed by mainly supporting nickel hydroxide on a non-sintered conductive porous body having a nickel layer on the surface of a skeleton is immersed in an electrolytic solution. At the same time, the above-mentioned object is achieved by electrically connecting to the sintered cadmium negative electrode plate and setting the volume of the electrode to 1/100 or more of the total volume of the sintered cadmium negative electrode plate.

作 用 例えば発泡状ニッケル板やニッケルメッキを施した鉄繊
維からなるフエルトのように、骨格の表面にニッケル層
が存在する非焼結式導電性多孔体に、主として水酸化ニ
ッケルを担持させてなる電極(以後、水素発生用電極と
呼ぶ)を、アルカリ電解液中において陰分極して水素を
発生させると、同一体積の焼結式カドミウム負極板より
も著しく水素過電圧が低いという新しい事実がわかっ
た。そして、本発明における水素発生用電極と焼結式カ
ドミウム負極板との5MのKOH電解液中における水素発生
反応に関する分極特性を比較したところ、分極値が同一
の場合には前者は後者の約100倍の電流が流れることが
判明した。即ち、このことは水素発生反応に関して、焼
結式カドミウム負極板と同一の分極特性を得るために最
小限必要な水素発生用電極の体積が、焼結式カドミウム
負極板の全体積の1/100であることを意味する。
For example, nickel hydroxide is mainly supported on a non-sintered conductive porous body that has a nickel layer on the surface of the skeleton, such as a felt made of foamed nickel plate or nickel-plated iron fiber. A new fact has been found that when an electrode (hereinafter referred to as a hydrogen generation electrode) is negatively polarized in an alkaline electrolyte to generate hydrogen, the hydrogen overvoltage is significantly lower than that of a sintered cadmium negative electrode plate having the same volume. . Then, comparing the polarization characteristics of the hydrogen generation electrode and the sintered cadmium negative electrode plate in the present invention regarding the hydrogen generation reaction in 5M KOH electrolyte, when the polarization values are the same, the former is about 100 of the latter. It turned out that a double current flows. That is, regarding the hydrogen generation reaction, the minimum volume of the hydrogen generation electrode required to obtain the same polarization characteristics as that of the sintered cadmium negative electrode plate is 1/100 of the total volume of the sintered cadmium negative electrode plate. Means that.

次に焼結式カドミウム負極板と、焼結式カドミウム負極
板の全体積の1/100の体積を有する水素発生用電極と
を、それぞれ5MのKOH電解液中においてカドミウム負極
板に含まれるカドミウムの理論容量を基準として1000時
間率の電流を用いて50℃にて1年間陰分極した。その結
果、通電開始時には両者とも同一の水素過電圧を示した
が、1年後には前者の水素過電圧は約150mVも上昇した
のに対して、後者の水素過電圧は約30mV上昇したに過ぎ
なかった。
Next, a sintering type cadmium negative electrode plate and a hydrogen generating electrode having a volume of 1/100 of the total volume of the sintering type cadmium negative electrode plate, each of cadmium contained in the cadmium negative electrode plate in 5M KOH electrolyte solution. It was negatively polarized at 50 ° C. for 1 year using a current of 1000 hours based on the theoretical capacity. As a result, both of them showed the same hydrogen overvoltage at the start of energization, but one year later, the former hydrogen overvoltage increased by about 150 mV, whereas the latter hydrogen overvoltage increased by only about 30 mV.

