JPH1167280A - Lithium secondary battery and its charging method - Google Patents

Lithium secondary battery and its charging method

Info

Publication number
JPH1167280A
JPH1167280A JP9229485A JP22948597A JPH1167280A JP H1167280 A JPH1167280 A JP H1167280A JP 9229485 A JP9229485 A JP 9229485A JP 22948597 A JP22948597 A JP 22948597A JP H1167280 A JPH1167280 A JP H1167280A
Authority
JP
Japan
Prior art keywords
lithium
electrode
negative electrode
potential difference
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9229485A
Other languages
Japanese (ja)
Inventor
Keisuke Yamamoto
啓介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP9229485A priority Critical patent/JPH1167280A/en
Publication of JPH1167280A publication Critical patent/JPH1167280A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deposition of metallic lithium on a graphite negative electrode and to safely charge a battery by arranging a positive electrode, the graphite negative electrode capable of inserting/releasing lithium in charge/ discharge, and a reference electrode made of a lithium alloy. SOLUTION: The standard electrode potential of a reference electrode 4 is equal or near to a lithium ion potential because the reference electrode 4 is made of lithium or a lithium alloy. The fact that the potential difference between the graphite negative electrode 3 and the reference electrode 4 is zero volt or near to zero volt shows that metallic lithium easily deposits on the graphite electrode 3. During charge, the variation of the potential difference between the graphite negative electrode 3 and the reference electrode 4 is monitored, and for example, it is managed in such a way that when the potential difference has become less than the specified value, charge is finished. Thereby, the deposition of metallic lithium is surely avoided. The potential difference between the graphite negative electrode 3 and the reference electrode 4 is preferable to be at least 0.1 V at the starting of charge, and charge is preferably finished before the potential difference drops to 0.01 V.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
およびその充電方法に関する。
The present invention relates to a lithium secondary battery and a method for charging the same.

【0002】[0002]

【従来の技術】一般に二次電池の充電は、被充電二次電
池の起電圧、即ち二次電池の正負極間の電位差を所望の
大きさに回復する過程である。リチウム二次電池は、他
の二次電池と根本的に異なって、充電を過度に行うと負
極に金属リチウムが析出する重大な問題がある。該負極
に金属リチウムが析出すると、二次電池としての機能の
回復が不可となるのみならず、携帯電話などの携帯用電
気機器の電源に使用される場合には、機器の振動や破損
により該負極に析出した金属リチウムが水と接触する可
能性が高くなり危険ですらある。このために、従来は、
上記の問題を回避するために充電による回復起電圧の上
限を4.0〜4.3Vの範囲としていた。
2. Description of the Related Art Generally, charging of a secondary battery is a process of restoring an electromotive voltage of a secondary battery to be charged, that is, a potential difference between a positive electrode and a negative electrode of the secondary battery to a desired magnitude. The lithium secondary battery is fundamentally different from other secondary batteries, and has a serious problem that lithium metal is deposited on the negative electrode when charging is performed excessively. When metal lithium is deposited on the negative electrode, not only the function as a secondary battery cannot be recovered, but also when used as a power source for portable electric devices such as mobile phones, the device may be vibrated or damaged. There is a high possibility that metallic lithium deposited on the negative electrode comes into contact with water, which is even dangerous. For this reason, conventionally,
In order to avoid the above problem, the upper limit of the recovery electromotive voltage due to charging is set to a range of 4.0 to 4.3V.

【0003】ところで、リチウム二次電池のうちでも負
極がグラファイトであるものは、充電による回復起電圧
の上限を上記の範囲となるように管理してもグラファイ
ト負極に金属リチウムが析出することがある。この析出
は、ある程度使用されたリチウム二次電池に生じ易い。
その析出の理由は、本発明者の研究によれば、つぎの通
りである。
[0003] Incidentally, among lithium secondary batteries in which the negative electrode is graphite, metallic lithium may precipitate on the graphite negative electrode even if the upper limit of the recovery electromotive voltage by charging is controlled within the above range. . This deposition tends to occur in a lithium secondary battery used to some extent.
The reason for the precipitation is as follows according to the study of the present inventors.

【0004】グラファイト負極での金属リチウムの析出
は、該負極のリチウムイオンに対する電位、即ち対リチ
ウムイオン電位、が0Vまたはそれ以下となったときに
起きる。生産工場から出荷された当初のリチウム二次電
池のグラファイト負極は、その対リチウムイオン電位が
1V前後となるように管理されているが、この対リチウ
ムイオン電位は、一般に電池の充放電を繰り返すうちに
漸次低下し、また個々の充電中においても充電の進行と
共に低下する性質がある。よって或る程度使用されたリ
チウム二次電池では、そのグラファイト負極の対リチウ
ムイオン電位は、新品のときのそれより低下しており、
充電中ではリチウムイオンの挿入にて更に低下して0V
またはそれ以下となって金属リチウムの析出が生じる。
したがって、金属リチウムの析出を回避するには、充電
中におけるグラファイト負極の対リチウムイオン電位を
測定し管理する必要があるが、従来のよう被充電二次電
池の正負極間の電位差による管理ではそれができない。
[0004] Deposition of metallic lithium on a graphite negative electrode occurs when the potential of the negative electrode with respect to lithium ions, ie, the potential with respect to lithium ions, becomes 0 V or less. The graphite negative electrode of an initial lithium secondary battery shipped from a production factory is controlled so that its lithium ion potential is around 1 V. Generally, this lithium ion potential is determined by repeated charging and discharging of the battery. , And also during individual charging, with the progress of charging. Therefore, in a lithium secondary battery used to some extent, the lithium ion potential of the graphite negative electrode is lower than that of a new one,
During charging, the voltage drops further to 0 V due to the insertion of lithium ions.
Or below that, precipitation of metallic lithium occurs.
Therefore, in order to avoid the precipitation of metallic lithium, it is necessary to measure and control the lithium ion potential of the graphite negative electrode during charging, but this is not the case with the conventional management based on the potential difference between the positive and negative electrodes of a secondary battery to be charged. Can not.

【0005】[0005]

【発明が解決しようとする課題】上記に鑑みて本発明
は、グラファイト負極に金属リチウムが析出することな
く安全に充電し得る新規なリチウム二次電池およびその
充電方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a novel lithium secondary battery that can be safely charged without depositing metallic lithium on a graphite negative electrode, and a method of charging the same. .

【0006】[0006]

【課題を解決するための手段】本発明は、つぎの特徴を
有する。 (1) 正極、電池の充電−放電の際にリチウムイオンの挿
入・脱離が生じるグラファイト負極、およびリチウムま
たはリチウム合金からなる参照極とを有することを特徴
とするリチウム二次電池。 (2) リチウム二次電池の充電開始時におけるグラファイ
ト負極と参照極との電位差が、少なくとも0.1Vであ
る上記(1) 記載のリチウム二次電池。 (3) 上記(1) または(2) 記載のリチウム二次電池の充電
において、グラファイト負極と参照極との電位差が該負
極に金属リチウムの析出が生じる電位差まで低下する前
に充電を終了することを特徴とするリチウム二次電池の
充電方法。 (4) 参照極がリチウムからなり、グラファイト負極と参
照極との電位差が0.01Vまで低下する前に充電を終
了する上記(3) 記載のリチウム二次電池の充電方法。
The present invention has the following features. (1) A lithium secondary battery comprising a positive electrode, a graphite negative electrode in which lithium ions are inserted and removed during charging and discharging of the battery, and a reference electrode made of lithium or a lithium alloy. (2) The lithium secondary battery according to the above (1), wherein the potential difference between the graphite negative electrode and the reference electrode at the start of charging of the lithium secondary battery is at least 0.1 V. (3) In the charging of the lithium secondary battery according to the above (1) or (2), the charging is terminated before the potential difference between the graphite negative electrode and the reference electrode decreases to a potential difference at which metal lithium is deposited on the negative electrode. A method for charging a lithium secondary battery. (4) The method for charging a lithium secondary battery according to the above (3), wherein the reference electrode is made of lithium, and charging is completed before the potential difference between the graphite negative electrode and the reference electrode decreases to 0.01 V.

【0007】[0007]

【作用】本発明のリチウム二次電池は、正極とグラファ
イト負極との他にリチウムまたはリチウム合金からなる
参照極を有する。参照極の標準電極電位は、それがリチ
ウムまたはリチウム合金からなるので上記した対リチウ
ムイオン電位に等しいかまたはそれに近いので、グラフ
ァイト負極と参照極との電位差が0Vまたはそれに近い
値となることは、グラファイト負極に金属リチウムが析
出するあるいは析出し易い状況にあることを示す。よっ
てリチウム二次電池の充電中は、グラファイト負極と参
照極との電位差の変化を監視し、例えばその電位差が一
定値を割り込んだ時点で電池の充電を終了するように管
理する。かくすることにより、金属リチウムの析出を確
実に回避することができる。
The lithium secondary battery of the present invention has a reference electrode made of lithium or a lithium alloy in addition to the positive electrode and the graphite negative electrode. Since the standard electrode potential of the reference electrode is equal to or close to the above-mentioned lithium ion potential because it is made of lithium or a lithium alloy, the potential difference between the graphite negative electrode and the reference electrode becomes 0 V or a value close thereto. This shows that metallic lithium is deposited on the graphite negative electrode or is in a state of being easily deposited. Therefore, during charging of the lithium secondary battery, a change in the potential difference between the graphite negative electrode and the reference electrode is monitored, and for example, management is performed so that charging of the battery is terminated when the potential difference falls below a certain value. By doing so, precipitation of metallic lithium can be reliably avoided.

【0008】[0008]

【発明の実施の形態】以下、本発明を図例により詳細に
説明する。図1は本発明の二次電池の構造並びに機能に
ついての概略説明図であり、図2は本発明の二次電池の
充電−放電サイクルにおける起電圧−時間の関係グラフ
例であり、図3は本発明の二次電池の実施例の断面図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic explanatory view of the structure and function of a secondary battery of the present invention, FIG. 2 is an example of an electromotive voltage-time relationship graph in a charge-discharge cycle of the secondary battery of the present invention, and FIG. FIG. 2 is a sectional view of an embodiment of the secondary battery of the present invention.

【0009】図1において、1は電池缶、2は正極、3
はグラファイトからなる負極、4は参照極、5は電解質
であり、V1 は正極2と負極3との電位差(起電圧)、
V2は正極2と参照極4との電位差、V3 は負極3と参
照極4との電位差、Sは充電回路A内の充電用電源、L
は充電回路B内の負荷である。
In FIG. 1, 1 is a battery can, 2 is a positive electrode, 3
Is a graphite negative electrode, 4 is a reference electrode, 5 is an electrolyte, V1 is a potential difference (electromotive force) between the positive electrode 2 and the negative electrode 3,
V2 is a potential difference between the positive electrode 2 and the reference electrode 4, V3 is a potential difference between the negative electrode 3 and the reference electrode 4, S is a charging power supply in the charging circuit A, L
Is a load in the charging circuit B.

【0010】図2において、Cは充電時間帯、Dは放電
時間帯、Fは充電時間帯Cと放電時間帯Dとの間の開放
時間帯であり、G1 は電位差(起電圧)V1 の時間的変
化を示す曲線、G2 は電位差V2 の時間的変化を示す曲
線、G3 は電位差V3 の時間的変化を示す曲線である。
Kは、充電管理レベルを示す。
In FIG. 2, C is a charging time zone, D is a discharging time zone, F is an open time zone between the charging time zone C and the discharging time zone D, and G1 is the time of the potential difference (electromotive voltage) V1. G2 is a curve showing a temporal change of the potential difference V2, and G3 is a curve showing a temporal change of the potential difference V3.
K indicates a charge management level.

【0011】充電時間帯Cにおいて、回路A内の充電用
電源Sにより正極2と負極3との間に適当な電圧、例え
ば4.5V前後の充電電圧が課電されると、電位差V1
は、曲線G1 に沿って上昇する。その間、電位差V2 は
曲線G2 に沿って、また電位差V3 は曲線G3 に沿っ
て、それぞれ変化する。電位差V3 は、負極3のグラフ
ァイト中へのリチウムイオンの挿入により漸次低下す
る。この間、曲線G3 の変化に注意しておき、曲線G3
(電位差V3 )が充電管理レベルKにまで低下すると、
充電用電源Sを遮断して充電を終了する。図2の場合に
は、曲線G3 が充電管理レベルKに近づかないので、充
電が継続されて電位差V1 が充電開始後約3時間で所望
値(同図では4.3V前後)に至った後もさらに約2時
間にわたり略同じ充電電圧を保持した状態で充電を継続
し、充電開始後約5時間後に充電用電源Sを遮断して電
池は開放時間帯Fにもたらされている。電池は、開放時
間1時間の後に放電状態に置かれ、回路B内の負荷Lに
電力を供給する。その間に各電位差V1 、V2 、V3
は、曲線G1 曲線G2 、曲線G3に従ってそれぞれ時間
的に変化する。
In the charging time zone C, when an appropriate voltage, for example, a charging voltage of about 4.5 V is applied between the positive electrode 2 and the negative electrode 3 by the charging power source S in the circuit A, the potential difference V1
Rises along the curve G1. Meanwhile, the potential difference V2 changes along the curve G2, and the potential difference V3 changes along the curve G3. The potential difference V3 gradually decreases due to insertion of lithium ions into the graphite of the negative electrode 3. During this time, pay attention to the change of the curve G3,
When (potential difference V3) drops to the charge management level K,
The charging power source S is cut off to end charging. In the case of FIG. 2, since the curve G3 does not approach the charge management level K, the charge is continued and even after the potential difference V1 reaches the desired value (around 4.3V in FIG. 2) about 3 hours after the start of the charge. The charging is continued for about 2 hours while maintaining the substantially same charging voltage, and the charging power source S is shut off about 5 hours after the start of charging, and the battery is brought to the open time zone F. The battery is placed in a discharged state after one hour of open time to supply power to the load L in circuit B. Meanwhile, each potential difference V1, V2, V3
Changes with time according to the curves G1 and G2.

【0012】従来、電位差V1 の充電による回復電圧の
上限は、前記した負極3での金属リチウムの析出防止の
他に電解液の分解防止のために、通常、4.0〜4.3
V程度とされてきた。これに対して本発明における充電
においては、電位差V3 が充電管理レベルKに近づかな
い限り、電位差V1 の充電による回復電圧の上限は従来
通りでよいが、電位差V3 が充電管理レベルKにまで低
下すると、電位差V1の値の大小に係わりなく、直ちに
充電を終了する。充電管理レベルKの高さについては、
後記する。
Conventionally, the upper limit of the recovery voltage due to the charging of the potential difference V1 is usually 4.0 to 4.3 in order to prevent the decomposition of the electrolytic solution in addition to the prevention of the deposition of metallic lithium on the negative electrode 3 described above.
V. On the other hand, in the charging according to the present invention, as long as the potential difference V3 does not approach the charge management level K, the upper limit of the recovery voltage due to the charging of the potential difference V1 may be the same as before, but when the potential difference V3 decreases to the charge management level K. , Charging is immediately terminated regardless of the value of the potential difference V1. Regarding the height of the charge management level K,
See below.

【0013】本発明において正極2は、リチウム二次電
池の分野で周知あるいは実用されている材料からなるも
のであってよい。例えば、コバルト、ニッケル、マンガ
ンなどの遷移金属の複酸化物や複合複酸化物からなる活
物質の層を有するものが例示される。負極3は、グラフ
ァイトからなる活物質の層を有する。グラファイトとし
てはリチウム二次電池の分野で周知あるいは実用されて
いるものであってよく、例えば、鱗片状物や繊維状物の
他に、球状、疑似球状、塊状、前記鱗片状物の粉砕物、
粉状などの粒状物などである。特に、電池の充放電時に
おけるリチウムの挿入・脱離を高効率で可逆的に行い得
る高結晶性のもの、就中、結晶格子の基底面間距離(d
002)が0.335〜0.38nm、c軸方向の結晶子寸
法が少なくとも10nmのものが好ましい。
In the present invention, the positive electrode 2 may be made of a material that is known or used in the field of lithium secondary batteries. For example, those having an active material layer made of a transition metal double oxide or a composite double oxide such as cobalt, nickel, and manganese are exemplified. The negative electrode 3 has an active material layer made of graphite. As graphite, those well-known or put into practical use in the field of lithium secondary batteries may be used.
Granular material such as a powder. In particular, those having high crystallinity capable of reversibly inserting and removing lithium during charging and discharging of the battery with high efficiency, particularly, the distance between the basal planes of the crystal lattice (d
002) is preferably from 0.335 to 0.38 nm and the crystallite size in the c-axis direction is at least 10 nm.

【0014】参照極4は、リチウムまたはリチウム合金
にて形成される。参照極4がリチウムにて形成されてい
るときは、負極3に金属リチウムの析出が生じる電位差
V3は0Vとなる。よってこの場合には、充電中の電位
差V3 が0Vに低下する前、好ましくは安全のために
0.01Vに、さらには0.05Vに低下する前に充電
を終了するとよい。参照極4がリチウムである場合、図
2における充電管理レベルKの高さあるいは値は、0
V、好ましくは0.01V、さらには0.05Vなどと
なる。
The reference electrode 4 is formed of lithium or a lithium alloy. When the reference electrode 4 is formed of lithium, the potential difference V3 at which metal lithium is deposited on the negative electrode 3 is 0V. Therefore, in this case, the charging may be terminated before the potential difference V3 during charging decreases to 0 V, preferably to 0.01 V for safety, and further to 0.05 V for safety. When the reference electrode 4 is lithium, the height or value of the charge management level K in FIG.
V, preferably 0.01 V, and more preferably 0.05 V.

【0015】参照極4は、標準電極電位がリチウムと同
じまたは実質的に同じか、あるいは相違する各種のリチ
ウム合金にて形成されていてもよい。なおリチウム合金
中のリチウムの含有量が過少であると参照極4としての
機能が低下するので、リチウム合金としては、リチウム
含有量が少なくとも50重量%、特に少なくとも75重
量%あるものが好ましい。リチウム含有量がそのようで
あれば、特に不安定な合金を除き、周知の各種のリチウ
ム合金を使用することができる。 上記の標準電極電位
とは、周知の通り、標準水素電極を基準電極とする活動
度が1の電池系の起電力において、標準水素電極の電位
を零とした場合の電位差を意味する。標準電極電位がリ
チウムと同じまたは実質的に同じであるリチウム合金か
らなる参照極4を使用する場合には、参照極4がリチウ
ムである場合と同じ充電管理レベルKを設けてよい。一
方、参照極4が、リチウムと異なる標準電極電位を有す
るリチウム合金、例えばリチウムとはαV相違するリチ
ウム合金にて形成されている場合には、参照極4がリチ
ウムである場合の充電管理レベルKをαV分だけ移動す
ればよい。
The reference electrode 4 may be formed of various lithium alloys whose standard electrode potential is the same or substantially the same as lithium, or different. If the content of lithium in the lithium alloy is too small, the function as the reference electrode 4 is reduced. Therefore, the lithium alloy preferably has a lithium content of at least 50% by weight, particularly preferably at least 75% by weight. If the lithium content is such, various well-known lithium alloys can be used except for particularly unstable alloys. As is well known, the standard electrode potential refers to a potential difference when the potential of the standard hydrogen electrode is set to zero in an electromotive force of a battery system having an activity of 1 using the standard hydrogen electrode as a reference electrode. When a reference electrode 4 made of a lithium alloy having the same or substantially the same standard electrode potential as lithium is used, the same charge management level K as when the reference electrode 4 is lithium may be provided. On the other hand, when the reference electrode 4 is formed of a lithium alloy having a standard electrode potential different from lithium, for example, a lithium alloy different from lithium by αV, the charge management level K when the reference electrode 4 is lithium. Should be moved by αV.

【0016】なお、リチウムと異なる標準電極電位を有
するリチウム合金にて参照極4を形成する場合、得られ
た参照極4と負極3と電位差V3 が過少であると参照極
4としての機能が乏しくなるので、充電開始時の電位差
V3 が少なくとも0.1V、特に少なくとも0.2Vで
あるようなリチウム合金が好ましい。
When the reference electrode 4 is formed of a lithium alloy having a standard electrode potential different from that of lithium, if the potential difference V3 between the obtained reference electrode 4 and the negative electrode 3 is too small, the function as the reference electrode 4 is poor. Therefore, a lithium alloy having a potential difference V3 at the start of charging of at least 0.1 V, particularly at least 0.2 V is preferable.

【0017】図3において、1は鉄、ニッケル、あるい
は鉄−ニッケル合金などの鉄−ニッケル系金属材からな
る電池缶、Mは発電要素体、21は正極リード、31は
負極リード、4は参照極、41は参照極リード、6は負
極用電気絶縁板、7は正極用電気絶縁板、22は正極端
子、42は参照極端子、8は電気絶縁ガスケット、9は
安全構造(図示せず)を含む封止板、10は電気絶縁ガ
スケットである。発電要素体Mは、正極シート、セパレ
ータシート、グラファイト活性層を有する負極シート、
およびセパレータシート(いずれのシートも図示せず)
の4シートをその順に積層したものを巻回した構造を有
し、正極シートの集電体からは正極リード21が、一
方、負極シートの集電体からは負極リード31がそれぞ
れ延び出ている。正極リード21の先端は正極端子22
に、一方、負極リード31の先端は電池缶1の底壁にそ
れぞれ溶接されている。参照極4から延びる参照極リー
ド41は、参照極端子42に溶接されている。正極端子
22と参照極端子42とは、封止板9に気密に固定され
ており、また両端子22、42は電気絶縁ガスケット8
により互いに電気絶縁されており、且つ封止板9もその
両端が電気絶縁ガスケット10を介して電池缶1の内壁
に気密に且つ電気絶縁された状態にて固定されている。
発電要素体Mは、電解液にて含浸されており、電池缶1
内の空間は電解液に満たされている。
In FIG. 3, 1 is a battery can made of an iron-nickel metal material such as iron, nickel, or an iron-nickel alloy, M is a power generating element, 21 is a positive electrode lead, 31 is a negative electrode lead, and 4 is a reference. Pole, 41 is a reference electrode lead, 6 is a negative electric insulating plate, 7 is a positive electric insulating plate, 22 is a positive terminal, 42 is a reference electrode terminal, 8 is an electric insulating gasket, and 9 is a safety structure (not shown). Is an electrically insulating gasket. The power generating element M includes a positive electrode sheet, a separator sheet, a negative electrode sheet having a graphite active layer,
And separator sheet (neither sheet is shown)
And a positive electrode lead 21 extending from the current collector of the positive electrode sheet, and a negative electrode lead 31 extending from the current collector of the negative electrode sheet, respectively. . The tip of the positive electrode lead 21 is a positive electrode terminal 22
On the other hand, the tips of the negative electrode leads 31 are welded to the bottom wall of the battery can 1 respectively. A reference electrode lead 41 extending from the reference electrode 4 is welded to a reference electrode terminal 42. The positive electrode terminal 22 and the reference electrode terminal 42 are air-tightly fixed to the sealing plate 9, and both terminals 22 and 42 are electrically insulated gasket 8.
, And both ends of the sealing plate 9 are also fixed to the inner wall of the battery can 1 via an electrically insulating gasket 10 in an airtight and electrically insulated state.
The power generating element body M is impregnated with the electrolytic solution, and the battery can 1
The space inside is filled with the electrolyte.

【0018】本発明は、上記の実施例に限定されず、種
々の変形実施態様を包含する。例えば、上記の鉄−ニッ
ケル系金属材からなる電池缶1に代えてアルミニウム、
アルミニウムを主成分とするアルミニウム合金などのア
ルミニウム系金属材からなる電池缶を用いてもよい。そ
の場合には、正極リードは電池缶に接続され、図3に正
極端子8として示す端子を負極端子として使用して負極
リードはそれに接続されることになる。本発明は、円筒
形、角形、シート状などの種々の密閉式リチウム二次電
池に適用可能である。
The present invention is not limited to the above embodiment, but includes various modified embodiments. For example, instead of the battery can 1 made of the iron-nickel-based metal material, aluminum,
A battery can made of an aluminum-based metal material such as an aluminum alloy containing aluminum as a main component may be used. In that case, the positive electrode lead is connected to the battery can, and the terminal shown as the positive electrode terminal 8 in FIG. 3 is used as the negative electrode terminal, and the negative electrode lead is connected thereto. INDUSTRIAL APPLICABILITY The present invention is applicable to various sealed lithium secondary batteries such as cylindrical, rectangular, and sheet-shaped.

【0019】[0019]

【発明の効果】従来の充電方法では、グラファイト負極
に金属リチウムが析出する程に過充電して電池を使用不
能とする事故が生じ易いが、本発明によればかかる過充
電を確実に回避しつつ最適な充電を行うことができる。
よって一般的に高価なリチウム二次電池を長期間にわた
り有効に使用することができる。
According to the conventional charging method, it is easy to cause an accident that the battery becomes unusable due to overcharging to the extent that metallic lithium is deposited on the graphite negative electrode. However, according to the present invention, such overcharging is reliably avoided. It is possible to perform the optimal charging while doing so.
Thus, generally expensive lithium secondary batteries can be effectively used for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二次電池の構造並びに機能についての
概略説明図である。
FIG. 1 is a schematic explanatory view showing the structure and function of a secondary battery of the present invention.

【図2】本発明の二次電池の充電−放電サイクルにおけ
る起電圧−時間の関係グラフ例である。
FIG. 2 is an example of an electromotive voltage-time relationship graph in a charge-discharge cycle of the secondary battery of the present invention.

【図3】本発明の二次電池の実施例の断面図である。FIG. 3 is a sectional view of an embodiment of the secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電池缶 2 正極 3 負極 4 参照極 5 電解質 DESCRIPTION OF SYMBOLS 1 Battery can 2 Positive electrode 3 Negative electrode 4 Reference electrode 5 Electrolyte

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極、電池の充電−放電の際にリチウム
イオンの挿入・脱離が生じるグラファイト負極、および
リチウムまたはリチウム合金からなる参照極とを有する
ことを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising: a positive electrode; a graphite negative electrode in which lithium ions are inserted and removed during charging and discharging of the battery; and a reference electrode made of lithium or a lithium alloy.
【請求項2】 リチウム二次電池の充電開始時における
グラファイト負極と参照極との電位差が、少なくとも
0.1Vである請求項1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the potential difference between the graphite negative electrode and the reference electrode at the start of charging of the lithium secondary battery is at least 0.1 V.
【請求項3】 請求項1または2記載のリチウム二次電
池の充電において、グラファイト負極と参照極との電位
差が該負極に金属リチウムの析出が生じる電位差まで低
下する前に充電を終了することを特徴とするリチウム二
次電池の充電方法。
3. The charging of the lithium secondary battery according to claim 1, wherein the charging is completed before the potential difference between the graphite negative electrode and the reference electrode decreases to a potential difference at which metal lithium is deposited on the negative electrode. Characteristic method of charging a lithium secondary battery.
【請求項4】 参照極がリチウムからなり、グラファイ
ト負極と参照極との電位差が0.01Vまで低下する前
に充電を終了する請求項3記載のリチウム二次電池の充
電方法。
4. The method for charging a lithium secondary battery according to claim 3, wherein the reference electrode is made of lithium, and charging is completed before the potential difference between the graphite negative electrode and the reference electrode decreases to 0.01 V.
JP9229485A 1997-08-26 1997-08-26 Lithium secondary battery and its charging method Pending JPH1167280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9229485A JPH1167280A (en) 1997-08-26 1997-08-26 Lithium secondary battery and its charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9229485A JPH1167280A (en) 1997-08-26 1997-08-26 Lithium secondary battery and its charging method

Publications (1)

Publication Number Publication Date
JPH1167280A true JPH1167280A (en) 1999-03-09

Family

ID=16892913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9229485A Pending JPH1167280A (en) 1997-08-26 1997-08-26 Lithium secondary battery and its charging method

Country Status (1)

Country Link
JP (1) JPH1167280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2013054939A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Battery system
WO2013105140A1 (en) * 2012-01-13 2013-07-18 トヨタ自動車株式会社 Method for controlling and device for controlling secondary battery
CN109037811A (en) * 2018-06-27 2018-12-18 中航锂电(洛阳)有限公司 A kind of charging method of graphite cathode system lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
US8541122B2 (en) 2007-09-14 2013-09-24 A123 Systems Llc Lithium rechargeable cell with reference electrode for state of health monitoring
JP2013054939A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Battery system
WO2013105140A1 (en) * 2012-01-13 2013-07-18 トヨタ自動車株式会社 Method for controlling and device for controlling secondary battery
CN109037811A (en) * 2018-06-27 2018-12-18 中航锂电(洛阳)有限公司 A kind of charging method of graphite cathode system lithium ion battery
CN109037811B (en) * 2018-06-27 2020-11-06 中航锂电(洛阳)有限公司 Charging method of graphite negative electrode system lithium ion battery

Similar Documents

Publication Publication Date Title
KR19990007966A (en) Rechargeable Lithium Battery with Improved Reversible Capacity
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JP2001015177A (en) Charge and discharge control method for secondary battery
JPS631708B2 (en)
JPH1167280A (en) Lithium secondary battery and its charging method
JPS638588B2 (en)
JP3109559B2 (en) Chemical formation of sealed alkaline storage batteries.
JPS6259412B2 (en)
WO1999050925A1 (en) Method of recharging a secondary electrochemical cell
JP3163197B2 (en) Collective battery
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JP3185300B2 (en) Sealed lead-acid battery
JP3826607B2 (en) Cylindrical storage battery
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
JP2005327516A (en) Charging method of nonaqueous electrolyte secondary battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
JP4411860B2 (en) Storage battery
JPH06267529A (en) Monoblock storage battery
Barsukov Battery selection, safety, and monitoring in mobile applications
EP3761438A1 (en) Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery
WO2018230519A1 (en) Power storage element, method for manufacturing power storage element, and power storage device provided with method for manufacturing power storage element and power storage element
JPH1064577A (en) Rolled polar plate group and manufacture thereof
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPS603874A (en) Charging method of sealed lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees