JP2001015177A - Charge and discharge control method for secondary battery - Google Patents

Charge and discharge control method for secondary battery

Info

Publication number
JP2001015177A
JP2001015177A JP11185607A JP18560799A JP2001015177A JP 2001015177 A JP2001015177 A JP 2001015177A JP 11185607 A JP11185607 A JP 11185607A JP 18560799 A JP18560799 A JP 18560799A JP 2001015177 A JP2001015177 A JP 2001015177A
Authority
JP
Japan
Prior art keywords
battery
electrode
external terminal
charge
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11185607A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
丈志 前田
Katsuisa Yanagida
勝功 柳田
Atsushi Yanai
敦志 柳井
Atsuhiro Funabashi
淳浩 船橋
Toshiyuki Noma
俊之 能間
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11185607A priority Critical patent/JP2001015177A/en
Publication of JP2001015177A publication Critical patent/JP2001015177A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent deterioration of a battery caused by charging and discharging it, in a charge and discharge control method for a secondary battery in which a winding-up electrode is stored in a battery can and electric power generated by the winding-up electrode body can be taken outside from a positive electrode external terminal and a negative electrode external terminal mounted to a battery can. SOLUTION: In this charge and discharge control method for a secondary battery, a reference electrode 2 independent of a winding-up electrode body 6 is installed in a battery can 5, a potential difference between the reference electrode 2 and an external terminal 16 of a positive electrode and a potential difference between the reference electrode 2 and a negative electrode terminal 17 are always monitored, and when at least either one of the potential differences exceeds a threshold value, charging and/or discharging is stopped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒型リチウムイ
オン二次電池の如く、電解液が注入された電池缶の内部
に電極体を収容し、電池缶に取り付けた正極外部端子及
び負極外部端子から、電極体が発生する電力を外部に取
り出すことが出来る二次電池を対象として、充電及び/
又は放電を制御する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode external terminal and a negative electrode external terminal mounted on a battery can, such as a cylindrical lithium ion secondary battery, in which an electrode body is housed inside a battery can into which an electrolyte is injected. From the secondary battery that can take out the electric power generated by the electrode body from the outside,
Alternatively, the present invention relates to a method for controlling discharge.

【0002】[0002]

【従来の技術】図1に示す如く、円筒型リチウムイオン
二次電池(1)は、筒体(50)の両開口部に封口板(51)(51)
を固定して、円筒状の電池缶(5)を構成し、該電池缶
(5)の内部には、正極(63)と負極(61)の間にセパレータ
(62)を介在させてなる巻き取り電極体(6)を収容すると
共に、電解液を注入して構成されている。電池缶(5)の
両封口板(51)(51)には、正極外部端子(16)及び負極外部
端子(17)が、封口板(51)を貫通して取り付けられてお
り、巻き取り電極体(6)の正極(63)から伸びる複数本の
正極集電タブ(7)が正極外部端子(16)へ接続されると共
に、巻き取り電極体(6)の負極(61)から伸びる複数本の
負極集電タブ(70)が負極外部端子(17)へ接続されてい
る。
2. Description of the Related Art As shown in FIG. 1, a cylindrical lithium ion secondary battery (1) has sealing plates (51) and (51) at both openings of a cylindrical body (50).
To form a cylindrical battery can (5).
Inside (5), a separator is placed between the positive electrode (63) and the negative electrode (61).
It accommodates a wound electrode body (6) interposed therebetween (62) and is filled with an electrolytic solution. A positive external terminal (16) and a negative external terminal (17) are attached to both sealing plates (51) and (51) of the battery can (5) through the sealing plate (51). A plurality of positive current collecting tabs (7) extending from the positive electrode (63) of the body (6) are connected to the positive external terminal (16), and a plurality of positive current collecting tabs extending from the negative electrode (61) of the winding electrode body (6). The negative electrode current collecting tab (70) is connected to the negative electrode external terminal (17).

【0003】従来、上記如き円筒型リチウムイオン二次
電池(1)を対象として、充電や放電を行なう場合は、正
極外部端子(16)と負極外部端子(17)の間の電位差を監視
して、該電位差が所定の閾値を超えたとき、充電や放電
を停止するという、制御が行なわれている。
Conventionally, when charging or discharging is performed on a cylindrical lithium ion secondary battery (1) as described above, a potential difference between a positive external terminal (16) and a negative external terminal (17) is monitored. When the potential difference exceeds a predetermined threshold, control is performed to stop charging and discharging.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン二次電池の充放電においては、正極電位と負極
電位はそれぞれリチウムの挿入脱離により変化するが、
充電末期や放電末期において、正極又は負極の適正な充
放電の電位を超えて充放電が続行されることがあり、こ
れによって、充電時の負極表面にリチウム金属が析出し
たり、充放電時に相転移により正極結晶構造が崩壊した
り、放電時の負極表面上での電解液分解等の副反応によ
り容量劣化が起こり、電池のサイクル特性が劣化すると
いう問題があった。
However, in charging / discharging of a lithium ion secondary battery, the positive electrode potential and the negative electrode potential change due to insertion and desorption of lithium, respectively.
At the end of charge or end of discharge, charge / discharge may continue beyond the proper charge / discharge potential of the positive electrode or negative electrode, causing lithium metal to precipitate on the surface of the negative electrode during charge, There has been a problem that the crystal structure of the positive electrode is collapsed due to the transition, and the capacity is deteriorated due to a side reaction such as decomposition of an electrolytic solution on the surface of the negative electrode at the time of discharge, and the cycle characteristics of the battery are deteriorated.

【0005】そこで、電池缶の内部に参照極を設置し
て、充電時における負極と参照極の電位差を監視して、
充電を制御する方法が提案されている(特開平11−6
7280号)。ところが、該方法によっても、電池の劣
化を効果的に防止することは出来なかった。又、参照極
の設置によって、電池の重量が増大して、重量エネルギ
ー密度が低下する問題があった。
Therefore, a reference electrode is installed inside the battery can, and the potential difference between the negative electrode and the reference electrode during charging is monitored.
A method of controlling charging has been proposed (Japanese Patent Laid-Open No. 11-6 / 1999).
No. 7280). However, even with this method, deterioration of the battery could not be effectively prevented. In addition, there is a problem that the weight of the battery increases due to the provision of the reference electrode, and the weight energy density decreases.

【0006】そこで、本発明者らがその原因を究明する
べく鋭意研究を行なったところ、上記方法では、充電時
の負極の電位のみに基づいて制御を行なっていたので、
充電時の正極の結晶構造に伴う変化による劣化を抑制す
ることが出来ず、これによって電池容量が劣化していた
こと、並びに、放電末期においても、負極上で電解液等
の分解による充放電に関与しない副反応が起こることに
より、電池が劣化していたことを究明し、本発明の完成
に至った。
The inventors of the present invention have conducted intensive studies to determine the cause. In the above method, control was performed based only on the potential of the negative electrode during charging.
Deterioration due to changes due to the crystal structure of the positive electrode during charging could not be suppressed, which caused the battery capacity to deteriorate, and even at the end of discharge, charging and discharging due to decomposition of electrolyte etc. on the negative electrode It was determined that the battery was deteriorated by the occurrence of unrelated side reactions, and the present invention was completed.

【0007】[0007]

【課題を解決する為の手段】本発明に係る二次電池の充
放電制御方法は、電池缶(5)の内部に、電極体(6)から
独立した参照極(2)を設置し、参照極(2)と正極外部端
子(16)の電位差と、参照極(2)と負極外部端子(17)の電
位差を常時監視して、少なくとも何れか一方の電位差が
所定の閾値を超えたとき、充電及び/又は放電を停止す
ることを特徴とする。ここで参照極(2)の材質として
は、例えば、リチウム金属、リチウム合金、白金、金、
炭素材料、又は金属酸化物を採用することが出来る。
According to the present invention, there is provided a method for controlling charging and discharging of a secondary battery, comprising the steps of: setting a reference electrode (2) independent of an electrode body (6) inside a battery can (5); The potential difference between the pole (2) and the positive electrode external terminal (16) and the potential difference between the reference electrode (2) and the negative electrode external terminal (17) are constantly monitored, and when at least one of the potential differences exceeds a predetermined threshold, Charging and / or discharging is stopped. Here, as the material of the reference electrode (2), for example, lithium metal, lithium alloy, platinum, gold,
A carbon material or a metal oxide can be employed.

【0008】上記本発明の充放電制御方法によれば、参
照極(2)と正極外部端子(16)の電位差と、参照極(2)と
負極外部端子(17)の電位差の両方を常時監視して、充電
及び放電を制御するので、充電時における負極表面への
リチウム金属の析出、充放電時における正極結晶構造の
崩壊、更には充電時における負極表面上での電解液分解
等の副反応による容量劣化を抑制することが出来、これ
によって電池の劣化を効果的に防止することが出来る。
According to the charge / discharge control method of the present invention, both the potential difference between the reference electrode (2) and the positive external terminal (16) and the potential difference between the reference electrode (2) and the negative external terminal (17) are constantly monitored. In addition, since charge and discharge are controlled, lithium metal deposits on the negative electrode surface during charge, collapse of the positive electrode crystal structure during charge and discharge, and side reactions such as decomposition of electrolyte on the negative electrode surface during charge This can suppress the capacity deterioration due to the above, thereby effectively preventing the deterioration of the battery.

【0009】又、本発明に係る二次電池の充放電制御方
法は、電池缶(5)と正極外部端子(16)の電位差と、電池
缶(5)と負極外部端子(17)の電位差の内、少なくとも何
れか一方の電位差を常時監視して、該電位差が所定の閾
値を超えたとき、充電及び/又は放電を停止することを
特徴とする。ここで電池缶(5)の材質としては、アルミ
ニウム、ステンレス鋼、ニッケルメッキの施されたステ
ンレス鋼、又はマグネシウム合金を採用することが出来
る。上記本発明の充放電制御方法によれば、参照極とし
て電池缶(5)を利用しているので、参照極の設置による
重量の増大はない。
The charge / discharge control method for a secondary battery according to the present invention includes a method for controlling the potential difference between the battery can (5) and the positive external terminal (16) and the potential difference between the battery can (5) and the negative external terminal (17). It is characterized in that at least one of the potential differences is constantly monitored, and when the potential difference exceeds a predetermined threshold, charging and / or discharging is stopped. Here, as the material of the battery can (5), aluminum, stainless steel, nickel-plated stainless steel, or a magnesium alloy can be adopted. According to the charge / discharge control method of the present invention, since the battery can (5) is used as the reference electrode, there is no increase in weight due to the installation of the reference electrode.

【0010】尚、本発明に係る二次電池の充放電制御方
法は、リチウム二次電池を対象とする充放電に実施する
ことによって、大きな効果が得られる。
It should be noted that the charging / discharging control method for a secondary battery according to the present invention has a great effect by being applied to charging / discharging of a lithium secondary battery.

【0011】[0011]

【発明の効果】本発明に係る二次電池の充放電制御方法
によれば、充放電に伴う電池の劣化を効果的に防止する
ことが出来る。又、本発明に係る二次電池の充放電制御
方法によれば、重量エネルギー密度を低下させることな
く、電池の劣化を防止することが出来る。
According to the charging / discharging control method for a secondary battery according to the present invention, it is possible to effectively prevent the battery from being deteriorated due to charging / discharging. Further, according to the method of controlling charge and discharge of a secondary battery according to the present invention, it is possible to prevent battery deterioration without lowering the weight energy density.

【0012】[0012]

【発明の実施の形態】以下、本発明を円筒型リチウムイ
オン二次電池に実施した形態につき、図面に沿って具体
的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery will be specifically described with reference to the drawings.

【0013】第1実施例 図1に示す如く、本実施例の対象とする円筒型リチウム
イオン二次電池(1)は、筒体(50)の両開口部に封口板(5
1)(51)を固定して、円筒状の電池缶(5)を構成し、該電
池缶(5)の内部には、正極(63)と負極(61)の間にセパレ
ータ(62)を介在させてなる巻き取り電極体(6)を収容す
ると共に、電解液を注入して構成されている。電池缶
(5)の両封口板(51)(51)には、正極外部端子(16)及び負
極外部端子(17)が、封口板(51)を貫通して取り付けられ
ており、巻き取り電極体(6)の正極(63)から伸びる複数
本の正極集電タブ(7)が正極外部端子(16)へ接続される
と共に、巻き取り電極体(6)の負極(61)から伸びる複数
本の負極集電タブ(70)が負極外部端子(17)へ接続されて
いる。
[0013]First embodiment  As shown in FIG. 1, cylindrical lithium as the object of this embodiment
The ion secondary battery (1) is provided with sealing plates (5) at both openings of the cylindrical body (50).
1) By fixing (51), a cylindrical battery can (5) is constructed,
Inside the pond (5), there is a separator between the positive electrode (63) and the negative electrode (61).
To accommodate the wound electrode body (6) with the
And an electrolyte is injected. Battery can
(5) Both sealing plates (51) and (51) have a positive external terminal (16) and a negative terminal.
The external terminal (17) is attached through the sealing plate (51).
And extending from the positive electrode (63) of the winding electrode body (6).
One positive current collector tab (7) is connected to the positive external terminal (16)
And a plurality extending from the negative electrode (61) of the winding electrode body (6).
The negative current collecting tab (70) is connected to the negative external terminal (17).
I have.

【0014】各外部端子(16)(17)は、電池缶(5)の封口
板(51)に開設された中央孔には、一対のパッキン部材(1
2)(13)からなる絶縁パッキン(14)が装着され、封口板(5
1)と各外部端子(16)(17)の間の電気的絶縁と気密を保っ
ている。各外部端子(16)(17)の両端部には、ナット(15)
(15)が螺合し、これらのナット(15)(15)の締め付けによ
って絶縁パッキン(14)を挟圧している。
Each of the external terminals (16) and (17) has a pair of packing members (1) in a central hole formed in the sealing plate (51) of the battery can (5).
2) Insulation packing (14) consisting of (13) is attached, and sealing plate (5
Electrical insulation and airtightness between 1) and each external terminal (16) (17) is maintained. At both ends of each external terminal (16) (17), nut (15)
(15) is screwed, and the insulating packing (14) is pressed by tightening the nuts (15) and (15).

【0015】又、電池缶(5)の負極側の封口板(51)に
は、絶縁パッキン(18)を介してロッド(19)が貫通してお
り、該ロッド(19)の缶内端部には、参照極(2)が取り付
けられると共に、缶外端部には、参照極外部端子(21)が
取り付けられている。尚、参照極(2)、ロッド(19)、及
び参照極外部端子(21)の材質としては、リチウム金属が
用いられているが、その他、リチウム合金、白金、金、
炭素材料、金属酸化物等を採用することが出来る。
A rod (19) penetrates the sealing plate (51) on the negative electrode side of the battery can (5) via an insulating packing (18). Has a reference electrode (2) attached thereto and a reference electrode external terminal (21) attached to the outer end of the can. As the material of the reference electrode (2), the rod (19), and the reference electrode external terminal (21), lithium metal is used. In addition, lithium alloy, platinum, gold,
A carbon material, a metal oxide, or the like can be used.

【0016】そして、正極外部端子(16)と参照極外部端
子(21)は電位差計(3)に接続されて、正極(63)と参照極
(2)の電位差が測定される。又、負極外部端子(17)と参
照極外部端子(21)は電位差計(31)に接続されて、負極(6
1)と参照極(2)の電位差が測定される。
The positive electrode external terminal (16) and the reference electrode external terminal (21) are connected to a potentiometer (3), and the positive electrode (63) and the reference electrode are connected.
The potential difference of (2) is measured. Further, the negative electrode external terminal (17) and the reference electrode external terminal (21) are connected to a potentiometer (31), and the negative electrode (6
The potential difference between 1) and the reference electrode (2) is measured.

【0017】図3は、円筒型リチウムイオン二次電池
(1)の充放電を制御するための回路構成を表わしてお
り、円筒型リチウムイオン二次電池(1)の正極外部端子
(16)及び負極外部端子(17)は、充放電回路(4)に接続さ
れて、放電時には、リチウムイオン二次電池(1)から充
放電回路(4)へ電流が供給され、充電時には、充放電回
路(4)からリチウムイオン二次電池(1)へ電流が供給さ
れる。
FIG. 3 shows a cylindrical lithium ion secondary battery.
FIG. 3 shows a circuit configuration for controlling charging and discharging of (1), and a positive electrode external terminal of a cylindrical lithium ion secondary battery (1)
(16) and the negative electrode external terminal (17) are connected to a charging / discharging circuit (4), and when discharging, current is supplied from the lithium ion secondary battery (1) to the charging / discharging circuit (4). A current is supplied from the charge / discharge circuit (4) to the lithium ion secondary battery (1).

【0018】前述の如く、円筒型リチウムイオン二次電
池(1)の正極外部端子(16)と参照極外部端子(21)は電位
差計(3)へ接続され、負極外部端子(17)と参照極外部端
子(21)は電位差計(31)へ接続されている。又、リチウム
イオン二次電池(1)の正極外部端子(16)と負極外部端子
(17)は電位差計(32)へ接続され、正極外部端子(16)と負
極外部端子(17)の電位差が計測されている。各電位差計
(3)(31)(32)によって計測された電位差は、マイクロコ
ンピュータからなる制御回路(41)へ供給されている。
As described above, the positive external terminal (16) and the reference external terminal (21) of the cylindrical lithium ion secondary battery (1) are connected to the potentiometer (3), and are referred to as the negative external terminal (17). The pole external terminal (21) is connected to a potentiometer (31). Also, the positive external terminal (16) and the negative external terminal of the lithium ion secondary battery (1).
(17) is connected to a potentiometer (32), and the potential difference between the positive external terminal (16) and the negative external terminal (17) is measured. Each potentiometer
(3) The potential difference measured by (31) and (32) is supplied to a control circuit (41) including a microcomputer.

【0019】制御回路(41)は、前記電位差の計測データ
に基づいて、充放電回路(4)の充電動作及び放電動作を
制御するための充放電制御信号Cを作成し、充放電回路
(4)へ供給している。
The control circuit (41) generates a charge / discharge control signal C for controlling the charge operation and the discharge operation of the charge / discharge circuit (4) based on the measured data of the potential difference, and
(4).

【0020】図4及び図5は、前記制御回路(41)による
充電時及び放電時の制御手続きを表わしている。充電時
には、図4に示す如く、先ず、ステップS1にて、正極
と負極の電位差(電池電圧)が4.2V以下であるかどう
かを判断し、イエス(Y)の場合は、ステップS2に移行
して、正極と参照極の電位差(リチウム基準の正極電位)
が4.3V以下であるかどうかを判断し、イエスの場合
は、更にステップS3に移行して、負極と参照極の電位
差(リチウム基準の負極電位)が0.1V以上であるかど
うかを判断する。ここで、イエスと判断されたときは、
ステップS4にてハードディスク内に電位データを記録
した後、ステップS1に戻って同様の判断を繰り返す。
その後、充電が進んで、ステップS1、ステップS2、
或いはステップS3にてノー(N)と判断されたときは、
ステップS5にて充電を終了し、充電休止状態に移行す
る。
FIGS. 4 and 5 show a control procedure at the time of charging and discharging by the control circuit (41). At the time of charging, as shown in FIG. 4, first, in step S1, it is determined whether or not the potential difference (battery voltage) between the positive electrode and the negative electrode is 4.2 V or less, and if yes (Y), the process proceeds to step S2. The potential difference between the positive electrode and the reference electrode (positive electrode potential based on lithium)
Is determined to be 4.3 V or less, and if yes, the process further proceeds to step S3 to determine whether or not the potential difference between the negative electrode and the reference electrode (the negative electrode potential based on lithium) is 0.1 V or more. I do. Here, when it is judged yes,
After recording the potential data in the hard disk in step S4, the process returns to step S1 to repeat the same determination.
Thereafter, charging proceeds, and steps S1, S2,
Alternatively, when it is determined NO (N) in step S3,
In step S5, the charging is terminated, and the state shifts to the charging suspension state.

【0021】一方、放電時には、図5に示す如く、先
ず、ステップS11にて、正極と負極の電位差(電池電
圧)が2.7V以上であるかどうかを判断し、イエス(Y)
の場合は、ステップS12に移行して、正極と参照極の
電位差(リチウム基準の正極電位)が3.6V以上である
かどうかを判断し、イエスの場合は、更にステップS1
3に移行して、負極と参照極の電位差(リチウム基準の
負極電位)が1.0V以下であるかどうかを判断する。こ
こで、イエスと判断されたときは、ステップS14にて
ハードディスク内に電位データを記録した後、ステップ
S11に戻って同様の判断を繰り返す。その後、放電が
進んで、ステップS11、ステップS12、或いはステ
ップS13にてノー(N)と判断されたときは、ステップ
S15にて放電を終了し、放電休止状態に移行する。
On the other hand, at the time of discharging, as shown in FIG. 5, first, in step S11, it is determined whether or not the potential difference (battery voltage) between the positive electrode and the negative electrode is 2.7 V or more.
In the case of, the process proceeds to step S12 to determine whether or not the potential difference between the positive electrode and the reference electrode (lithium-based positive electrode potential) is 3.6 V or more.
Then, it is determined whether or not the potential difference between the negative electrode and the reference electrode (the negative electrode potential based on lithium) is 1.0 V or less. If the determination is yes, the potential data is recorded in the hard disk in step S14, and the process returns to step S11 to repeat the same determination. Thereafter, the discharge proceeds, and when it is determined as No (N) in step S11, step S12, or step S13, the discharge is terminated in step S15, and the state shifts to the discharge pause state.

【0022】上記第1実施例の充放電制御方法によれ
ば、参照極(2)と正極外部端子(16)の電位差と、参照極
(2)と負極外部端子(17)の電位差の両方を常時監視し
て、充電及び放電を制御するので、充電時における負極
表面へのリチウム金属の析出、充放電時における正極結
晶構造の崩壊、更には充電時における負極表面上での電
解液分解等の副反応による容量劣化を抑制することが出
来、これによって電池の劣化を効果的に防止することが
出来る。
According to the charge / discharge control method of the first embodiment, the potential difference between the reference electrode (2) and the positive electrode external terminal (16) is determined by
(2) The potential difference between the negative terminal (17) and the external terminal (17) is constantly monitored to control charging and discharging, so that lithium metal deposits on the negative electrode surface during charging, collapse of the positive electrode crystal structure during charging and discharging, Further, it is possible to suppress capacity deterioration due to side reactions such as decomposition of an electrolytic solution on the surface of the negative electrode during charging, thereby effectively preventing battery deterioration.

【0023】第2実施例 図2に示す如く、本実施例の充放電制御方法が対象とす
る円筒型リチウムイオン二次電池(1)は、第1実施例に
おける円筒型リチウムイオン二次電池(1)と電池自体の
構造は同一であるが、参照極として、電池缶(5)が利用
されている。尚、電池缶(5)の材質としては、アルミニ
ウムが用いられているが、その他、ステンレス鋼、ニッ
ケルメッキの施されたステンレス鋼、マグネシウム合金
等を採用することが出来る。
[0023]Second embodiment  As shown in FIG. 2, the charge / discharge control method of the present embodiment is an object.
Cylindrical lithium ion secondary battery (1)
Of the cylindrical lithium ion secondary battery (1) and the battery itself
Same structure, but using battery can (5) as reference electrode
Have been. The material of the battery can (5) is aluminum
But stainless steel, nickel
Kel-plated stainless steel, magnesium alloy
Etc. can be adopted.

【0024】電池缶(5)の封口板(51)には、参照極外部
端子(22)が直接に取り付けられており、正極外部端子(1
6)と参照極外部端子(22)は電位差計(3)に接続されて、
正極(63)と電池缶(5)の電位差が測定される。又、負極
外部端子(17)と参照極外部端子(22)は電位差計(31)に接
続されて、負極(61)と電池缶(5)の電位差が測定され
る。
The reference electrode external terminal (22) is directly attached to the sealing plate (51) of the battery can (5), and the positive electrode external terminal (1) is attached.
6) and the reference electrode external terminal (22) are connected to a potentiometer (3),
The potential difference between the positive electrode (63) and the battery can (5) is measured. Further, the negative electrode external terminal (17) and the reference electrode external terminal (22) are connected to a potentiometer (31), and the potential difference between the negative electrode (61) and the battery can (5) is measured.

【0025】円筒型リチウムイオン二次電池(1)の充放
電を制御するための回路構成は、図3に示すものと基本
的に同一であり、上記電位差計(3)(31)によって計測さ
れた電位差に基づく充放電の制御も、図4及び図5に示
すものと基本的に同一である。
The circuit configuration for controlling charging and discharging of the cylindrical lithium ion secondary battery (1) is basically the same as that shown in FIG. 3, and is measured by the potentiometers (3) and (31). The charge / discharge control based on the potential difference is basically the same as that shown in FIGS.

【0026】上記第2実施例の充放電制御方法によれ
ば、参照極の設置による重量の増大がないために、重量
エネルギー密度を低下させることなく、上記第1実施例
の充放電制御方法と同様に、電池の劣化を効果的に防止
することが出来る。
According to the charge / discharge control method of the second embodiment, since the weight is not increased by the provision of the reference electrode, the charge / discharge control method of the first embodiment can be used without lowering the weight energy density. Similarly, deterioration of the battery can be effectively prevented.

【0027】表1は、上記第1実施例における参照極
(2)に採用し得る各種の材料を示し、表2は、上記第2
実施例における電池缶(5)に採用し得る各種の材料を示
している。又、表3は、参照極(2)及び電池缶(5)とし
て各材料を採用した場合の参照極基準の適正電位範囲を
表わしており、この範囲を逸脱したとき、充放電を停止
する必要がある。
Table 1 shows the reference electrodes in the first embodiment.
Table 2 shows various materials that can be used in (2).
Various materials that can be used for the battery can (5) in the embodiment are shown. Table 3 shows an appropriate potential range based on the reference electrode when each material is used as the reference electrode (2) and the battery can (5). When the potential deviates from this range, it is necessary to stop charging and discharging. There is.

【0028】[0028]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0029】充放電試験 上記本発明に係る円筒型リチウムイオン二次電池(1)を
以下の工程を経て試作し、充放電試験を行なって、効果
を確認した。
[0029]Charge / discharge test  The cylindrical lithium ion secondary battery (1) according to the present invention is
Prototype through the following process, charge and discharge test,
It was confirmed.

【0030】[正極の作製]リチウムの水酸化物とコバル
トの水酸化物とを混合し、これを空気中80℃で24時
間焼成して、正極活物質としてのLiCoOを得た。
この正極活物質と導電剤としての人造黒鉛とを重量比9
0:5で混合し、正極合剤を得た。又、結着剤であるポ
リフッ化ビニリデンをN−メチル−2−ピロリドン(N
MP)に溶解させて、NMP溶液を調製した。そして、
正極合剤とポリフッ化ビニリデンの重量比が95:5に
なるように正極合剤とNMP溶液を混練して、スラリー
を調製した。このスラリーを正極集電体としてのアルミ
ニウム箔の両面にドクターブレード法により塗布し、1
50℃で2時間の真空乾燥を施して、正極を作製した。
[Preparation of Positive Electrode] Lithium hydroxide and cobalt hydroxide were mixed and fired in air at 80 ° C. for 24 hours to obtain LiCoO 2 as a positive electrode active material.
The weight ratio of this positive electrode active material to artificial graphite as a conductive agent was 9
The mixture was mixed at 0: 5 to obtain a positive electrode mixture. Further, polyvinylidene fluoride as a binder is replaced with N-methyl-2-pyrrolidone (N
MP) to prepare an NMP solution. And
The slurry was prepared by kneading the positive electrode mixture and the NMP solution so that the weight ratio of the positive electrode mixture and polyvinylidene fluoride became 95: 5. This slurry was applied to both sides of an aluminum foil as a positive electrode current collector by a doctor blade method,
Vacuum drying was performed at 50 ° C. for 2 hours to produce a positive electrode.

【0031】[負極の作製]黒鉛塊(d002=3.356
Å;Lc>1000Å)に空気流を噴射して、ジェット
粉砕を施し、これによって得られた粉末をふるいにかけ
て、平均粒径18μmの黒鉛粉末を得た。又、結着剤で
あるポリフッ化ビニリデンをNMPに溶解させて、NM
P溶液を調製した。そして、黒鉛粉末とポリフッ化ビニ
リデンの重量比が90:10になるように両者を混練し
て、スラリーを調製した。このスラリーを負極集電体と
しての銅箔の両面にドクターブレード法により塗布し、
150℃で2時間の真空乾燥を施して、負極を作製し
た。
[Preparation of Negative Electrode] Graphite lump (d002 = 3.356)
{; Lc> 1000}), jet pulverization was performed, and the resulting powder was sieved to obtain a graphite powder having an average particle diameter of 18 μm. Further, polyvinylidene fluoride as a binder is dissolved in NMP, and NM
A P solution was prepared. Then, the graphite powder and polyvinylidene fluoride were kneaded so that the weight ratio was 90:10 to prepare a slurry. This slurry is applied to both sides of a copper foil as a negative electrode current collector by a doctor blade method,
Vacuum drying was performed at 150 ° C. for 2 hours to produce a negative electrode.

【0032】[電解液の調製]エチレンカーボネートとジ
エチルカーボネートを体積比1:1で混合した溶媒に、
LiPFを1mol/Lの割合で溶かして電解液を調
製した。
[Preparation of electrolyte solution] A solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1
LiPF 6 was dissolved at a rate of 1 mol / L to prepare an electrolytic solution.

【0033】[電池の組立]上記の様にして作製した正極
と負極の間に、イオン透過性を有するポリエチレン製の
微多孔膜からなるセパレータを介在させて、これを渦巻
き状に巻き取り、巻き取り電極体を作製した。そして、
該巻き取り電極体を直径40mm、長さ150mmの電
池缶の内部に収容して、図1に示す構造の実施例電池1
(A1〜A7)と、図2に示す構造の実施例電池2(B1
〜B4)とを組み立てた。又、実施例電池1(A1)と同
一構造の比較例電池1〜3を組み立てた。
[Assembly of Battery] A separator made of a microporous polyethylene membrane having ion permeability is interposed between the positive electrode and the negative electrode prepared as described above, and the separator is spirally wound. An electrode body was prepared. And
The wound electrode body was housed inside a battery can having a diameter of 40 mm and a length of 150 mm, and the battery of Example 1 having the structure shown in FIG.
(A1 to A7) and Example battery 2 (B1
To B4). Further, Comparative Example batteries 1 to 3 having the same structure as the example battery 1 (A1) were assembled.

【0034】[充放電試験方法]充放電は4.0Aの定電
流で行ない、充電→30分休止→放電→30分休止のサ
イクルを繰り返す充放電サイクル試験を行なった。
[Charge / Discharge Test Method] Charge / discharge was performed at a constant current of 4.0 A, and a charge / discharge cycle test in which a cycle of charge → pause for 30 minutes → discharge → pause for 30 minutes was repeated was performed.

【0035】充放電サイクル試験においては、下記表4
に示す条件を使用した。尚、表4中の条件において、
(a)は電池電圧に基づく制御(図4のステップS1、図
5のステップS11)を表わし、(b)は正極電位に基づ
く制御 (図4のステップS2、図5のステップS12)
を表わし、(c)は負極電位に基づく制御(図4のステッ
プS3、図5のステップS13)を表わしている。
In the charge / discharge cycle test, the following Table 4
The following conditions were used. In addition, under the conditions in Table 4,
(a) represents control based on the battery voltage (step S1 in FIG. 4, step S11 in FIG. 5), and (b) represents control based on the positive electrode potential (step S2 in FIG. 4, step S12 in FIG. 5).
(C) represents control based on the negative electrode potential (step S3 in FIG. 4, step S13 in FIG. 5).

【0036】[0036]

【表4】 [Table 4]

【0037】表4の如く、実施例電池1(A1)及び実施
例電池2(B1)については、図4及び図5に示す全ての
制御を実行したこれに対し、比較例電池1については、
充電時及び放電時に、電池電圧のみに基づく制御(ステ
ップS1及びステップS11)のみを実行した。比較例
電池2については、充電時及び放電時に、電池電圧に基
づく制御(ステップS1、ステップS11)と、負極電位
に基づく制御(ステップS3、ステップS13)とを実行
し、正極電池に基づく制御は省略した。更に、比較例電
池3については、充電時は、電池電圧に基づく制御(ス
テップS1)と、負極電位に基づく制御(ステップS3)
とを実行し、正極電位に基づく制御は省略した。又、放
電時は、電池電圧に基づく制御(ステップS11)のみを
実行し、正極電位に基づく制御と負極電位に基づく制御
は省略した。
As shown in Table 4, all the controls shown in FIGS. 4 and 5 were executed for the battery of the embodiment 1 (A1) and the battery of the embodiment 2 (B1).
At the time of charging and discharging, only the control based on the battery voltage alone (steps S1 and S11) was performed. For the comparative example battery 2, at the time of charging and discharging, control based on the battery voltage (steps S1 and S11) and control based on the negative electrode potential (steps S3 and S13) are executed. Omitted. Further, for the comparative example battery 3, at the time of charging, control based on the battery voltage (step S1) and control based on the negative electrode potential (step S3)
And the control based on the positive electrode potential was omitted. At the time of discharging, only control based on the battery voltage (step S11) was executed, and control based on the positive electrode potential and control based on the negative electrode potential were omitted.

【0038】上記の条件の下で充放電サイクル試験を行
ない、初期放電容量と、200サイクル後の放電容量を
測定し、劣化率を算出した。その結果を表5に示す。
A charge / discharge cycle test was performed under the above conditions, the initial discharge capacity and the discharge capacity after 200 cycles were measured, and the deterioration rate was calculated. Table 5 shows the results.

【表5】 [Table 5]

【0039】表5から明らかな様に、比較例1に対して
負極電位に基づく充電制御を加えた比較例3や、比較例
3に対して負極電位に基づく放電制御を加えた比較例2
では、若干の効果は認められるが、その効果は不十分な
ものとなっている。尚、比較例1よりも比較例3のサイ
クル特性が優れているのは、充電時の負極表面へのリチ
ウム金属の析出が抑制され、また、比較例3よりも比較
例2のサイクル特性が優れているのは、放電時の負極表
面上での電解液分解等の副反応による容量劣化が抑制さ
れたためと考えられる。
As is clear from Table 5, Comparative Example 3 in which charge control based on the negative electrode potential was added to Comparative Example 1, and Comparative Example 2 in which discharge control based on the negative electrode potential was added to Comparative Example 3
Although some effects are recognized, the effects are insufficient. The reason that the cycle characteristics of Comparative Example 3 are better than that of Comparative Example 1 is that deposition of lithium metal on the negative electrode surface during charging is suppressed, and that the cycle characteristics of Comparative Example 2 are better than Comparative Example 3. This is probably because capacity deterioration due to side reactions such as decomposition of the electrolyte on the negative electrode surface during discharge was suppressed.

【0040】一方、比較例2に対して更に正極電位に基
づく充電制御及び放電制御を加えた実施例1(A1)及び
実施例2(B1)では、サイクル特性が大きく改善されて
おり、本発明の充放電制御の有効性が実証された。尚、
比較例2より実施例1及び2のサイクル特性が優れてい
るのは、充放電時の正極結晶構造の崩壊が抑制されたた
めと考えられる。特に実施例2(B1)の電池は、参照極
として電池缶自体を採用しているので、参照極の設置に
よる重量の増大がなく、重量エネルギー密度の点で有利
である。尚、電池A2〜A7、B2〜B4についても、
それぞれ電池A1、B1と同じ特性を示すことを確認し
た。
On the other hand, in Example 1 (A1) and Example 2 (B1) in which charge control and discharge control based on the positive electrode potential were further added to Comparative Example 2, the cycle characteristics were greatly improved. The effectiveness of charge / discharge control of GaN was demonstrated. still,
It is considered that the cycle characteristics of Examples 1 and 2 were superior to Comparative Example 2 because the collapse of the positive electrode crystal structure during charge and discharge was suppressed. In particular, since the battery of Example 2 (B1) employs the battery can itself as the reference electrode, there is no increase in weight due to the installation of the reference electrode, which is advantageous in terms of weight energy density. In addition, about battery A2-A7 and B2-B4,
It was confirmed that the batteries A1 and B1 exhibited the same characteristics.

【0041】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、充放電制御の基礎となる電
位差の測定は、上述の如く実測値を採用する方式に限ら
ず、過去の電位差データから予測する方式を採用するこ
とも可能である。
The configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims. For example, the measurement of the potential difference serving as the basis of the charge / discharge control is not limited to the method using the actually measured value as described above, but may be a method that predicts from the past potential difference data.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例における円筒型リチウムイ
オン二次電池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion secondary battery according to a first embodiment of the present invention.

【図2】本発明の第2実施例における円筒型リチウムイ
オン二次電池の断面図である。
FIG. 2 is a sectional view of a cylindrical lithium ion secondary battery according to a second embodiment of the present invention.

【図3】本発明に係る充放電制御のための回路構成を示
すブロック図である。
FIG. 3 is a block diagram showing a circuit configuration for charge / discharge control according to the present invention.

【図4】本発明に係る充電制御の手続きを示すフローチ
ャートである。
FIG. 4 is a flowchart showing a procedure of charge control according to the present invention.

【図5】本発明に係る放電制御の手続きを示すフローチ
ャートである。
FIG. 5 is a flowchart showing a procedure of discharge control according to the present invention.

【符号の説明】[Explanation of symbols]

(1) 円筒型リチウムイオン二次電池 (5) 電池缶 (50) 筒体 (51) 封口板 (6) 巻き取り電極体 (63) 正極 (61) 負極 (16) 正極外部端子 (17) 負極外部端子 (2) 参照極 (21) 参照極外部端子 (3) 電位差計 (31) 電位差計 (1) Cylindrical lithium ion secondary battery (5) Battery can (50) Cylindrical body (51) Sealing plate (6) Winding electrode body (63) Positive electrode (61) Negative electrode (16) Positive external terminal (17) Negative electrode External terminal (2) Reference electrode (21) Reference electrode external terminal (3) Potentiometer (31) Potentiometer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z (72)発明者 柳井 敦志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 船橋 淳浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5G003 AA01 BA01 CA11 DA07 DA13 EA06 5H011 AA07 AA13 CC06 DD07 EE01 FF04 5H014 AA06 EE05 EE07 EE10 5H029 AJ05 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 BJ27 DJ01 DJ02 EJ01 EJ04 EJ05 HJ12 5H030 AA03 AA04 AS20 BB01 BB21 FF43 FF44 FF69 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/40 H01M 10/40 Z (72) Inventor Atsushi Yanai 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Atsuhiro Funabashi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Toshiyuki Noma 2 Keihanhondori, Moriguchi-shi, Osaka 5-5-5 Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5G003 AA01 BA01 CA11 DA07 DA13 EA06 5H011 AA07 AA13 CC06 DD07 EE01 FF04 5H014 AA06 EE05 EE07 EE10 5H029 AJ05 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 BJ27 DJ01 DJ02 EJ01 EJ04 EJ05 HJ12 5H030 AA03 AA04 AS20 BB01 BB21 FF43 FF44 FF44

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解液が注入された電池缶(5)の内部に
電極体(6)を収容し、電池缶(5)に取り付けた正極外部
端子(16)及び負極外部端子(17)から、電極体(6)が発生
する電力を外部に取り出すことが出来る二次電池を対象
として、充電及び/又は放電を制御する方法であって、
電池缶(5)の内部に、電極体(6)から電気的に独立した
参照極(2)を設置し、参照極(2)と正極外部端子(16)の
電位差と、参照極(2)と負極外部端子(17)の電位差を常
時監視して、少なくとも何れか一方の電位差が所定の閾
値を超えたとき、充電及び/又は放電を停止することを
特徴とする二次電池の充放電制御方法。
1. An electrode body (6) is accommodated in a battery can (5) into which an electrolytic solution has been injected, and is connected to a positive external terminal (16) and a negative external terminal (17) attached to the battery can (5). A method for controlling charging and / or discharging for a secondary battery capable of taking out the electric power generated by the electrode body (6) to the outside,
A reference electrode (2), which is electrically independent from the electrode body (6), is installed inside the battery can (5), and the potential difference between the reference electrode (2) and the positive electrode external terminal (16) and the reference electrode (2) Charge and / or discharge control of a secondary battery, wherein the charge and / or discharge is stopped when at least one of the potential differences exceeds a predetermined threshold. Method.
【請求項2】 参照極(2)が、リチウム金属、リチウム
合金、白金、金、炭素材料、又は金属酸化物によって形
成されている請求項1に記載の二次電池の充放電制御方
法。
2. The method according to claim 1, wherein the reference electrode is formed of a lithium metal, a lithium alloy, platinum, gold, a carbon material, or a metal oxide.
【請求項3】 電解液が注入された電池缶(5)の内部
に、電池缶(5)から電気的に独立した電極体(6)を収容
し、電池缶(5)に取り付けた正極外部端子(16)及び負極
外部端子(17)から、電極体(6)が発生する電力を外部に
取り出すことが出来る二次電池を対象として、充電及び
/又は放電を制御する方法であって、電池缶(5)と正極
外部端子(16)の電位差と、電池缶(5)と負極外部端子(1
7)の電位差の内、少なくとも何れか一方の電位差を常時
監視して、該電位差が所定の閾値を超えたとき、充電及
び/又は放電を停止することを特徴とする二次電池の充
放電制御方法。
3. A battery can (5) into which an electrolyte is injected, an electrode body (6) which is electrically independent from the battery can (5) is housed, and a positive electrode outside attached to the battery can (5). A method for controlling charging and / or discharging of a secondary battery capable of extracting power generated by an electrode body (6) from a terminal (16) and a negative electrode external terminal (17), comprising: The potential difference between the can (5) and the positive external terminal (16), and the battery can (5) and the negative external terminal (1)
7) Charge / discharge control of a secondary battery, characterized in that at least one of the potential differences among the potential differences is constantly monitored and charging and / or discharging is stopped when the potential difference exceeds a predetermined threshold. Method.
【請求項4】 電池缶(5)が、アルミニウム、ステンレ
ス鋼、ニッケルメッキの施されたステンレス鋼、又はマ
グネシウム合金によって形成されている請求項3に記載
の二次電池の充放電制御方法。
4. The method according to claim 3, wherein the battery can is formed of aluminum, stainless steel, nickel-plated stainless steel, or a magnesium alloy.
【請求項5】 リチウム二次電池を充放電の対象とする
請求項1乃至請求項4の何れかに記載の二次電池の充放
電制御方法。
5. The charge / discharge control method for a secondary battery according to claim 1, wherein the charge / discharge of the lithium secondary battery is performed.
JP11185607A 1999-06-30 1999-06-30 Charge and discharge control method for secondary battery Pending JP2001015177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185607A JP2001015177A (en) 1999-06-30 1999-06-30 Charge and discharge control method for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185607A JP2001015177A (en) 1999-06-30 1999-06-30 Charge and discharge control method for secondary battery

Publications (1)

Publication Number Publication Date
JP2001015177A true JP2001015177A (en) 2001-01-19

Family

ID=16173771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185607A Pending JP2001015177A (en) 1999-06-30 1999-06-30 Charge and discharge control method for secondary battery

Country Status (1)

Country Link
JP (1) JP2001015177A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP2007305475A (en) * 2006-05-12 2007-11-22 Fdk Corp Storage device and storage cell
WO2009126797A1 (en) * 2008-04-11 2009-10-15 Apple Inc. Adaptive surface concentration battery charging
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2011085490A (en) * 2009-10-15 2011-04-28 Yokogawa Electric Corp Electrochemical characteristics evaluation system
CN102214843A (en) * 2010-04-08 2011-10-12 通用汽车环球科技运作有限责任公司 Lithium-ion cell with an array of reference electrodes
US20120176093A1 (en) * 2008-05-12 2012-07-12 Murali Ramasubramanian Method for controlling the charging or discharging process of a secondary battery with auxiliary electrode
JP5010051B2 (en) * 2009-09-18 2012-08-29 パナソニック株式会社 Charge / discharge method of positive electrode active material in lithium secondary battery, and charge / discharge system including lithium secondary battery, battery pack, battery module, electronic device, and vehicle
WO2013105140A1 (en) * 2012-01-13 2013-07-18 トヨタ自動車株式会社 Method for controlling and device for controlling secondary battery
JP2013191532A (en) * 2012-02-14 2013-09-26 Nippon Soken Inc Lithium ion secondary battery and manufacturing method of the same
JP2013196820A (en) * 2012-03-16 2013-09-30 Toyota Motor Corp Lithium ion secondary battery system and precipitation determination method
WO2015059738A1 (en) * 2013-10-21 2015-04-30 株式会社日立製作所 Secondary battery control apparatus and secondary battery control method
CN104979591A (en) * 2014-04-11 2015-10-14 罗伯特·博世有限公司 Electrochemical Energy Cell, and Rechargeable Battery and also Method for Determining an Electrode Potential of an Electrode of an Electrochemical Energy Storage Cell
JP2016178771A (en) * 2015-03-19 2016-10-06 ローム株式会社 Protective device, protection method, protection system, and battery pack
US9651628B2 (en) 2012-09-18 2017-05-16 Apple Inc. Method and apparatus for determining a capacity of a battery
US10044210B2 (en) 2008-04-11 2018-08-07 Apple Inc. Diffusion-limited adaptive battery charging

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
US8152865B2 (en) 2002-12-26 2012-04-10 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and manufacturing method of the same
JPWO2004059672A1 (en) * 2002-12-26 2006-05-11 富士重工業株式会社 Power storage device and method for manufacturing power storage device
JP2007305475A (en) * 2006-05-12 2007-11-22 Fdk Corp Storage device and storage cell
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2016066580A (en) * 2007-09-14 2016-04-28 エイ123・システムズ・リミテッド・ライアビリティ・カンパニーA123 Systems, Llc Lithium rechargeable cell with reference electrode for state of health monitoring
US8541122B2 (en) 2007-09-14 2013-09-24 A123 Systems Llc Lithium rechargeable cell with reference electrode for state of health monitoring
JP2014096376A (en) * 2007-09-14 2014-05-22 A123 Systems Inc Lithium rechargeable cell with reference electrode for monitoring state of health
CN102057554A (en) * 2008-04-11 2011-05-11 苹果公司 Adaptive surface concentration battery charging
US10044210B2 (en) 2008-04-11 2018-08-07 Apple Inc. Diffusion-limited adaptive battery charging
WO2009126797A1 (en) * 2008-04-11 2009-10-15 Apple Inc. Adaptive surface concentration battery charging
US20120176093A1 (en) * 2008-05-12 2012-07-12 Murali Ramasubramanian Method for controlling the charging or discharging process of a secondary battery with auxiliary electrode
JP5010051B2 (en) * 2009-09-18 2012-08-29 パナソニック株式会社 Charge / discharge method of positive electrode active material in lithium secondary battery, and charge / discharge system including lithium secondary battery, battery pack, battery module, electronic device, and vehicle
JPWO2011033781A1 (en) * 2009-09-18 2013-02-07 パナソニック株式会社 Charge / discharge method of positive electrode active material in lithium secondary battery, and charge / discharge system including lithium secondary battery, battery pack, battery module, electronic device, and vehicle
JP2011085490A (en) * 2009-10-15 2011-04-28 Yokogawa Electric Corp Electrochemical characteristics evaluation system
CN102214843A (en) * 2010-04-08 2011-10-12 通用汽车环球科技运作有限责任公司 Lithium-ion cell with an array of reference electrodes
WO2013105140A1 (en) * 2012-01-13 2013-07-18 トヨタ自動車株式会社 Method for controlling and device for controlling secondary battery
EP2804249A4 (en) * 2012-01-13 2015-06-10 Toyota Motor Co Ltd Method for controlling and device for controlling secondary battery
US9728992B2 (en) 2012-01-13 2017-08-08 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for secondary battery
JP2013191532A (en) * 2012-02-14 2013-09-26 Nippon Soken Inc Lithium ion secondary battery and manufacturing method of the same
JP2013196820A (en) * 2012-03-16 2013-09-30 Toyota Motor Corp Lithium ion secondary battery system and precipitation determination method
US9651628B2 (en) 2012-09-18 2017-05-16 Apple Inc. Method and apparatus for determining a capacity of a battery
WO2015059738A1 (en) * 2013-10-21 2015-04-30 株式会社日立製作所 Secondary battery control apparatus and secondary battery control method
CN104979591A (en) * 2014-04-11 2015-10-14 罗伯特·博世有限公司 Electrochemical Energy Cell, and Rechargeable Battery and also Method for Determining an Electrode Potential of an Electrode of an Electrochemical Energy Storage Cell
CN104979591B (en) * 2014-04-11 2018-05-25 罗伯特·博世有限公司 Electrochemical energy storage battery core and accumulator and the method for obtaining its electrode potential
JP2016178771A (en) * 2015-03-19 2016-10-06 ローム株式会社 Protective device, protection method, protection system, and battery pack

Similar Documents

Publication Publication Date Title
JP3740323B2 (en) Secondary battery charging method and apparatus
US5576119A (en) Rechargeable electrochemical alkali-metal cells
US20180294472A1 (en) Rechargeable battery with voltage activated current interrupter
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
JPH1069922A (en) Non-aqueous electrolyte lithium secondary battery
JP2001015177A (en) Charge and discharge control method for secondary battery
JP2002237293A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
CN111354980B (en) Manufacturing method of lithium ion battery and lithium ion battery
JP2003187799A (en) Non-aqueous electrolyte battery
JPH06181069A (en) Nonaqueous electrolyte secondary battery
JP4088993B2 (en) Non-aqueous electrolyte secondary battery discharge control method
JP3988901B2 (en) Organic electrolyte secondary battery
JP4639883B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2004006234A (en) High energy density rechargeable battery for medical device application
JP2001023685A (en) Electrolyte and secondary battery using it
JP2001102051A (en) Electrode and lithium secondary cell
JP2010225394A (en) Nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery charging method
WO2021100272A1 (en) Secondary battery and method for producing same
WO2021186777A1 (en) Capacity restoration device, manufacturing method of secondary battery, capacity restoration method, and secondary battery system
JP2006172901A (en) Negative electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery using the same
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP3403858B2 (en) Organic electrolyte battery
JP2003123836A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051213