以上のように本発明における水素発生用電極の水素過電
圧が焼結式カドミウム負極板に比して著しく低い理由は
定かでないが、おそらく水素発生反応に関して電極触倍
活性を有すると考えられる水酸化ニッケルが、前者に多
量に存在することに起因するように思われる。また水素
発生用電極を長期間高温において陰分極を続けたときに
水素過電圧が上昇し難いのは、水素発生用電極において
は、焼結式カドミウム負極板のように水素発生サイトで
ある金属ニッケルのごく近傍にカドミウムが存在しない
ので、水酸化ニッケルがカドミウムによって被覆された
り、また金属状態のニッケルへと還元されることがない
ために、電極触媒活性が維持されるのであろうと考えら
れる。したがって、本発明における水素発生用電極を、
電解液中に浸漬すると共に、焼結式カドミウム負極板と
電気的に接続し、かつその電極の体積を焼結式カドミウ
ム負極板の全体積の1/100以上とした開放形アルカリ蓄
電池では、高温下で長期間浮動充電して、焼結式カドミ
ウム負極板の水素過電圧が上昇しても、水素発生用電極
の水素過電圧が低いまま維持される。それ故、負極全体
の分極は増大しないので、正極の電位は貴に維持され、
電池の容量低下が起こらない。ちなみに、焼結式カドミ
ウム負極板中の活物質である水酸化カドミウムに水酸化
ニッケルを混入させると、長期間の陰分極後には水酸化
ニッケルは還元されてγ−Ni5Cd21相の金属間化合物を
形成してしまい、水素過電圧は著しく上昇した。
As described above, the reason why the hydrogen overvoltage of the hydrogen generating electrode in the present invention is significantly lower than that of the sintered cadmium negative electrode plate is not clear, but nickel hydroxide which is considered to have an electrode-catalyzing activity with respect to the hydrogen generating reaction is not clear. However, it seems that the former is abundant in the former. In addition, the hydrogen overvoltage does not easily rise when the hydrogen generation electrode is kept negatively polarized at a high temperature for a long period of time. Since cadmium does not exist in the immediate vicinity, it is considered that the nickel hydroxide is not covered with cadmium and is not reduced to nickel in a metallic state, and therefore the electrocatalytic activity is maintained. Therefore, the hydrogen generation electrode in the present invention,
In an open alkaline storage battery, which is immersed in an electrolytic solution and electrically connected to a sintered cadmium negative electrode plate, and the volume of the electrode is 1/100 or more of the total volume of the sintered cadmium negative electrode plate, Even if the hydrogen overvoltage of the sintered cadmium negative electrode plate is increased by floating charging for a long period of time, the hydrogen overvoltage of the hydrogen generating electrode is kept low. Therefore, since the polarization of the whole negative electrode does not increase, the potential of the positive electrode is maintained noble,
Battery capacity does not decrease. By the way, when nickel hydroxide is mixed with cadmium hydroxide, which is the active material in the sintered cadmium negative electrode plate, nickel hydroxide is reduced after a long period of negative polarization, and the intermetallic compounds in the γ-Ni 5 Cd 21 phase are reduced. The compound was formed, and the hydrogen overvoltage increased significantly.

実施例 次に本発明を実施例に基づいて説明する。EXAMPLES Next, the present invention will be described based on examples.

先ず、本発明品として、大きさが120mm×120mm×0.1mm
の焼結式水酸化ニッケル正極板10枚を正極として用い、
同じ大きさの焼結式カドミウム負極板10枚を負極として
用い、厚さが0.2mmのポリプロピレン製不織布2枚とそ
の間にセロファン1枚を介在させたセパレータを用い、
さらに前記焼結式カドミウム負極板の全体積の1/1000〜
2倍の体積を有する水素発生用電極を用い、そして水素
発生用電極を負極である焼結式カドミウム負極板にニッ
ケル板で電気的に接続して公称容量60Ahの開放形の電池
を作製した。この電池の電解液としては、比重1.220(2
0℃)のKOH水溶液を用いた。また上記の水素発生用電極
は次のようにして作製した。即ち、骨格の表面にニッケ
ル層が存在する非焼結式導電性多孔体として、住友電工
(株)製の発泡状ニッケルシートを用い、水酸化ニッケ
ル粉末を2%CMC水溶液とともに練合して調整したスラ
リーを、前記の発泡状ニッケルシート細孔中に充填し、
乾燥した後、プレスすることによって、水酸化ニッケル
を担持させ、電極とした。
First, as the product of the present invention, the size is 120 mm × 120 mm × 0.1 mm
Using 10 pieces of sintered nickel hydroxide positive electrode plate of as a positive electrode,
Using 10 pieces of sintered cadmium negative electrode plates of the same size as the negative electrode, 2 sheets of polypropylene non-woven fabric having a thickness of 0.2 mm and a separator in which 1 sheet of cellophane is interposed,
Further, 1/1000 to the total volume of the sintered cadmium negative electrode plate
A hydrogen generating electrode having a double volume was used, and the hydrogen generating electrode was electrically connected to a negative electrode of a sintered cadmium negative electrode, which was a nickel plate, to prepare an open-type battery having a nominal capacity of 60 Ah. The electrolyte of this battery has a specific gravity of 1.220 (2
(0 ° C.) KOH aqueous solution was used. The above-mentioned hydrogen generating electrode was manufactured as follows. That is, a foamed nickel sheet manufactured by Sumitomo Electric Industries, Ltd. is used as a non-sintered conductive porous body having a nickel layer on the surface of the skeleton, and nickel hydroxide powder is kneaded with a 2% CMC aqueous solution to prepare. The slurry was filled in the pores of the foamed nickel sheet,
After drying, nickel hydroxide was carried by pressing to form an electrode.

また比較のために従来品として、前記本発明品における
焼結式カドミウム負極板と電気的に接続される水素発生
用電極を設置せず、他の構成は本発明品と同じにした開
放形の電池を作製した。
For comparison, as a conventional product, an electrode for hydrogen generation that is electrically connected to the sintered cadmium negative electrode plate in the product of the present invention is not installed, and the other configuration is the same as that of the product of the present invention. A battery was made.

