JPH0576753B2 - - Google Patents

Info

Publication number
JPH0576753B2
JPH0576753B2 JP60179774A JP17977485A JPH0576753B2 JP H0576753 B2 JPH0576753 B2 JP H0576753B2 JP 60179774 A JP60179774 A JP 60179774A JP 17977485 A JP17977485 A JP 17977485A JP H0576753 B2 JPH0576753 B2 JP H0576753B2
Authority
JP
Japan
Prior art keywords
electrode plate
sintered
negative electrode
nickel hydroxide
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60179774A
Other languages
Japanese (ja)
Other versions
JPS6240174A (en
Inventor
Toshio Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60179774A priority Critical patent/JPS6240174A/en
Publication of JPS6240174A publication Critical patent/JPS6240174A/en
Publication of JPH0576753B2 publication Critical patent/JPH0576753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池、特にベント形焼結式
ニツケル−カドミウムアルカリ蓄電池に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to alkaline storage batteries, and in particular to vented sintered nickel-cadmium alkaline storage batteries.

従来の技術 従来、非常用電源などの分野に用いられてきた
ベント形焼結式ニツケル−カドミウム蓄電池の使
用条件の1つとして、定電圧浮動充電システムが
ある。このシステムは次のような原理に基づくも
のである。即ち、充電状態のニツケル−カドミウ
ム蓄電池を開回路状態で放置しておくと、自己放
電によつて次第に容量が減少してしまうことはよ
く知られている。この自己放電は、いわば金属の
腐食反応における局部電池機構と同様の電気化学
反応であるので、電気防食と同様の原理によつて
自己放電を防ぐことができる。即ち、正極板にお
いては充電生成物であるNiOOHが還元されて放
電しないような貴な電位に保持し、一方負極板に
おいては充電生成物であるCdが酸化されて放電
しないような卑な電位に保持すればよい。このこ
とを正確に行なうには、ポテンシオスタツトを用
いて正極板および負極板をそれぞれ好ましい定電
位に設定すればよいのであるが、実用電池でこの
ような方法を行なうのは装置が高価になるなどの
欠点があるので、現実には別の方法がとられる。
即ち、焼結式カドミウム負極板には、水素過電圧
が低い金属ニツケルが焼結体として多量に存在す
るために負極板の水素過電圧は低い。それ故、充
電済のベント形の焼結式ニツケル−カドミウム蓄
電池に例えば1.40V/セル程度の定電圧を印加し
ておくと、負極板の水素過電圧が低いために、負
極板の分極は極めて小さく、負極板の電位は水素
発生反応の平衡電位に極めて近い定電位にとどま
る。その結果、正極板の電位は水素発生反応の平
衡電位を基準として+1.40Vに近い値になる。充
電状態の正極活物質であるNiOOHは、この電位
では放電しないので、正極板は自己放電をまぬが
れる。また充電状態の負極活物質であるCdの平
衡電位は、水素発生反応の平衡電位よりも約20m
V貴であるから、負極板が水素発生反応を起こし
うる電位では、負極板の自己放電は当然起こらな
い。
BACKGROUND ART Conventionally, one of the conditions for using vented sintered nickel-cadmium storage batteries, which have been used in fields such as emergency power supplies, is a constant voltage floating charging system. This system is based on the following principle. That is, it is well known that if a charged nickel-cadmium storage battery is left in an open circuit state, its capacity will gradually decrease due to self-discharge. Since this self-discharge is, so to speak, an electrochemical reaction similar to a local battery mechanism in a metal corrosion reaction, self-discharge can be prevented using the same principle as cathodic protection. In other words, the positive electrode plate is held at a noble potential where NiOOH, a charging product, is reduced and does not discharge, while the negative electrode plate is held at a base potential, where Cd, a charging product, is oxidized and is not discharged. Just keep it. To do this accurately, it is possible to use a potentiostat to set the positive and negative plates to the desired constant potential, but the equipment would be expensive to use in practical batteries. Because of the following disadvantages, in reality, another method is used.
That is, in the sintered cadmium negative electrode plate, a large amount of nickel metal, which has a low hydrogen overvoltage, is present as a sintered body, so the hydrogen overvoltage of the negative electrode plate is low. Therefore, if a constant voltage of, for example, 1.40 V/cell is applied to a charged vented sintered nickel-cadmium storage battery, the polarization of the negative plate will be extremely small because the hydrogen overvoltage of the negative plate is low. , the potential of the negative electrode plate remains at a constant potential that is extremely close to the equilibrium potential of the hydrogen generation reaction. As a result, the potential of the positive electrode plate becomes a value close to +1.40V based on the equilibrium potential of the hydrogen generation reaction. Since NiOOH, which is the positive electrode active material in a charged state, does not discharge at this potential, the positive electrode plate can avoid self-discharge. In addition, the equilibrium potential of Cd, which is the negative electrode active material in a charged state, is approximately 20 m higher than the equilibrium potential of the hydrogen generation reaction.
Since the voltage is noble, self-discharge of the negative electrode plate will naturally not occur at a potential at which the negative electrode plate can cause a hydrogen generation reaction.

このような原理でベント形の焼結式アルカリ蓄
電池の自己放電が防がれる。そしてこのような目
的で定電圧が印加されていると、電池には充電方
向の電流が流れ込み、またその電流は電池温度等
によつて変動するので、印加する電圧は浮動充電
電圧と呼ばれる。
This principle prevents the vented sintered alkaline storage battery from self-discharging. When a constant voltage is applied for this purpose, a current flows into the battery in the charging direction, and this current varies depending on the battery temperature, etc., so the applied voltage is called a floating charging voltage.

発明が解決しようとする問題点 しかしながら、上述したような浮動充電システ
ムを例えば10年以上の長期間や、あるいは例えば
50℃以上の高温下というような厳しい条件のもと
で作動させると、正極板の容量のみが減少する不
都合が生ずることがある。これは、長期間浮動充
電を続けると、負極板における水素発生反応が起
こるサイトである焼結体の金属ニツケルの水素発
生反応に対する電極触媒活性が低下したり、金属
ニツケルの表面が水素過電圧の高い金属カドミウ
ムで被覆されて水素発生反応の起こるサイトが少
なくなるなどの理由によつて、負極板の水素過電
圧が上昇するためである。その結果、負極板は浮
動充電中に一定の電位を維持することが不可能と
なり、次第に卑な電位へと分極する。このとき一
定の浮動充電電圧が印加されたままであるなら
ば、正極板の電位は負極板の分極の増加とともに
次第に卑にシフトしてしまう結果、ついには
NiOOHの平衡電位よりも卑になり、正極板は自
己放電してしまうことになる。
Problems to be Solved by the Invention However, the above-mentioned floating charging system cannot be used for a long period of time, for example 10 years or more, or for example
When operated under severe conditions such as high temperatures of 50° C. or higher, a problem may occur in which only the capacity of the positive electrode plate decreases. This is because if floating charging is continued for a long period of time, the electrocatalytic activity for the hydrogen generation reaction of the metal nickel in the sintered body, which is the site where the hydrogen generation reaction occurs in the negative electrode plate, decreases, and the surface of the metal nickel has a high hydrogen overvoltage. This is because the hydrogen overvoltage of the negative electrode plate increases because the number of sites where hydrogen generation reactions occur decreases due to the coating with metal cadmium. As a result, the negative plate becomes unable to maintain a constant potential during floating charging and becomes increasingly polarized to a less noble potential. If a constant floating charging voltage remains applied at this time, the potential of the positive plate will gradually shift to a lower value as the polarization of the negative plate increases, and eventually
The potential becomes more base than the equilibrium potential of NiOOH, and the positive electrode plate will self-discharge.

このような不都合を防ぐために、浮動充電電圧
を高く設定しておくと、長期間高温下で使用して
負極板の水素過電圧が上昇し、負極板が卑に分極
しても、正極板の電位をNiOOHの平衡電位より
も貴に保持することが可能である。しかし、この
場合には、負極板の水素過電圧が上昇する前に
は、負極板の分極が極めて小さいので、正極板の
電位が必要以上に貴になる。それ故、正極板から
の酸素発生および負極板からの水素発生の速度が
著しく大きくなつて、電解液量の減少速度が大き
くなり、電位への補水を頻繁に必要とする不都合
が生ずる。
To prevent such inconveniences, if the floating charge voltage is set high, the hydrogen overvoltage of the negative plate will increase after long-term use at high temperatures, and even if the negative plate is polarized to the base, the potential of the positive plate will decrease. can be held nobler than the equilibrium potential of NiOOH. However, in this case, before the hydrogen overvoltage of the negative electrode plate increases, the polarization of the negative electrode plate is extremely small, so that the potential of the positive electrode plate becomes more noble than necessary. Therefore, the rate of oxygen generation from the positive electrode plate and the rate of hydrogen generation from the negative electrode plate increases significantly, and the rate of decrease in the amount of electrolyte increases, resulting in the inconvenience that water replenishment to the potential is frequently required.

以上の理由から、高温で長期間浮動充電して
も、負極板の水素過電圧が上昇しないベント形焼
結式アルカリ蓄電池が望まれていた。
For the above reasons, there has been a desire for a vented sintered alkaline storage battery in which the hydrogen overvoltage of the negative electrode plate does not increase even when floating charging at high temperatures for a long period of time.

本発明は、上記したような従来技術の問題点を
解決することを目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

問題点を解決するための手段 即ち、本発明はカドミウム負極板の体積の少な
くとも1/50以上の体積を有する焼結式水酸化ニツ
ケル極板をカドミウム負極板と電気的に接続する
ことによつて、上述の目的を達成するものであ
る。さらにカドミウム負極板と電気的に接続され
る上記の焼結式水酸化ニツケル極板が、陽分極に
よつて充電されたもの、もしくは陽分極による充
電の後陰分極することによつて放電されたもので
あることによつて、問題の解決を一層確実にする
ものである。
Means for Solving the Problems That is, the present invention provides a solution by electrically connecting a sintered nickel hydroxide electrode plate having a volume of at least 1/50 of the volume of the cadmium negative electrode plate to the cadmium negative electrode plate. , which achieves the above objectives. Furthermore, the sintered nickel hydroxide electrode plate electrically connected to the cadmium negative electrode plate was charged by anodic polarization, or discharged by cathodic polarization after being charged by anodic polarization. This fact makes it even more certain that the problem will be solved.

作 用 従来、アルカリ蓄電池用の正極板として用いら
れてきた焼結式水酸化ニツケル極板を、アルカリ
電解液中において陰分極して水素発生させると、
同一体積の焼結式カドミウム負極板よりも著しく
水素過電圧が低いことがわかつた。そして、焼結
式水酸化ニツケル極板と焼結式カドミウム負極板
との5MのKOH電解液中における水素発生反応に
関する分極特性を比較したところ、分極値が同一
の場合には前者は後者の約50倍の電流が流れるこ
とが判明した。即ち、このことは水素発生反応に
関して、焼結式カドミウム負極板と同一の分極特
性を得るために最小限必要な焼結式水酸化ニツケ
ル極板の体積が、焼結式カドミウム負極板の1/50
であることを意味する。
Effect When a sintered nickel hydroxide electrode plate, which has been conventionally used as a positive electrode plate for alkaline storage batteries, is cathodically polarized in an alkaline electrolyte to generate hydrogen,
It was found that the hydrogen overvoltage was significantly lower than that of a sintered cadmium negative electrode plate of the same volume. We then compared the polarization characteristics of a sintered nickel hydroxide electrode plate and a sintered cadmium negative electrode plate regarding the hydrogen generation reaction in a 5M KOH electrolyte, and found that when the polarization values were the same, the former was about the same as the latter. It turns out that 50 times more current flows through it. In other words, regarding the hydrogen generation reaction, this means that the minimum volume of the sintered nickel hydroxide electrode plate required to obtain the same polarization characteristics as the sintered cadmium negative electrode plate is 1/1 of that of the sintered cadmium negative electrode plate. 50
It means that.

次に焼結式カドミウム負極板と、焼結式カドミ
ウム負極板の1/50の体積を有する焼結式水酸化ニ
ツケル極板とを、それぞれ5MのKOH電解液中に
おいてカドミウム負極板に含まれるカドミウムの
理論容量を基準として1000時間率の電流を用いて
50℃にて1年間陰分極した。その結果、通電開始
時には両者とも同一の水素過電圧を示したが、1
年後には前者の水素過電圧は約150mVも上昇し
たのに対して、後者の水素過電圧は約30mV上昇
したに過ぎなかつた。
Next, the sintered cadmium negative electrode plate and the sintered nickel hydroxide electrode plate, which has a volume of 1/50 of the sintered cadmium negative electrode plate, were heated in a 5M KOH electrolyte to remove the cadmium contained in the cadmium negative electrode plate. Using a current of 1000 hours rate with reference to the theoretical capacity of
It was cathodically polarized at 50°C for 1 year. As a result, both showed the same hydrogen overvoltage at the start of energization, but 1
Years later, the hydrogen overvoltage of the former had increased by about 150 mV, while the hydrogen overvoltage of the latter had increased by only about 30 mV.

さらに、焼結式水酸化ニツケル極板を5Mの
KOH電解液中において、酸化水銀照合電極に対
し+0.3V以上に陽分極して水酸化ニツケルを充
電したり、その後陰分極して放電したものを、上
記と同様に5MのKOH電解液中において1000時間
率の電流を用いて50℃にて1年間陰分極した。そ
の結果、陰分極開始後の初期における水素過電圧
は、陽分極による充電や、あるいはその後の陰分
極による放電を行なわない焼結式水酸化ニツケル
極板と同一の値を示した。しかし、1年後には充
電や充放電を行なつた焼結式水酸化ニツケル極板
の水素過電圧は約10mV上昇したに過ぎず、充電
は充放電を行なわなかつた焼結式水酸化ニツケル
極板に比べて、水素過電圧の変動が小さかつた。
In addition, 5M sintered nickel hydroxide electrode plates were added.
In a KOH electrolyte, nickel hydroxide was charged by anodically polarizing to +0.3 V or more with respect to a mercury oxide reference electrode, and then cathodically polarized and discharged. It was cathodically polarized at 50° C. for 1 year using a current at a rate of 1000 hours. As a result, the hydrogen overvoltage at the initial stage after the start of cathodic polarization showed the same value as that of a sintered nickel hydroxide electrode plate without charging by positive polarization or discharging by subsequent cathodic polarization. However, after one year, the hydrogen overvoltage of the sintered nickel hydroxide electrode plate that had been charged and discharged had increased by only about 10 mV, and the hydrogen overvoltage of the sintered nickel hydroxide electrode plate that had not been charged and discharged had increased by only about 10 mV. The fluctuation in hydrogen overvoltage was small compared to the previous model.

以上のように焼結式水酸化ニツケル極板の水素
過電圧が焼結式カドミウム負極板に比して著しく
低い理由は定かではないが、おそらく水素発生反
応に関して電極触媒活性を有するとされる水酸化
ニツケルが、前者に多量に存在することに起因す
るように思われる。また焼結式水酸化ニツケル極
板を長期間高温において陰分極を続けたときに水
素過電圧が上昇し難いのは、水酸化ニツケルとカ
ドミウムとが混晶を形成していないので、水酸化
ニツケルがカドミウムによつて被覆されたり、ま
た金属状態のニツケルへと還元されないので、電
極触媒活性が維持されるのであろうと考えられ
る。ちなみに、焼結式カドミウム極板中の活物質
である水酸化カドミウムに水酸化ニツケルとの混
晶を形成させると、長期間の陰分極後に水酸化ニ
ツケルは還元されてγ−Ni5Cd21相の金属間化合
物を形成してしまい、水素過電圧は著しく上昇し
た。さらに焼結式水酸化ニツケル極板の中でも、
充電や充放電を行なつたものの方が、長期間高温
で陰分極したときの水素過電圧の変動が小さいの
は、充電や充放電を受けた水酸化ニツケルが電極
触媒活性が変動し難い安定なものに変化したため
と思われる。
As mentioned above, the reason why the hydrogen overvoltage of the sintered nickel hydroxide electrode plate is significantly lower than that of the sintered cadmium negative electrode plate is not clear, but hydroxide, which is said to have electrocatalytic activity in the hydrogen generation reaction, is probably This seems to be due to the large amount of nickel present in the former. Furthermore, when a sintered nickel hydroxide electrode plate is cathodically polarized at high temperatures for a long period of time, the hydrogen overvoltage does not increase easily because nickel hydroxide and cadmium do not form a mixed crystal. It is thought that the electrocatalytic activity is maintained because it is not coated with cadmium or reduced to metallic nickel. By the way, when cadmium hydroxide, which is the active material in a sintered cadmium electrode plate, forms a mixed crystal with nickel hydroxide, the nickel hydroxide is reduced after a long period of cathodic polarization and forms the γ-Ni 5 Cd 21 phase. intermetallic compounds were formed, and the hydrogen overvoltage increased significantly. Furthermore, among the sintered nickel hydroxide electrode plates,
The reason that hydrogen overvoltage fluctuations when cathodically polarized at high temperatures for a long period of time is smaller for those that have been charged and discharged is because nickel hydroxide that has been charged and discharged has stable electrocatalytic activity that does not easily fluctuate. This is probably because it has changed.

なお、焼結式水酸化ニツケル極板において、水
酸化ニツケルの他に水酸化コバルトが含有されて
いても、主たる水酸化物が水酸化ニツケルであれ
ば、上記と同様の作用があることを確かめた。
Furthermore, even if cobalt hydroxide is contained in addition to nickel hydroxide in a sintered nickel hydroxide electrode plate, it has been confirmed that if the main hydroxide is nickel hydroxide, the same effect as described above will occur. Ta.

実施例 次に本発明を実施例に基づいて説明する。Example Next, the present invention will be explained based on examples.

先ず本発明品Aとして、大きさが120mm×120mm
×1.0mmの焼結式水酸化ニツケル極板10枚を正極
とし、同じ大きさの焼結式水酸化カドミウム極板
10枚を負極とし、厚さが0.2mmのポリプロピレン
製不織布2枚とその間にセロフアン1枚を介在さ
せたセパレータを用い、さらにカドミウム負極板
の体積の1/1000〜2倍の体積を有する充放電を行
なつていない焼結式水酸化ニツケル極板を、負極
である焼結式カドミウム陰極とニツケル板で電気
的に接続して公称容量60Ahのベント形の電池を
作成した。この電池の電解液として比重1.220(20
℃)のKOH水溶液を用いた。また比較のために
従来品として、前記本発明品Aにおけるカドミウ
ム負極板の電気的に接続される焼結式水酸化ニツ
ケル極板を電池内に設置せず、他の構成は本発明
品Aと同じにしたベント形の電池を作製した。。
次にこれらの電池を20℃にて10時間率の電流で16
時間充電した後、50℃にて1.40V/セルの定電圧
浮動充電を1年間行なつた後、20℃にて1時間率
の電流で放電した。このとき得られた放電容量
と、カドミウム負極板に接続された焼結式水酸化
ニツケル極板の体積とカドミウム負極板の体積と
の比との関係を図に示す。
First, as the invention product A, the size is 120mm x 120mm.
x1.0mm sintered nickel hydroxide electrode plates are used as positive electrodes, and the same size sintered cadmium hydroxide electrode plates are used as positive electrodes.
10 sheets are used as negative electrodes, and a separator consisting of two sheets of polypropylene nonwoven fabric with a thickness of 0.2 mm and one sheet of cellophane interposed between them is used, and the charge and discharge has a volume of 1/1000 to 2 times the volume of the cadmium negative electrode plate. A vented battery with a nominal capacity of 60 Ah was created by electrically connecting a sintered nickel hydroxide electrode plate that had not been subjected to the above process to a sintered cadmium negative electrode using a nickel plate. The electrolyte for this battery has a specific gravity of 1.220 (20
A KOH aqueous solution (℃) was used. For comparison, as a conventional product, the sintered nickel hydroxide electrode plate that is electrically connected to the cadmium negative electrode plate in the product A of the present invention was not installed in the battery, and the other configuration was the same as the product A of the present invention. A similar vent-shaped battery was fabricated. .
These cells were then heated at a current rate of 16 at 10 hours at 20°C.
After charging for an hour, constant voltage floating charging at 1.40 V/cell was performed at 50°C for one year, and then discharging at a current rate of 1 hour at 20°C. The relationship between the discharge capacity obtained at this time and the ratio of the volume of the sintered nickel hydroxide electrode plate connected to the cadmium negative electrode plate to the volume of the cadmium negative electrode plate is shown in the figure.

また本発明品Bとして、上記の本発明品Aにお
けるカドミウム負極板と電気的に接続される種々
の大きさの焼結式水酸化ニツケル極板を、予め比
重1.220(20℃)のKOH水溶液にて、水酸化ニツ
ケルを活物質として考えた場合の1時間率に相当
する電流で、1.5時間陽分極して充電し、次いで
同じ電流で、1.5時間陰分極して放電し、そして
これを負極である焼結式カドミウム極板とニツケ
ル板で電気的に接続し、他の構成は上記本発明品
Aと同じにしたベント形の電池を作製した。そし
てこの本発明品Bと上記本発明品Aおよび従来品
と同様の充放電試験に供した。その試験結果を上
記した図に併記して示す。
In addition, as the invention product B, sintered nickel hydroxide electrode plates of various sizes to be electrically connected to the cadmium negative electrode plate in the invention product A above were soaked in a KOH aqueous solution with a specific gravity of 1.220 (20°C) in advance. Then, the battery was charged by anode polarization for 1.5 hours at a current equivalent to the hourly rate when nickel hydroxide was considered as the active material, then it was cathodically polarized and discharged at the same current for 1.5 hours, and then this was charged at a negative electrode. A bent-type battery was manufactured in which a certain sintered cadmium electrode plate was electrically connected to a nickel plate, and the other configuration was the same as that of the product A of the present invention. This product B of the present invention was subjected to the same charge/discharge test as the product A of the present invention and the conventional product. The test results are also shown in the above figure.

図から明らかなように、本発明品AおよびBは
負極板に接続される焼結式水酸化ニツケル極板の
体積とカドミウム負極板の体積との比が1/50以
上であると、公称容量の60Ahよりも大きい放電
容量が得られ、容量減少が起こり難いことがわか
る。また本発明品AとBを比較すると、Bの方が
放電容量が大きくなり、負極板に接続する焼結式
水酸化ニツケル極板を充放電した方が、容量減少
が一層少なくなることがわかる。なお、負極板に
接続する焼結式水酸化ニツケル極板を充電しただ
けのものでも本発明品Bと同様の効果が認められ
た。
As is clear from the figure, products A and B of the present invention have a nominal capacity when the ratio of the volume of the sintered nickel hydroxide electrode plate connected to the negative electrode plate to the volume of the cadmium negative electrode plate is 1/50 or more. It can be seen that a discharge capacity larger than 60Ah was obtained, and a decrease in capacity was unlikely to occur. Furthermore, when comparing products A and B of the present invention, it can be seen that B has a larger discharge capacity, and that the capacity decrease is even smaller when the sintered nickel hydroxide electrode plate connected to the negative electrode plate is charged and discharged. . Note that the same effect as inventive product B was observed even when the sintered nickel hydroxide electrode plate connected to the negative electrode plate was simply charged.

発明の効果 以上のように本発明によれば、高温下で長期間
浮動充電するベント形焼結式アルカリ蓄電池の容
量減少を防ぐことができる。
Effects of the Invention As described above, according to the present invention, it is possible to prevent a decrease in the capacity of a vented sintered alkaline storage battery that is subjected to floating charging at high temperatures for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明によるベント形焼結式アルカリ蓄電
池および従来のこの種アルカリ蓄電池を高温下で
長期間浮動充電した後の放電容量を比較して示す
特性図である。
The figure is a characteristic diagram showing a comparison of the discharge capacities of the vented sintered alkaline storage battery according to the present invention and a conventional alkaline storage battery of this type after floating charging for a long period of time at high temperatures.

Claims (1)

【特許請求の範囲】 1 カドミウム負極板の体積の1/50以上の体積を
有する焼結式水酸化ニツケル極板が、電池内にお
いてカドミウム負極板と電気的に接続されている
ことを特徴とするベント形焼結式アルカリ蓄電
池。 2 陽分極によつて充電された焼結式水酸化ニツ
ケル極板、もしくは陽分極による充電の後に陰分
極によつて放電された焼結式水酸化ニツケル極板
がカドミウム負極板と電気的に接続されているこ
とを特徴とする特許請求の範囲第1項記載のベン
ト形焼結式アルカリ蓄電池。
[Claims] 1. A sintered nickel hydroxide electrode plate having a volume of 1/50 or more of the volume of the cadmium negative electrode plate is electrically connected to the cadmium negative electrode plate within the battery. Vent type sintered alkaline storage battery. 2. A sintered nickel hydroxide electrode plate charged by positive polarization, or a sintered nickel hydroxide electrode plate charged by positive polarization and then discharged by negative polarization, is electrically connected to a cadmium negative electrode plate. 1. A vented sintered alkaline storage battery according to claim 1.
JP60179774A 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery Granted JPS6240174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179774A JPS6240174A (en) 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179774A JPS6240174A (en) 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6240174A JPS6240174A (en) 1987-02-21
JPH0576753B2 true JPH0576753B2 (en) 1993-10-25

Family

ID=16071651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179774A Granted JPS6240174A (en) 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6240174A (en)

Also Published As

Publication number Publication date
JPS6240174A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
US3639173A (en) Method of controlling zinc dendrite growth
US5114804A (en) Battery and method of making the battery
FI88439C (en) Method and apparatus for charging a closed secondary electrical power source
US4587182A (en) Constant volume lithium battery cell and process
US3424617A (en) Sealed battery with charge-control electrode
US4349614A (en) Platinum third electrode to improve float polarization of standby batteries
US4143216A (en) Lead crystal storage cells and storage devices made therefrom
US3873367A (en) Zinc-container electrode
Giner et al. The Sealed Nickel‐Hydrogen Secondary Cell
US4092463A (en) Secondary battery
JPS5832473B2 (en) Manufacturing method of sealed nickel-cadmium alkaline storage battery
JPH0576753B2 (en)
JPS63166161A (en) Open type alkaline storage battery
US4046642A (en) Method of making electric storage batteries
JP2589150B2 (en) Alkaline zinc storage battery
US3783025A (en) Method of making a thin cadmium oxide electrode with an ionic polymer and subsequent removal of the polymer
GB2105512A (en) A battery and method of making the battery
JPS63166163A (en) Open type alkaline storage battery
IE46174B1 (en) Electrodes for lead storage battery and cells and batteries containing them
JPH07101617B2 (en) Open type alkaline storage battery
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPH1167280A (en) Lithium secondary battery and its charging method
JPS63166162A (en) Open type alkaline storage battery
JPH0560220B2 (en)
JPH0544784B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term