JPS6164078A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPS6164078A
JPS6164078A JP59186005A JP18600584A JPS6164078A JP S6164078 A JPS6164078 A JP S6164078A JP 59186005 A JP59186005 A JP 59186005A JP 18600584 A JP18600584 A JP 18600584A JP S6164078 A JPS6164078 A JP S6164078A
Authority
JP
Japan
Prior art keywords
current collector
nickel
tin
active material
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59186005A
Other languages
Japanese (ja)
Inventor
Mitsuzo Nogami
光造 野上
Kenji Inoue
健次 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59186005A priority Critical patent/JPS6164078A/en
Publication of JPS6164078A publication Critical patent/JPS6164078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To maintain zinc used as the negative active material in adequately close contact with the current collector by performing tin plating on a base plate consisting of either a nickel plate or a nickel-plated iron plate to prepare the current collector. CONSTITUTION:A current collector is prepared by performing nickel plating on an iron plate and then performing tin plating on the nickel layer. Since the tin layer constituting the surface of the thus prepared current collector closely adheres to zinc used as the active material and also has high hydrogen overvoltage, it is possible to prevent the generation of hydrogen gas from the surface of the current collector. Even when a minute amount of tin is dissolved, there is no possibility that an oxidized film of nickel located under the tin layer is formed similarly to iron resulting in increased electric resistance. Accordingly, the current collector can be maintained in close contact with the negative active material over a long period, thereby obtaining awn alkaline storage battery with longer life.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は銀−亜鉛電池、ニッケルー亜鉛電池などのよう
に負極に亜鉛極を用い、を解液にアルカリ水溶液を用い
るアルカリ亜鉛蓄電池に関し、特に亜鉛極集電体の改良
に関する。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to alkaline zinc storage batteries, such as silver-zinc batteries and nickel-zinc batteries, which use a zinc electrode as a negative electrode and use an alkaline aqueous solution for solution. In particular, it relates to improvements in zinc electrode current collectors.

幹) 従来の技術 アルカリ亜鉛蓄電池に於いて負極活物質としての亜鉛は
単位重反あたりのエネルギー密度が大きく且つ安価であ
る利点全盲する。ところが亜鉛は放電時にアルカリ電解
液に溶出して亜鉛酸イオンとなり、充電時にこの亜鉛酸
イオンが亜鉛′極表面に電析する充放電反応を行なう。
In conventional alkaline zinc storage batteries, zinc as a negative electrode active material has the advantages of high energy density per unit cell and low cost. However, during discharge, zinc is eluted into the alkaline electrolyte and becomes zincate ions, and during charging, a charge-discharge reaction occurs in which these zincate ions are deposited on the surface of the zinc electrode.

この亜鉛極の電析電位が水素発生電位より電気化学的に
卑なため、充電時や放置時に負極から水素が発生し電池
内部圧力を高める欠点がある。
Since the electrodeposition potential of this zinc electrode is electrochemically less noble than the hydrogen generation potential, there is a drawback that hydrogen is generated from the negative electrode during charging or when left unused, increasing the internal pressure of the battery.

活物質上からの水素発生を抑制する方法としては、従来
よシ亜鉛活物質に水銀やカドミウム等の水素過電圧を高
める物質を添加する方法が提案されている。これにより
活物質上からの水素発生はかなり抑制されるが、活物質
を支持する集電体上からの水素の発生は抑えることはで
きない。特にこの集電体上からの水素の発生は電池内部
圧力を高めるばかりではなく、集電体からの活物質の脱
落及びiq*t−引き起こすので蓄電池のサイクル寿命
を短くする原因となる。
As a method of suppressing hydrogen generation from the active material, a method of adding a substance that increases the hydrogen overvoltage, such as mercury or cadmium, to the zinc active material has been proposed. Although this considerably suppresses hydrogen generation from above the active material, hydrogen generation from above the current collector supporting the active material cannot be suppressed. In particular, the generation of hydrogen from above the current collector not only increases the internal pressure of the battery, but also causes the active material to fall off from the current collector and cause iq*t- to shorten the cycle life of the storage battery.

特開昭48−15850号公報では水素過電圧が低い集
電体を用いることによる自己放電を防止するために、水
素過電圧が比較的高いカドミウム。
In JP-A-48-15850, in order to prevent self-discharge due to the use of a current collector with a low hydrogen overvoltage, cadmium has a relatively high hydrogen overvoltage.

水銀、鉛、スズ等をメッキし上葉電体に亜鉛活物質を塗
着し九亜鉛極が提案されており、これKより集電体上か
らの水素発生が抑制される。しかしながら、充放電サイ
クルが進むと前記メッキが電解液に溶出して行き集電体
の芯材が露出するようにiる。このとき、芯、材に鉄板
などが使用されていると放電末期に鉄が酸化鉄に変化し
、酸化鉄が生成し九部分の電気抵抗が大きくなると共に
体積膨張を起こすため集電体からの活物質の脱落及びj
H1離を引き起こし長期にわたって負$i活物質として
の亜鉛と集電体との密着性を充分に保つことができなか
った。
A nine-zinc electrode has been proposed in which the upper electrode is plated with mercury, lead, tin, etc. and a zinc active material is applied, and this K suppresses hydrogen generation from above the current collector. However, as the charge/discharge cycle progresses, the plating dissolves into the electrolyte, exposing the core material of the current collector. At this time, if an iron plate or the like is used for the core or material, the iron will change to iron oxide at the end of the discharge, producing iron oxide, increasing the electrical resistance of the nine parts and causing volumetric expansion, which causes the current collector to Falling off of active material and j
This caused H1 separation, and it was not possible to maintain sufficient adhesion between zinc as a negative $i active material and the current collector for a long period of time.

(ハ)発明が解決しようとする問題点 本発明は集電体力島らの負橋活物質の脱落及び制能がサ
イクル寿命の低下ケもたらすことに指目し。
(c) Problems to be Solved by the Invention The present invention aims at solving the problem that the shedding and performance of the negative bridge active material of the current collector leads to a decrease in the cycle life.

負4+%活物質である亜鉛と壜1体との密着性を長期に
わたって充分に保ち、より喝期にわたるサイクル寿命を
有するアルカリ亜鉛蓄電池を得ようとするものである。
The purpose of this invention is to maintain sufficient adhesion between zinc, which is a negative 4+% active material, and a single bottle over a long period of time, and to obtain an alkaline zinc storage battery that has a longer cycle life.

に)間鴨点ケ解決するための手段 本発明はかかる間町点を解決するために、亜鉛極集電体
としてニッケル板またはニッケルメッキが、施された鉄
板等の基板にスズメッキを施してなる集9体を用いるも
のである。
In order to solve this problem, the present invention uses a nickel plate as a zinc electrode current collector or a substrate such as an iron plate plated with nickel plated with tin plating. A collection of nine bodies is used.

(ホ)作 用 スズは水素過電圧が高いため集電体の表面にスズをメッ
キしておくことで集電体からの水素発生を抑制すること
ができ、またスズ上に電析する亜鉛は非常に緻密になる
ため集1体と亜鉛活物質との密着性は良好である。とこ
ろが集電体表面のスズはff[池の放電末期に撤着溶解
するため充放電サイクルが進むにつれて集電体の芯材が
露出するようになる。このとき、スズメッキがニッケル
に覆われた基板りに施されたものであると、スズが溶解
してニッケルが一部露出してもニッケルは鉄などのよう
に醸化被膜を形成されることがなく電気抵抗が増大する
ことがない。ま九微量溶出したスズは再び析出するので
集電体上に露出したニッケル面が急に広がることもない
(e) Effects Since tin has a high hydrogen overvoltage, hydrogen generation from the current collector can be suppressed by plating tin on the surface of the current collector, and zinc electrodeposited on tin is extremely Since the zinc active material becomes dense, the adhesion between the zinc active material and the zinc active material is good. However, since the tin on the surface of the current collector detaches and dissolves at the end of the discharge of the ff battery, the core material of the current collector becomes exposed as the charge/discharge cycle progresses. At this time, if the tin plating is applied to a substrate covered with nickel, even if the tin melts and some of the nickel is exposed, the nickel may form an oxidized film like iron. There is no increase in electrical resistance. Also, since the tiny amount of tin that has eluted will precipitate again, the nickel surface exposed on the current collector will not suddenly spread.

(へ)実施例 以下に本発明の一実施例を説明し、比較例との対比に言
及する。
(f) Example An example of the present invention will be described below, and a comparison with a comparative example will be mentioned.

メッキの種類に応じて表1に示す組成のメッキ浴、温度
及び電流密度の条件で鉄板に厚さ3μのニッケルメツキ
ラ施し、更に該ニッケルメッキ層の表面に厚さ3μのス
ズメッキを施して集電体と部 水を加えて混練しフッ素樹脂を繊維化した後圧延してシ
ートを得、このシートを前記集電体の両面に付着させ加
圧成型して*SC++t、横4備の亜鉛極を得る。こう
して得られた亜鉛極4枚と同寸法のニッケル再6枚とを
、微孔性フィルムとナイロン不織布を組み合わせてなる
セパレータを介して父互に積重して本発明のニッケルー
亜鉛1?■(4)を作製した。
Depending on the type of plating, a 3μ thick nickel plating is applied to the iron plate using the plating bath, temperature and current density conditions shown in Table 1, and then a 3μ thick tin plating is applied to the surface of the nickel plating layer. The electric conductor and part water are added and kneaded to turn the fluororesin into fibers and then rolled to obtain a sheet.This sheet is attached to both sides of the current collector and pressure molded to form *SC++t, 4-width zinc electrodes. get. The four zinc electrodes thus obtained and six nickel electrodes of the same size were stacked on top of each other through a separator made of a combination of a microporous film and a nylon nonwoven fabric, and the nickel-zinc 1? ■(4) was produced.

また比較として前述同様メッキの種類に応じて表1の条
件で鉄板に夫々厚さ3μの鉛メッキ、カドミクムメッキ
、スズメッキを施した5種類の集1我体を作製しこれら
を亜鉛極の集電体として用いその他は実施例と同一の比
較電池(’B)乃至(D)t?作製した。
In addition, for comparison, five types of assemblies were prepared by applying lead plating, cadmium plating, and tin plating to a thickness of 3μ on an iron plate under the conditions shown in Table 1 according to the type of plating as described above, and these were used as assemblies of zinc electrodes. Comparative batteries ('B) to (D)t? used as electric bodies and otherwise the same as in the examples were used. Created.

表1 こうして作製された電池囚乃至CD)について充放電サ
イクルテストを行なった。サイクル条件は、5QQmA
の充電電流で5時間充電を行なった後終止電圧をα9v
ととして500mAの放電電流で放電するものであり、
夫々の電池の初期放電容量の70チに放電容量が落ちる
まで充放電を繰り返シ行ない、そのサイクル数でサイク
ル寿命を決定した。この結果を表2に示す。
Table 1 A charge/discharge cycle test was conducted on the battery cells (CDs to CDs) thus prepared. Cycle conditions are 5QQmA
After charging for 5 hours with a charging current of
It discharges with a discharge current of 500mA,
Charging and discharging were repeated until the discharge capacity dropped to 70 inches of the initial discharge capacity of each battery, and the cycle life was determined by the number of cycles. The results are shown in Table 2.

表2 鉄板上に一種類の金属のみ全メッキしてなる負極呆重体
を用いた雪1池(Bl乃至(′D)ではスズメッキを施
した1)mΦ)がよい結果が得られている。この理由は
次のよりに考えらセる。鉛、カドミウム及びスズは全て
水素過電圧が高く、これらを集電体にメンキして用いる
と何れも集電、体からの水素発生を抑制する働きをする
ため集電体からの水素発生による活物質の脱落はない。
Table 2 Good results have been obtained with Yuki 1ike (1)mΦ with tin plating in B1 to ('D), which uses a negative electrode mass made by completely plating only one type of metal on an iron plate. The reason for this can be considered as follows. Lead, cadmium, and tin all have a high hydrogen overvoltage, and when used as a coating on a current collector, they all work to collect current and suppress hydrogen generation from the body, so they become active materials due to hydrogen generation from the current collector. There is no falling off.

ところが集電体の表面に電析する亜鉛の形態を調べてみ
ると、スズ上に電析する亜鉛は非常に緻密であるのに対
し、鉛やカドミツム上に電析する亜鉛は非常に粗い結晶
となっていた。このため活物質の亜鉛との密着性はスズ
をメッキした集結1体の方が鉛やカドミウムをメッキし
た集箪1体よりも良好となり、負極活物質の脱落、船j
離が抑制されより長いサイクル特命が得られたと考えら
れる。
However, when we examine the morphology of zinc deposited on the surface of the current collector, we find that zinc deposited on tin is very dense, whereas zinc deposited on lead or cadmium is very coarsely crystalline. It became. For this reason, the adhesion of the active material to zinc is better for a single aggregate plated with tin than for a single aggregate plated with lead or cadmium.
It is thought that the separation was suppressed and a longer cycle was achieved.

また1表2の結果から鉄板上に直接スズをメッキした集
電体を用いた電池υ)より、鉄板上にニッケルメッキを
施しその表面にスズをメッキした集電体を用いた電池囚
の方がより良好なサイクル寿命を示していることがわか
る。これら電池の負極集電体は共に表向にはスズがメッ
キされており表面状態は同じであるので前述と同様活物
質と良好な密着性が得られるが、スズは放電末期に微量
溶解するため充放電サイクルが進むとスズメッキの下の
面が一部露出するようになる。このときスズを直接(鉄
板にメッキした集電体ではスズメッキの下面に位置する
鉄が露出すると、鉄が放電末期に酸化鉄となり体積膨張
を引き起こし、これが原因となって集電体から活物質の
剥離が生じ、また酸化鉄の膜が生成したところでは電気
抵抗が太きくなり、これらによって電池に容量低下が起
こる。
In addition, from the results in Table 1 and 2, a battery using a current collector with a nickel plated iron plate and tin plated on its surface is better than a battery using a current collector with a nickel plated iron plate and tin plated on its surface. It can be seen that this shows a better cycle life. The negative electrode current collectors of these batteries are both plated with tin on the surface and have the same surface condition, so good adhesion to the active material can be obtained as described above, but a small amount of tin dissolves at the end of discharge. As the charge/discharge cycle progresses, a portion of the surface beneath the tin plating becomes exposed. At this time, tin is applied directly (in the case of a current collector plated on an iron plate, if the iron located on the bottom surface of the tin plating is exposed, the iron becomes iron oxide at the end of discharge, causing volume expansion, which causes the active material to be removed from the current collector). Where peeling occurs and an iron oxide film is formed, electrical resistance increases, resulting in a decrease in battery capacity.

これに対してスズメッキの下面にニッケルを配しておく
と、ニッケル面が一部露出してもニッケルはアルカリ電
解液中で安定しているので鉄のように酸化被膜を形成せ
ず、活物質との密着面の電気抵抗が増すことはない。ま
た、微量溶出したスズは金属亜鉛と置換して再び析出す
るので露出1−たニッケル面が急に広がることはないう
このように期にわたって保持することができ、サイクル
寿命が延びたものと考えられる。尚、本実施例の結果よ
り、鉄板にニッケルを電着させた場合のニクケル脂の厚
みは3μで充分である。
On the other hand, if nickel is placed on the bottom surface of the tin plating, even if a portion of the nickel surface is exposed, the nickel remains stable in the alkaline electrolyte, so it does not form an oxide film like iron, and the active material There is no increase in the electrical resistance of the contact surface. In addition, since the small amount of tin eluted replaces metallic zinc and precipitates again, the exposed nickel surface does not suddenly expand and can be retained for a long period of time, which is thought to extend the cycle life. It will be done. In addition, from the results of this example, when nickel is electrodeposited on an iron plate, a thickness of 3 μm is sufficient for the thickness of the nickel resin.

(ト)  発明の効果 本発明のアルカリ亜鉛蓄電池は表面がニッケルに覆われ
た基板にスズメッキを施してなる集電体を備えた亜鉛極
を有するものであり、集電体表面のスズは活物質である
亜鉛との密着性が良好であると共に水素過電圧が高いた
め集電体表面からの水素ガス発生を防止することができ
、またこのスズが微量溶解してもスズメッキの下面に位
置するニッケルが鉄のように酸化被膜を形成して電気抵
抗を増すことがないので、集電体と負極活物質との密着
性を長期にわたって保ち、より長寿命のアルカリ蓄電池
を提供することができる。
(G) Effects of the Invention The alkaline zinc storage battery of the present invention has a zinc electrode with a current collector formed by tin-plating a substrate whose surface is covered with nickel, and the tin on the surface of the current collector is an active material. Since it has good adhesion with zinc and has a high hydrogen overvoltage, it is possible to prevent the generation of hydrogen gas from the surface of the current collector.Also, even if a small amount of tin dissolves, the nickel located on the underside of the tin plating Unlike iron, it does not form an oxide film and increase electrical resistance, so it can maintain adhesion between the current collector and the negative electrode active material over a long period of time, providing an alkaline storage battery with a longer life.

Claims (1)

【特許請求の範囲】[Claims] (1)表面がニッケルに覆われた基板にスズメッキを施
してなる集電体を備えた亜鉛極を有するアルカリ亜鉛蓄
電池。
(1) An alkaline zinc storage battery having a zinc electrode and a current collector made of a substrate whose surface is covered with nickel and plated with tin.
JP59186005A 1984-09-05 1984-09-05 Alkaline zinc storage battery Pending JPS6164078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186005A JPS6164078A (en) 1984-09-05 1984-09-05 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186005A JPS6164078A (en) 1984-09-05 1984-09-05 Alkaline zinc storage battery

Publications (1)

Publication Number Publication Date
JPS6164078A true JPS6164078A (en) 1986-04-02

Family

ID=16180698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186005A Pending JPS6164078A (en) 1984-09-05 1984-09-05 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS6164078A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135776A (en) * 1991-11-13 1993-06-01 Hitachi Maxell Ltd Cylindrical alkaline battery
EP0725453A4 (en) * 1993-10-22 1996-08-21
FR2796496A1 (en) * 1999-07-15 2001-01-19 Cit Alcatel Zinc-based electrode for alkaline electrochemical generator with increased shelf life in primary or secondary cell versions, includes copper foam structure with steel and tin, indium or bismuth composition
WO2023112516A1 (en) * 2021-12-14 2023-06-22 Fdk株式会社 Zinc battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135138A (en) * 1973-04-28 1974-12-26
JPS5583168A (en) * 1978-12-19 1980-06-23 Matsushita Electric Ind Co Ltd Collector of zinc cathode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135138A (en) * 1973-04-28 1974-12-26
JPS5583168A (en) * 1978-12-19 1980-06-23 Matsushita Electric Ind Co Ltd Collector of zinc cathode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135776A (en) * 1991-11-13 1993-06-01 Hitachi Maxell Ltd Cylindrical alkaline battery
EP0725453A4 (en) * 1993-10-22 1996-08-21
FR2796496A1 (en) * 1999-07-15 2001-01-19 Cit Alcatel Zinc-based electrode for alkaline electrochemical generator with increased shelf life in primary or secondary cell versions, includes copper foam structure with steel and tin, indium or bismuth composition
WO2023112516A1 (en) * 2021-12-14 2023-06-22 Fdk株式会社 Zinc battery

Similar Documents

Publication Publication Date Title
US3785868A (en) Zinc electrode
JPS6164078A (en) Alkaline zinc storage battery
US3819414A (en) Storage battery and positive electrode therefor
JPS5894770A (en) Leakage-less closed type lead battery
JP2589150B2 (en) Alkaline zinc storage battery
CA1090878A (en) Lead crystal storage cells and storage devices made therefrom
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPH10199562A (en) Sealed lead-acid battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPS61101955A (en) Alkali zinc storage cell
JP2787058B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH0410176B2 (en)
JPS6342818B2 (en)
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3496241B2 (en) How to charge lead storage batteries
JPH0628156B2 (en) Cadmium negative electrode manufacturing method
JPH06223823A (en) Negative electrode plate for sealed type alkaline storage battery
JPS6351051A (en) Hydrogen absorption alloy negative electrode for alkaline cell
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPH0770318B2 (en) Lead acid battery
JPH0355757A (en) Lead storage battery