次にこれらの電池を20℃にて10時間率の電流で16時間充
電した後、50℃にて1.40V/セルの定電圧浮動充電を1年
間行なった後、20℃にて1時間率の電流で放電した。こ
のとき得られた放電容量と、焼結式カドミウム負極板に
接続された水素発生用電極の体積と焼結式カドミウム負
極板の全体積の比との関係を図に示す。
Next, these batteries were charged at 20 ° C for 10 hours at a current of 10 hours, then at 1.50V / cell constant voltage floating charge at 50 ° C for 1 year, and then at 20 ° C for 1 hour. It was discharged with an electric current. The relationship between the discharge capacity obtained at this time, the volume of the hydrogen generating electrode connected to the sintered cadmium negative electrode plate and the ratio of the total volume of the sintered cadmium negative electrode plate is shown in the figure.

図から明らかなように、従来品では放電容量が約42Ahに
低下しているのに対し、本発明品は負極板に接続される
水素発生用電極の体積と焼結式カドミウム負極板の全体
積との比が1/100以上であると、公称容量の60Ahよりも
大きい放電容量が得られ、容量減少が起こり難いことが
わかる。
As is clear from the figure, the discharge capacity of the conventional product has been reduced to about 42 Ah, while the product of the present invention has a volume of the hydrogen generating electrode connected to the negative electrode plate and the total volume of the sintered cadmium negative electrode plate. It can be seen that when the ratio of the discharge capacity is 1/100 or more, a discharge capacity larger than the nominal capacity of 60 Ah is obtained, and the capacity is less likely to decrease.

発明の効果 以上のように本発明によれば、高温下で長期間浮動充電
する開放形アルカリ蓄電池の容量減少を防ぐことができ
る。
Effects of the Invention As described above, according to the present invention, it is possible to prevent a decrease in the capacity of an open-type alkaline storage battery that is floating-charged at high temperature for a long time.

【図面の簡単な説明】[Brief description of drawings]

図は本発明による開放形アルカリ蓄電池および従来のこ
の種開放形アルカリ蓄電池を高温下で長期間浮動充電し
た後の放電容量を比較して示す特性図である。
The figure is a characteristic diagram showing a comparison of the discharge capacities of the open alkaline storage battery according to the present invention and the conventional open alkaline storage battery of this kind after floating charging at a high temperature for a long time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】骨格の表面にニッケル層が存在する非焼結
式導電性多孔体に主として水酸化ニッケルを担持させて
なる電極を、電解液中に浸漬すると共に、焼結式カドミ
ウム負極板と電気的に接続し、かつ前記電極の体積を焼
結式カドミウム負極板の全体積の1/100以上としたこと
を特徴とする開放形アルカリ蓄電池。
1. A non-sintered conductive porous body having a nickel layer on the surface of a skeleton, and an electrode mainly comprising nickel hydroxide supported thereon is immersed in an electrolytic solution, and at the same time, a sintered cadmium negative electrode plate is provided. An open-type alkaline storage battery, which is electrically connected and in which the volume of the electrode is set to 1/100 or more of the total volume of the sintered cadmium negative electrode plate.
JP61314832A 1986-12-26 1986-12-26 Open type alkaline storage battery Expired - Fee Related JPH07101617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61314832A JPH07101617B2 (en) 1986-12-26 1986-12-26 Open type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61314832A JPH07101617B2 (en) 1986-12-26 1986-12-26 Open type alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63166164A JPS63166164A (en) 1988-07-09
JPH07101617B2 true JPH07101617B2 (en) 1995-11-01

Family

ID=18058133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61314832A Expired - Fee Related JPH07101617B2 (en) 1986-12-26 1986-12-26 Open type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH07101617B2 (en)

Also Published As

Publication number Publication date
JPS63166164A (en) 1988-07-09

Similar Documents

Publication Publication Date Title
US3990910A (en) Nickel-hydrogen battery
EP0170519A2 (en) A method of producing a sealed metal oxide-hydrogen storage cell
EP0092656B1 (en) Nickel carbonate electrode paste for a positive nickel electrode
US3424617A (en) Sealed battery with charge-control electrode
Giner et al. The Sealed Nickel‐Hydrogen Secondary Cell
US3202544A (en) Alkaline accumulator
JPH07101617B2 (en) Open type alkaline storage battery
JPH0821420B2 (en) Open type alkaline storage battery
JP2589150B2 (en) Alkaline zinc storage battery
JPH0821421B2 (en) Open type alkaline storage battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
US3533843A (en) Zinc electrode and method of forming
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JPH0821422B2 (en) Open type alkaline storage battery
JPS6164078A (en) Alkaline zinc storage battery
JPS63131472A (en) Metal-hydrogen alkaline storage battery
JP3057737B2 (en) Sealed alkaline storage battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH0576753B2 (en)
JPH04284369A (en) Nickel-metal hydride storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3316687B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees