JPS63166161A - Open type alkaline storage battery - Google Patents

Open type alkaline storage battery

Info

Publication number
JPS63166161A
JPS63166161A JP61314829A JP31482986A JPS63166161A JP S63166161 A JPS63166161 A JP S63166161A JP 61314829 A JP61314829 A JP 61314829A JP 31482986 A JP31482986 A JP 31482986A JP S63166161 A JPS63166161 A JP S63166161A
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
storage battery
cadmium
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61314829A
Other languages
Japanese (ja)
Other versions
JPH0821420B2 (en
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP61314829A priority Critical patent/JPH0821420B2/en
Publication of JPS63166161A publication Critical patent/JPS63166161A/en
Publication of JPH0821420B2 publication Critical patent/JPH0821420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent decrease in capacity in a high temperature atmosphere to obtain large discharge capacity than the rated capacity by specifying the ratio of the volume of a hydrogen evolving electrode connected to the negative plate of an open type alkaline storage battery to the whole volume of a nonsintered cadmium negative plate to 1/30 or more. CONSTITUTION:In an open type alkaline storage battery, a conductive porous electrode in which a nickel layer exists on the surface of the bone is immersed in an electrolyte and electrically connected to a nonsintered cadmium negative plate. The ratio of the volume of the porous electrode to the whole volume of the negative plate is limited to 1/30 or more. By preventing the surface of the hydrogen evolving electrode from covering with metallic cadmium, decrease in capacity of the open type alkaline storage battery to which floating charge is conducted in a high temperature atmosphere for a long time is prevented, and the discharge capacity larger than a rated capacity of 60 Ah can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は開放形アルカリ蓄電池、特に開放形ニッケル−
カドミウム蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an open type alkaline storage battery, particularly an open type nickel storage battery.
It concerns cadmium storage batteries.

従来の技術 従来、非常用電源などの分野に用いられてきた開放形ニ
ッケルーカドミウム蓄電池の使用条件の1つとして、定
電圧浮動充電システムがある。このシステムは次のよう
な原理に基づくものである。
2. Description of the Related Art Conventionally, one of the conditions for using open type nickel-cadmium storage batteries, which have been used in fields such as emergency power sources, is a constant voltage floating charging system. This system is based on the following principle.

即ち、充電状態のニッケルーカドミウム蓄電池を開回路
状態で放置しておくと、自己放電によって次第に容量が
減少してしまうことはよく知られている。この自己放電
は、いわば金属の腐食反応における局部電池機構と同様
の電気化学反応であるので、電気防食と同様の原理によ
って自己放電を防ぐことができる。即ち、正極板におい
ては充電生成物であるNi OOHが還元されて放電し
ないような負な電位に保持し、−力負極板においては充
電生成物であるCdが酸化されて放電しないような卑な
電位に保持すればよい。このことを正確に行なうには、
ポテンシオスタットを用いて正極板および負極板をそれ
ぞれ好ましい定電位に設定すればよいのであるが、実用
電池でこのような方法を行なうのは装置が高価になるな
どの欠点があるので、現実には別の方法がとられる。即
ち、焼結式カドミウム負極板には、水素過電圧の低い金
属ニッケルが焼結体として多量に存在するために、負極
板の水素過電圧は低い。それ故、充電済の開放形の焼結
式ニッケルーカドミウム蓄電池に例えば1.40 V/
セル程度の定電圧を印加しておくと、負極板の水素過電
圧が低いために、負極板の分極は極めて小さく、負極板
の電位は水素発生反応の平衡電位に極めて近い定電位に
とどまる。その結果、正極板の電位は水素発生反応の平
衡電位を基準として+ 1.40 Vに近い値になる。
That is, it is well known that if a charged nickel-cadmium storage battery is left in an open circuit state, its capacity will gradually decrease due to self-discharge. Since this self-discharge is, so to speak, an electrochemical reaction similar to a local battery mechanism in a metal corrosion reaction, self-discharge can be prevented using the same principle as cathodic protection. In other words, the positive electrode plate is held at a negative potential so that Ni OOH, which is a charging product, is reduced and does not discharge, and the negative electrode plate is held at a negative potential, where Cd, which is a charging product, is oxidized and is not discharged. It is sufficient to hold it at a potential. To do this correctly,
It would be possible to use a potentiostat to set the positive and negative plates to a desired constant potential, but using this method with practical batteries has drawbacks such as the expensive equipment, so it is not practical in practice. A different method is taken. That is, since the sintered cadmium negative electrode plate contains a large amount of metal nickel, which has a low hydrogen overvoltage, as a sintered body, the hydrogen overvoltage of the negative electrode plate is low. Therefore, for example, a charge of 1.40 V/
When a constant voltage comparable to that of a cell is applied, since the hydrogen overvoltage of the negative electrode plate is low, the polarization of the negative electrode plate is extremely small, and the potential of the negative electrode plate remains at a constant potential extremely close to the equilibrium potential of the hydrogen generation reaction. As a result, the potential of the positive electrode plate becomes a value close to +1.40 V based on the equilibrium potential of the hydrogen generation reaction.

充電状態の正極活物質であるNi OOHは、この電位
では放電しないので、正極板は自己放電を免れる。また
充電状態の負極活物質であるCdの平衡電位は、水素発
生反応の平衡電位よりも約20mVf!iであるから、
負極板が水素発生反応を起こし搏る電位では、負極板の
自己放電は当然起こらない。
Since Ni OOH, which is the positive electrode active material in the charged state, does not discharge at this potential, the positive electrode plate is free from self-discharge. In addition, the equilibrium potential of Cd, which is the negative electrode active material in a charged state, is about 20 mVf higher than the equilibrium potential of the hydrogen generation reaction! Since i,
At the potential at which the negative electrode plate undergoes a hydrogen generation reaction, self-discharge of the negative electrode plate naturally does not occur.

このような原理で、開放形アルカリ蓄電池の自己放電が
防がれる。そしてこのような目的で定電圧が印加されて
いると、電池には充電方向のTi流が流れ込み、またで
の電流は電池温度等によって変動するので、印加する電
圧は浮動充電電圧と呼ばれる。
This principle prevents the open alkaline storage battery from self-discharging. When a constant voltage is applied for this purpose, a Ti current flows into the battery in the charging direction, and the current across the bridge varies depending on the battery temperature, etc., so the applied voltage is called a floating charging voltage.

発明が解決しようとする問題点 しかしながら、開放形ニッケルーカドミウム蓄電池の負
極板として、焼結式カドミウム極板に代えて、¥J造コ
コスト低い、非焼結式カドミウム負極板を用いると、次
のような不都合が生ずることがある。即ち、この電池を
充放電した後に定電圧浮動充電を行なって放電すると、
その放電容量は、負極板として焼結式カドミウム極板を
用いた場合よりも小さくなる傾向がある。これは、次の
ことに起因すると推定される。
Problems to be Solved by the Invention However, if a non-sintered cadmium negative electrode plate, which has a low cost and is manufactured by JPY, is used instead of a sintered cadmium negative electrode plate as the negative electrode plate of an open type nickel-cadmium storage battery, the following problems occur. Such inconveniences may occur. That is, if this battery is charged and discharged and then discharged by constant voltage floating charging,
The discharge capacity tends to be smaller than that when a sintered cadmium electrode plate is used as the negative electrode plate. This is presumed to be due to the following.

カドミウム負極板の充放電反応は、 Cd +20t−1−gcd  (OH)2 +2e−
であるが、CdおよびCd  (OH)2のモル体積は
それぞれ13.0aIl/molおよび30.6co?
 / no lであるから、充放電反応の進行に伴なっ
て活物質の体積が大きく変化する。焼結式カドミウム負
極板極板の場合には、ニッケル焼結体が堅固な支持体と
して作用するので、充放電中に活物質の体積が前記のよ
うに大きく変化しても、負極板の体積変化は比較的小さ
い。しかし、非焼結式カドミウム負慟板の場合には、ニ
ッケル焼結体のような堅固な支持体がないので、充放電
中の活物質の体積変化に伴なう負極板の体積変化が焼結
式カドミウム負極板よりも大きくなって、極板の細孔内
の電解液の流動がmsとなる。非焼結式カドミウム負極
板において、例えば金属ニッケル粉末を混入しておけば
、陰分極時にはこの金属ニッケル粉末の表面が水素ガス
発生反応のサイトになるが、上述のような極板細孔内の
電解液の流動が顕著になると、カドミウムの溶存種が移
動し易くなり、金属ニッケル粉末の表面が水素過電圧の
高いカドミウムで被覆され易くなるので、カドミウム負
極板の水素過電圧が上昇し易い。このようにカドミウム
負極板の水素過電圧が上昇すると、負極板は浮動充電中
に一定の電位を維持することが不可能となり、次第に卑
な電位へと分極する。このとき一定の浮動充電電圧が印
加されたままであるならば、正極板の電位は負極板の分
極の増加とともに次第に卑にシフトする結果、ついには
Ni0OHの平衡電位よりも卑になり、正極板は自己放
電することになる。
The charge/discharge reaction of the cadmium negative electrode plate is Cd +20t-1-gcd (OH)2 +2e-
However, the molar volumes of Cd and Cd(OH)2 are 13.0aIl/mol and 30.6co?, respectively.
/ no l, the volume of the active material changes significantly as the charge/discharge reaction progresses. In the case of a sintered cadmium negative electrode plate, the nickel sintered body acts as a solid support, so even if the volume of the active material changes significantly as described above during charging and discharging, the volume of the negative electrode plate remains constant. Changes are relatively small. However, in the case of non-sintered cadmium negative electrode plates, there is no solid support like nickel sintered bodies, so the volume change of the negative electrode plate due to the volume change of the active material during charging and discharging is caused by sintering. It is larger than that of a bonded cadmium negative electrode plate, and the flow of the electrolyte in the pores of the electrode plate is ms. For example, if metallic nickel powder is mixed into a non-sintered cadmium negative electrode plate, the surface of this metallic nickel powder becomes the site of the hydrogen gas generation reaction during cathodic polarization, but the pores in the electrode plate as described above When the flow of the electrolyte becomes noticeable, the dissolved cadmium species tend to move, and the surface of the metal nickel powder is likely to be coated with cadmium, which has a high hydrogen overvoltage, so the hydrogen overvoltage of the cadmium negative electrode plate tends to increase. When the hydrogen overvoltage of the cadmium negative plate increases in this manner, the negative plate becomes unable to maintain a constant potential during floating charging, and is gradually polarized to a base potential. At this time, if a constant floating charging voltage remains applied, the potential of the positive plate will gradually shift to less noble as the polarization of the negative plate increases, and as a result, it will eventually become less noble than the equilibrium potential of Ni0OH, and the positive plate will become less noble. It will self-discharge.

このような不都合を防ぐために、浮動充電電圧を高く設
定しておくと、負極板の水素過電圧が上昇し、負極板が
卑に分極しても、正極板の電位をNi OOHの平衡電
位よりも負に保持することが可能である。しかし、この
場合には、負極板の水素過電圧が上昇する前には、負極
板の分極が小さいので、正極板の電位が必要以上に負に
なる。それ故、正極板からの酸素発生および負極板から
の水素発生の速度が著しく大きくなって、電解液間の減
少速度が大きくなり、電池への補水を頻繁に必要とする
不都合が生ずる。
To prevent this problem, if the floating charge voltage is set high, the hydrogen overvoltage of the negative plate will increase, and even if the negative plate is polarized, the potential of the positive plate will be lower than the equilibrium potential of Ni OOH. It is possible to hold it negative. However, in this case, before the hydrogen overvoltage of the negative electrode plate increases, the polarization of the negative electrode plate is small, so the potential of the positive electrode plate becomes more negative than necessary. Therefore, the rate of oxygen generation from the positive electrode plate and the rate of hydrogen generation from the negative electrode plate become extremely high, and the rate at which the electrolyte decreases increases, resulting in the inconvenience that water replenishment to the battery is frequently required.

以上の理由から、浮動充電中に非焼結式カドミウム負極
板の水素過電圧が上昇しても、容量が低下しない開放形
アルカリ蓄電池が望まれていた。
For the above reasons, there has been a desire for an open alkaline storage battery whose capacity does not decrease even if the hydrogen overvoltage of the non-sintered cadmium negative electrode plate increases during floating charging.

本発明は、上記したような従来技術の問題点を解決する
ことを目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

問題点を解決するための手段 即ら、本発明は、骨格の表面にニッケル居が存在する導
電性多孔体からなる電極を電解液中に浸漬すると共に、
非焼結式カドミウム負極板と電気的に接続し、かつ前記
電極の体積を非焼結式カドミウム負極板の全体積の1/
30以上とすることによって、上述の問題点を解決せん
とするものである。
Means for solving the problem, that is, the present invention is to immerse an electrode made of a conductive porous body in which nickel is present on the surface of the skeleton in an electrolytic solution, and to
It is electrically connected to a non-sintered cadmium negative electrode plate, and the volume of the electrode is set to 1/1 of the total volume of the non-sintered cadmium negative electrode plate.
By setting the number to 30 or more, the above-mentioned problem is attempted to be solved.

作  用 本発明において、電解液中に浸漬し、非焼結式カドミウ
ム負極板と電気的に接続する電極(以後、水素発生用電
極と呼ぶ)として、例えば焼結式ニッケル基板、発泡状
ニッケル基板、あるいはニッケルメッキを施した鉄繊維
からなるフェルトなどのように、骨格の表面にニッケル
層が存在する導電性多孔体からなる電極を選定して開放
形アルカリ蓄電池を構成して実験したところ、次のこと
がわかった。即ち、上記の本発明による水素発生用電極
の体積を種々変えた開放形アルカリ蓄電池を構成して、
この電池を充放電した後に長ff1間定電圧浮動充電を
行ない、その後に放電すると、非焼結式カドミウム負極
板の全体積の1/30以上の体積を有する水素発生用電
極を用いた電池の放電容量は他の電池の放電容量よりも
大きがった。これは、次の理由によるものと推定される
。即ち、非焼結式カドミウム負極板では、その水素発生
反応の起こるサイトである極板内の金属ニッケルから僅
かに数μ糟しか離れていない位置に活物質である金属カ
ドミウムが存在するために、電池の充放電に伴なう極板
の細孔内の電解液の流動によって、カドミウム溶存種が
金属ニッケルの表面へ容易に到達する。それ故、非焼結
式カドミウム負極板を長期間陰分極し続けると、極板内
の金属ニッケルの表面が水素過電圧の高い金属カドミウ
ムに被覆されて、水素過電圧が高くなる。しかし、上述
のような本発明による水素発生用電極は、非焼結式カド
ミウム負極板とはmmオーダーで物理的に離れているの
で、水素発生用電極の骨格表面は金属カドミウムで被覆
され難い。したがって、水素発生用電極の水素過電圧は
低いまま維持されるので、長WI間定電圧浮動充電を続
けた後には、負極における水素発生反応は主として水素
発生用電極において起こるようになる。ここで、水素発
生用電極の体積が過度に小さいと、水素発生用電極にお
ける電流密度が高くなりすぎて、分極が大きくなり、負
極全体の電位が卑に分極する結果、正極の電位を負にH
持できなくなって、正極の自己放電が進行する。それ故
、電池の容量を維持するためには、負極全体が卑に分極
しないように、充分大きい体積の水素発生用電極が必要
であり、その体積は実験の結果、非焼結カドミウム負極
板の全体積の1/30である。
Function In the present invention, for example, a sintered nickel substrate, a foamed nickel substrate, etc. can be used as an electrode (hereinafter referred to as a hydrogen generation electrode) that is immersed in an electrolytic solution and electrically connected to a non-sintered cadmium negative electrode plate. In an experiment, we constructed an open alkaline storage battery by selecting an electrode made of a conductive porous material with a nickel layer on the surface of the skeleton, such as nickel-plated iron fiber felt, etc., and found the following: I found out that. That is, an open alkaline storage battery in which the volume of the hydrogen generating electrode according to the present invention is varied is constructed,
After charging and discharging this battery, it is subjected to constant voltage floating charging for a long period of ff1, and then discharged. The discharge capacity was larger than that of other batteries. This is presumed to be due to the following reasons. That is, in the non-sintered cadmium negative electrode plate, since the metal cadmium, which is the active material, exists at a position only a few micrometers away from the metal nickel in the electrode plate, which is the site where the hydrogen generation reaction occurs, Due to the flow of the electrolyte in the pores of the electrode plate as the battery charges and discharges, dissolved cadmium species easily reach the surface of the metal nickel. Therefore, if a non-sintered cadmium negative electrode plate continues to be cathodically polarized for a long period of time, the surface of the metal nickel in the electrode plate will be coated with metal cadmium, which has a high hydrogen overvoltage, and the hydrogen overvoltage will increase. However, since the hydrogen generation electrode according to the present invention as described above is physically separated from the non-sintered cadmium negative electrode plate on the order of mm, the skeletal surface of the hydrogen generation electrode is difficult to be coated with metal cadmium. Therefore, since the hydrogen overvoltage of the hydrogen generation electrode is maintained low, after constant voltage floating charging for a long WI period, the hydrogen generation reaction at the negative electrode mainly occurs at the hydrogen generation electrode. Here, if the volume of the hydrogen generation electrode is too small, the current density in the hydrogen generation electrode will become too high, and the polarization will become large. As a result, the potential of the entire negative electrode will be negatively polarized, and the potential of the positive electrode will become negative. H
self-discharge of the positive electrode progresses. Therefore, in order to maintain the capacity of the battery, a hydrogen generating electrode with a sufficiently large volume is required so that the entire negative electrode is not negatively polarized. It is 1/30 of the total volume.

実施例 次に本発明を実施例に基づいて説明する。Example Next, the present invention will be explained based on examples.

先ず、本発明品Aとして、大きさが120mm x12
01Wlll×1.0LIII11の焼結式水酸化ニッ
ケ/L、正1板10枚を正極として用い、同じ大きさの
非焼結式カドミウム負極板10枚を負極として用い、厚
さが0,2IIllのポリプロピレン製不織布2枚とそ
の間にセロファン1枚を介在させたセパレータを用い、
さらに前記非焼結式カドミウム負極板の全体積の1/1
000〜2倍の体積を有する多孔度82%の焼結式ニッ
ケル基板を水素発生用電極として用い、そしてこの水素
発生用電極を負極である非焼結式カドミウム負極板にニ
ッケル板で電気的に接続して公称容f!160△hの開
放形の電池を作製した。この電池の電解液としては、比
重1.220 (20℃)のKOH水溶液を用いた。ま
た本発明品Bとして、多孔度95%の発泡状ニッケル板
を水素発生用電極として用い、他は本発明品Δと構成を
同じにした開放形の電池を作製した。また本発明品Cと
して、約5μ−の厚さのニッケルメッキを施した鉄繊維
からなるフェルトを水素発生用電極として用い、他は本
発明品へと構成を同じにした開放形の電池を作製した。
First, as the invention product A, the size is 120mm x 12
01Wllll x 1.0LIII11 sintered nickel hydroxide/L, 10 positive plates were used as positive electrodes, 10 non-sintered cadmium negative electrode plates of the same size were used as negative electrodes, and the thickness was 0.2IIIll. Using a separator with two sheets of polypropylene nonwoven fabric and one sheet of cellophane interposed between them,
Furthermore, 1/1 of the total volume of the non-sintered cadmium negative electrode plate
A sintered nickel substrate with a porosity of 82% and a volume of 82% is used as a hydrogen generation electrode, and this hydrogen generation electrode is electrically connected to a non-sintered cadmium negative electrode plate with a nickel plate. Connect to nominal capacity f! A 160Δh open type battery was produced. As the electrolyte for this battery, a KOH aqueous solution with a specific gravity of 1.220 (20° C.) was used. In addition, as a product of the present invention B, an open-type battery was produced using a foamed nickel plate with a porosity of 95% as an electrode for hydrogen generation, but having the same structure as the product Δ of the present invention in other respects. In addition, as product C of the present invention, an open type battery was fabricated using a felt made of iron fibers coated with nickel with a thickness of about 5μ as the electrode for hydrogen generation, but with the other configurations being the same as the product of the present invention. did.

さらに比較のために従来品として、前記本発明品Aにお
ける非焼結式カドミウム負極板と電気的に接続される水
素発生用電極を電池内に設置せず、他の構成は本発明品
Aと同じにした開放形の電池を作製した。なお、上記の
電池に用いた非焼結式カドミウム負極板は、酸化カドミ
ウム粉末、金属ニッケル粉末およびアクリロニトリル−
塩化ビニル共重合体の短繊維をカルボキシメチルセルロ
ースとメチルセルロースとの混合溶液とともに混練して
ペースト状にし、ニッケルメッキを施した厚さ0.1m
eの穿孔鋼板に所定厚さで塗着し、乾燥した後、プレス
して得たものである。
Furthermore, for comparison, as a conventional product, the hydrogen generation electrode electrically connected to the non-sintered cadmium negative electrode plate of the invention product A was not installed in the battery, and the other configuration was the same as the invention product A. A similar open-type battery was fabricated. The non-sintered cadmium negative electrode plate used in the above battery is made of cadmium oxide powder, metallic nickel powder, and acrylonitrile powder.
Short fibers of vinyl chloride copolymer are kneaded with a mixed solution of carboxymethylcellulose and methylcellulose to form a paste, which is nickel plated to a thickness of 0.1m.
It was obtained by coating the perforated steel plate of e with a predetermined thickness, drying it, and then pressing it.

次にこれらの電池を20℃にて10時間率の電流で16
時間充電した後、5時間率の電流でOvまで放電する充
放電サイクルを3回繰り返した。さらに20℃にて10
時間率の電流で16時間充電した後、40℃にて1.4
0V/セルの定電圧浮動充電を1年間行なった後、20
℃にて1時間率の電流で放電した。
These cells were then heated at a current rate of 16 hours at 20°C.
After charging for an hour, a charge/discharge cycle of discharging to Ov at a current rate of 5 hours was repeated three times. 10 more at 20℃
After charging for 16 hours at a current rate of 1.4 at 40℃
After 1 year of constant voltage floating charging at 0V/cell, 20
The discharge was carried out at a current rate of 1 hour at .degree.

このとき得られた放電容量と、非焼結式カドミウム負極
板に接続された水素発生用電極の体積と非焼結式カドミ
ウム負極板の全体積の比との関係を図に示す。
The relationship between the discharge capacity obtained at this time and the ratio of the volume of the hydrogen generating electrode connected to the non-sintered cadmium negative electrode plate to the total volume of the non-sintered cadmium negative electrode plate is shown in the figure.

図から明らかなように、従来品では、放電容量が約42
Δhに過ぎないのに比べて、本発明品A1BおよびCで
は、負極板に接続される水素発生用電極の体積と非焼結
式カドミウム負極板の全体積の比が1/30以上の場合
において、公称容量の60Ahよりも大きい放電容量が
得られており、容量減少が起こり難いことがわかる。
As is clear from the figure, the discharge capacity of the conventional product is approximately 42
In contrast, in products A1B and C of the present invention, when the ratio of the volume of the hydrogen generation electrode connected to the negative electrode plate to the total volume of the non-sintered cadmium negative electrode plate is 1/30 or more, , a discharge capacity larger than the nominal capacity of 60 Ah was obtained, and it can be seen that a decrease in capacity is unlikely to occur.

発明の効果 以上のように本発明によれば、高温下で長期間浮動充電
する開放形アルカリ蓄電池の容量減少を防ぐことができ
る。
Effects of the Invention As described above, according to the present invention, it is possible to prevent a decrease in the capacity of an open alkaline storage battery that is float-charged for a long period of time at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による開放形アルカリ蓄電池および従来のこ
の種アルカリM電池を高温下で長期間浮動充電した後の
放電容量を比較して示す特性図である。
The figure is a characteristic diagram showing a comparison of the discharge capacities of the open type alkaline storage battery according to the present invention and the conventional alkaline M battery of this type after long-term floating charging at high temperatures.

Claims (1)

【特許請求の範囲】[Claims] 骨格の表面にニッケル層が存在する導電性多孔体からな
る電極を電解液中に浸漬すると共に、非焼結式カドミウ
ム負極板と電気的に接続し、かつ前記電極の体積を非焼
結式カドミウム負極板の全体積の1/30以上としたこ
とを特徴とする開放形アルカリ蓄電池。
An electrode made of a conductive porous body with a nickel layer on the surface of the skeleton is immersed in an electrolytic solution, electrically connected to a non-sintered cadmium negative electrode plate, and the volume of the electrode is reduced to a non-sintered cadmium negative electrode plate. An open-type alkaline storage battery characterized in that the negative electrode plate has a volume of 1/30 or more of the total volume.
JP61314829A 1986-12-26 1986-12-26 Open type alkaline storage battery Expired - Fee Related JPH0821420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61314829A JPH0821420B2 (en) 1986-12-26 1986-12-26 Open type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61314829A JPH0821420B2 (en) 1986-12-26 1986-12-26 Open type alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63166161A true JPS63166161A (en) 1988-07-09
JPH0821420B2 JPH0821420B2 (en) 1996-03-04

Family

ID=18058097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61314829A Expired - Fee Related JPH0821420B2 (en) 1986-12-26 1986-12-26 Open type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0821420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166162A (en) * 1986-12-26 1988-07-09 Japan Storage Battery Co Ltd Open type alkaline storage battery
FR2646561A1 (en) * 1989-04-28 1990-11-02 Accumulateurs Fixes CADMIUM-BASED NEGATIVE ELECTRODE FOR OPEN ALKALINE ACCUMULATOR
JP2006134688A (en) * 2004-11-05 2006-05-25 Furukawa Battery Co Ltd:The Vented-type alkaline storage cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166162A (en) * 1986-12-26 1988-07-09 Japan Storage Battery Co Ltd Open type alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166162A (en) * 1986-12-26 1988-07-09 Japan Storage Battery Co Ltd Open type alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166162A (en) * 1986-12-26 1988-07-09 Japan Storage Battery Co Ltd Open type alkaline storage battery
JPH0821421B2 (en) * 1986-12-26 1996-03-04 日本電池株式会社 Open type alkaline storage battery
FR2646561A1 (en) * 1989-04-28 1990-11-02 Accumulateurs Fixes CADMIUM-BASED NEGATIVE ELECTRODE FOR OPEN ALKALINE ACCUMULATOR
JP2006134688A (en) * 2004-11-05 2006-05-25 Furukawa Battery Co Ltd:The Vented-type alkaline storage cell

Also Published As

Publication number Publication date
JPH0821420B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
Shivkumar et al. Studies with porous zinc electrodes with additives for secondary alkaline batteries
US3867199A (en) Nickel hydrogen cell
US3785868A (en) Zinc electrode
WO1991002385A1 (en) Battery containing solid protonically conducting electrolyte
Dodson The Composition and Performance of Positive Plate Material in the Lead‐Acid Battery
JPH0437553B2 (en)
JPS63166161A (en) Open type alkaline storage battery
US3553027A (en) Electrochemical cell with lead-containing electrolyte and method of generating electricity
EP0060642A1 (en) Third electrode for lead-acid standby batteries
JP2000030696A (en) Sealed lead-acid battery
JPS63166162A (en) Open type alkaline storage battery
CA1090878A (en) Lead crystal storage cells and storage devices made therefrom
JPS6171563A (en) Airtightly sealed nickel-cadmium storage battery and method of producing same
US3408231A (en) Method of making flexible electrodes
JP2589150B2 (en) Alkaline zinc storage battery
JPS63166163A (en) Open type alkaline storage battery
JPS63166164A (en) Open type alkaline storage battery
JPS60220555A (en) Electrochemical battery
JPH0576753B2 (en)
JPH0550814B2 (en)
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
Abdo et al. Charge-discharge characteristics of a lead oxide-zinc secondary battery system
JPH01315962A (en) Alkali secondary battery
JPS6180777A (en) Specific gravity sensor for lead storage battery
JP2589750B2 (en) Nickel cadmium storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees