JPH0691300B2 - Method for manufacturing electrical laminate - Google Patents
Method for manufacturing electrical laminateInfo
- Publication number
- JPH0691300B2 JPH0691300B2 JP2125101A JP12510190A JPH0691300B2 JP H0691300 B2 JPH0691300 B2 JP H0691300B2 JP 2125101 A JP2125101 A JP 2125101A JP 12510190 A JP12510190 A JP 12510190A JP H0691300 B2 JPH0691300 B2 JP H0691300B2
- Authority
- JP
- Japan
- Prior art keywords
- prepreg
- prepregs
- laminate
- dielectric constant
- glass cloth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Laminated Bodies (AREA)
Description
本発明は、プリント配線板に加工して使用される電気用
積層板の製造方法に関するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing an electric laminate, which is processed into a printed wiring board and used.
電気機具や電子機器等に用いられるプリント配線板は、
金属箔を貼った電気用積層板を加工することによって作
成される。すなわち、複数枚のプリプレグを重ねると共
に、これにさらにその片面あるいは両面に銅箔等の金属
箔を重ね、これを加熱加圧して積層成形することによっ
て、電気用積層板を製造することができる。そしてこの
電気用積層板の金属箔をエッチング処理して回路パター
ンを作成する等の加工をおこなうことによって、プリン
ト配線板に仕上げることができる。 このようなプリント配線板において、最近では回路を微
細でち密に設けるファインパターン化の要求が高くなっ
ているが、ファインパターンでは回路間の間隔が狭くな
っているために、パターン間のインピーダンスが低くな
ってノイズ障害が生じる等の問題がある。そしてプリン
ト配線板を作成した電気用積層板の誘電率が高いとイン
ピーダンスが低くなってノイズ障害等が大きく発生する
ために、誘電率の低い電気用積層板を使用することが検
討されている。 ここで、電気用積層板において誘電率はその積層板を構
成する基材と樹脂とによって支配されるものであり、す
なわち基材に樹脂を含浸して形成されるプリプレグによ
って誘電率は支配されることになる。例えば、各種プリ
プレグにおいて誘電率(ε)は ・紙基材フェノール樹脂プリプレグ…4.3 ・紙基材エポキシ樹脂プリプレグ…4.3 ・ガラス布基材エポキシ樹脂プリプレグ…4.8 ・ガラス布基材ポリイミドプリプレグ…4.5 ・ガラス布基材ポリフェニレンオキサイドプリプレグ3.
5 ・ガラス布基材フッ素樹脂プリプレグ…2.7 であり、これらのプリプレグを用いて作成した電気用積
層板はそれぞれのプリプレグに特定の誘電率を有するこ
とになる。従って、ファインパターンで回路形成する場
合には、誘電率の低いプリプレグを用いて作成した電気
用積層板を使用することによって、回路間にノイズ障害
等が発生することを低減することができることになる。 しかし、誘電率の小さいプリプレグは一般的に高価であ
るために、例えば、特に高いファインパターンで回路を
形成する必要がある場合には誘電率が2.7のガラス布基
材フッ素樹脂プリプレグを、中程度のファインパターン
で回路を形成する場合には誘電率が3.5のガラス布基材
ポリフェニレンオキサイドプリプレグを、ファインパタ
ーンの程度があまり高くないものではその他のプリプレ
グをそれぞれ使用するというように、ファインパターン
の度合いに応じて使用するプリプレグを選択するように
している。Printed wiring boards used for electrical equipment and electronic equipment,
It is created by processing an electrical laminate with a metal foil attached. That is, by stacking a plurality of prepregs, further stacking a metal foil such as a copper foil on one or both sides of the prepreg, and heating and pressurizing the metal foil for lamination molding, an electrical laminate can be manufactured. The printed wiring board can be finished by performing processing such as etching the metal foil of the electrical laminate to create a circuit pattern. Recently, in such printed wiring boards, there is an increasing demand for fine patterns in which circuits are finely and densely arranged. However, in the fine patterns, the distance between the circuits is narrow, so that the impedance between the patterns is low. Therefore, there is a problem that noise interference occurs. When the electric laminate of the printed wiring board having a high dielectric constant has a low impedance and causes a large noise disturbance, use of an electric laminate having a low dielectric constant has been studied. Here, in the electrical laminate, the permittivity is governed by the base material and the resin constituting the laminate, that is, the permittivity is governed by the prepreg formed by impregnating the base material with the resin. It will be. For example, the dielectric constant (ε) of various prepregs is: -Paper base material phenol resin prepreg ... 4.3-Paper base material epoxy resin prepreg ... 4.3-Glass cloth base material epoxy resin prepreg ... 4.8-Glass cloth base material polyimide prepreg ... 4.5-Glass Cloth-based polyphenylene oxide prepreg 3.
5 ・ Glass cloth base material fluororesin prepreg ... 2.7, and electrical laminates made using these prepregs have a specific dielectric constant for each prepreg. Therefore, when forming a circuit with a fine pattern, it is possible to reduce the occurrence of noise interference between circuits by using an electrical laminate made of a prepreg having a low dielectric constant. . However, since a prepreg with a small dielectric constant is generally expensive, for example, when it is necessary to form a circuit with a particularly high fine pattern, a glass cloth-based fluororesin prepreg with a dielectric constant of 2.7 is used. When a circuit is formed with a fine pattern, a glass cloth base material polyphenylene oxide prepreg with a dielectric constant of 3.5 is used, and if the fine pattern is not very high, another prepreg is used. The prepreg to be used is selected according to.
しかしながら、各プリプレグの誘電率は特定の数値であ
るために、プリプレグを用いて作成した電気用積層板の
誘電率もプリプレグに応じた特定の数値のものしか得ら
れないものであり、ファインパターンの程度に応じて電
気用積層板の誘電率を自由に設計することができないと
いう問題があった。 本発明は上記の点に鑑みて為されたものであり、電気用
積層板の誘電率の自由な設計が可能になる電気用積層板
の製造方法を提供することを目的とするものである。However, since the dielectric constant of each prepreg has a specific numerical value, the dielectric constant of the electrical laminate produced using the prepreg can only be a specific numerical value corresponding to the prepreg, and the fine pattern of There is a problem that the permittivity of the electrical laminate cannot be freely designed according to the degree. The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an electrical laminate, which allows the dielectric constant of the electrical laminate to be freely designed.
本発明に係る電気用積層板の製造方法は、誘電率が異な
る複数枚のプリプレグを重ねると共にさらにこれに金属
箔を重ね、これを積層一体化することを特徴とするもの
である。 プリプレグは紙やガラス布等の基材に各種の熱硬化性樹
脂(場合によっては熱可塑性樹脂)のワニスを含浸させ
て乾燥することによって作成されるものであり、既述の
ようにプリプレグの誘電率はその基材と樹脂の種類等に
よって所定の数値に設定されている。そしてこのプリプ
レグを複数枚重ねると共に、この片面もしくは両面に銅
箔などの金属箔を重ね、これを加熱加圧して積層成形す
ることによって、片面もしくは両面に金属箔が張られた
電気用積層板を得ることができる。 ここで本発明においては、複数枚のプリプレグとして誘
電率の異なるものを組み合わせて用いるものであり、例
えば第1図に示すように、ある種類のプリプレグ1aを4
枚と他の種類のプリプレグ1bを4枚とを交互に重ね、こ
れに金属箔2を重ねて加熱加圧して積層成形することに
よって電気用積層板を得ることができ、また、第2図に
示すようにある種類の4枚のプリプレグ1aを2枚づつと
他の種類の4枚のプリプレグ1bを2枚づつとを交互に重
ね、これに金属箔2を重ねて加熱加圧して積層成形する
ことによって電気用積層板を得ることができる。もちろ
んプリプレグ1a,1bの配置はこれらに限定されるもので
はなく、ランダムな配置であってもよい。また、プリプ
レグはこのように2種類だけでなく、3種類あるいはさ
らに多くの種類を組み合わせて用いるようにしてもよ
い。 例えばプリプレグとして総てガラス布基材フッ素樹脂プ
リプレグを使用すれば、電気用積層板の積層板部分の誘
電率(ε)はこのプリプレグの誘電率と同じ2.7にな
り、またプリプレグとして総てガラス布基材エポキシ樹
脂プリプレグを使用すれば、電気用積層板の積層板部分
の誘電率はこのプリプレグの誘電率と同じ4.8になる
が、第1図や第2図における4枚のプリプレグ1aとして
ガラス布基材フッ素樹脂プリプレグを、4枚のプリプレ
グ1bとしてガラス布基材エポキシ樹脂プリプレグをそれ
ぞれ使用して電気用積層板を製造すると、この電気用積
層板の積層板部分の誘電率はほぼ(2.7×4+4.8×4)
÷8=3.7〜3.8になる。また、この合計8枚のプリプレ
グのうちガラス布基材フッ素樹脂プリプレグを6枚、ガ
ラス布基材エポキシ樹脂プリプレグを2枚用いると、電
気用積層板の積層板部分の誘電率はほぼ(2.7×6+4.8
×2)÷8=3.2〜3.3になる。従って、誘電率の異なる
各種のプリプレグのうちどの種類のものを何枚づつ組み
合わせて使用するかで、電気用積層板の積層板部分の誘
電率を任意の数値に設定することができ、回路形成のフ
ァインパターンの程度に合せた誘電率の設計の自由度が
大きくなるものである。The method for manufacturing an electrical laminate according to the present invention is characterized in that a plurality of prepregs having different permittivities are superposed, a metal foil is further superposed on the prepregs, and these are integrally laminated. A prepreg is made by impregnating a base material such as paper or glass cloth with a varnish of various thermosetting resins (in some cases, a thermoplastic resin) and drying the varnish. The rate is set to a predetermined value depending on the type of base material and resin. Then, by stacking a plurality of these prepregs, a metal foil such as a copper foil is stacked on one or both sides of the prepreg, and by heat-pressing and laminating the laminated metal foil, an electrical laminate having a metal foil stretched on one or both sides is formed. Obtainable. In the present invention, a plurality of prepregs having different dielectric constants are combined and used. For example, as shown in FIG.
One sheet and four sheets of another type of prepreg 1b are alternately laminated, and the metal foil 2 is laminated on the sheet and heat-pressed to laminate to obtain an electric laminate, and as shown in FIG. As shown, four prepregs 1a of a certain type and two prepregs 1b of another type are alternately laminated, and a metal foil 2 is laminated and heat-pressed to form a laminate. By doing so, an electrical laminate can be obtained. Of course, the arrangement of the prepregs 1a and 1b is not limited to these and may be a random arrangement. Further, the prepregs may be used in combination of not only two kinds but three kinds or more kinds as described above. For example, if all glass cloth-based fluororesin prepregs are used as the prepreg, the dielectric constant (ε) of the laminate part of the electrical laminate will be 2.7, which is the same as that of this prepreg. If the base epoxy resin prepreg is used, the permittivity of the laminate part of the electrical laminate will be 4.8, which is the same as that of this prepreg, but the four prepregs 1a shown in FIGS. 1 and 2 are made of glass cloth. When the electrical laminate is manufactured by using the base fluororesin prepreg and the glass cloth base epoxy resin prepreg as the four prepregs 1b, the dielectric constant of the laminate of the electrical laminate is approximately (2.7 × 4 + 4.8 x 4)
÷ 8 = 3.7 to 3.8. If 6 glass cloth base fluororesin prepregs and 2 glass cloth base epoxy resin prepregs are used out of the total 8 prepregs, the permittivity of the laminated portion of the electrical laminate is approximately (2.7 × 6 + 4.8
× 2) ÷ 8 = 3.2 to 3.3. Therefore, it is possible to set the dielectric constant of the laminate part of the electrical laminate to an arbitrary value by combining and using which of the various types of prepregs having different permittivities. The degree of freedom in designing the dielectric constant according to the degree of the fine pattern is increased.
以下本発明を実施例によって例証する。 実施例1 厚み0.15mmのガラス布に乾燥後の樹脂量が50%になるよ
うにエポキシ樹脂を含浸し、乾燥することによって誘電
率が4.8のガラス布基材エポキシ樹脂プリプレグを得
た。また厚み0.15mmのガラス布にポリフェニレンオキサ
イド(PPO)を乾燥後の樹脂量が50%になるように含浸
し、乾燥することによって誘電率が3.5のガラス布基材
ポリフェニレンオキサイドプリプレグを得た。 次に第1図の配置で4枚のガラス布基材エポキシ樹脂プ
リプレグと4枚のガラス布基材ポリフェニレンオキサイ
ドプリプレグとを重ねると共に、さらに両面に厚み0.03
5mmの銅箔を重ね、これを30kg/cm2、180℃、90分の条
件で加熱加圧して積層成形することによって、厚み1.6m
mの電気用積層板を得た。この電気用積層板の誘電率は
約4.1であった。 従来例1 実施例1で得たガラス布基材エポキシ樹脂プリプレグの
みを8枚用い、あとは同様に積層成形することによって
厚み1.6mmの電気用積層板を得た。この電気用積層板の
誘電率は4.8であった。 従来例2 実施例1で得たガラス布基材ポリフェニレンオキサイド
プリプレグのみを8枚用い、あとは同様に積層成形する
ことによって、厚み1.6mmの電気用積層板を得た。この
電気用積層板の誘電率は3.5であった。 実施例2 厚み0.15mmのガラス布にポリイミドを乾燥後の樹脂量が
50%になるように含浸し、乾燥することによって誘電率
が4.5のガラス布基材ポリイミドプリプレグを得た。 次に第2図の配置で実施例1で得た4枚のガラス布基材
ポリフェニレンオキサイドプリプレグと4枚のガラス布
基材ポリイミドプリプレグとを重ね、あとは同様に積層
成形することによって、厚み1.6mmの電気用積層板を得
た。この電気用積層板の誘電率は約4.0であった。The invention will now be illustrated by the examples. Example 1 A glass cloth base material epoxy resin prepreg having a dielectric constant of 4.8 was obtained by impregnating a glass cloth having a thickness of 0.15 mm with an epoxy resin so that the amount of resin after drying was 50% and drying. Further, a glass cloth having a thickness of 0.15 mm was impregnated with polyphenylene oxide (PPO) so that the amount of resin after drying was 50%, and dried to obtain a glass cloth-based polyphenylene oxide prepreg having a dielectric constant of 3.5. Next, four glass cloth base material epoxy resin prepregs and four glass cloth base material polyphenylene oxide prepregs were stacked in the arrangement shown in FIG.
By stacking 5mm copper foil and heating and pressurizing it under the conditions of 30kg / cm 2 , 180 ℃, 90 minutes, 1.6m thickness is obtained.
A m electrical laminate was obtained. The dielectric constant of this electrical laminate was about 4.1. Conventional Example 1 An electric laminated board having a thickness of 1.6 mm was obtained by using only eight glass cloth-based epoxy resin prepregs obtained in Example 1 and then laminating the same. The dielectric constant of this electrical laminate was 4.8. Conventional Example 2 Eight glass cloth-based polyphenylene oxide prepregs obtained in Example 1 were used alone, and thereafter laminated in the same manner to obtain a 1.6 mm-thick electrical laminate. The dielectric constant of this electrical laminate was 3.5. Example 2 The amount of resin after drying polyimide on a glass cloth having a thickness of 0.15 mm is
A glass cloth base polyimide prepreg having a dielectric constant of 4.5 was obtained by impregnating it to 50% and drying. Next, the glass cloth base material polyphenylene oxide prepreg obtained in Example 1 and the glass cloth base material polyimide prepreg obtained in Example 1 in the arrangement shown in FIG. mm electrical laminate was obtained. The dielectric constant of this electrical laminate was about 4.0.
上述のように本発明にあっては、誘電率が異なる複数枚
のプリプレグを重ねると共にさらにこれに金属箔を重
ね、これを積層一体化するようにしたので、誘電率の異
なる各種のプリプレグのうちどの種類のものを何枚づつ
組み合わせて使用するかによって、電気用積層板の誘電
率を任意の数値に設定することができ、回路形成のファ
インパターンの程度に合わせた誘電率の設計の自由度が
大きくなるものである。As described above, in the present invention, a plurality of prepregs having different permittivities are stacked together with a metal foil, and the metal foil is further laminated and integrated. The dielectric constant of the electrical laminate can be set to an arbitrary value depending on how many kinds of materials are used in combination, and the degree of freedom in designing the dielectric constant according to the fine pattern of circuit formation can be set. Will be bigger.
第1図及び第2図は積層成形の構成を示す概略分解図で
あり、1a,1bはプリプレグ、2は金属箔である。FIG. 1 and FIG. 2 are schematic exploded views showing the constitution of laminated molding, in which 1a and 1b are prepregs and 2 is a metal foil.
Claims (1)
ると共にさらにこれに金属箔を重ね、これを積層一体化
することを特徴とする電気用積層板の製造方法。1. A method for manufacturing an electrical laminate, comprising stacking a plurality of prepregs having different permittivities, further stacking a metal foil on the prepregs, and laminating and integrating the prepregs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2125101A JPH0691300B2 (en) | 1990-05-15 | 1990-05-15 | Method for manufacturing electrical laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2125101A JPH0691300B2 (en) | 1990-05-15 | 1990-05-15 | Method for manufacturing electrical laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0424985A JPH0424985A (en) | 1992-01-28 |
JPH0691300B2 true JPH0691300B2 (en) | 1994-11-14 |
Family
ID=14901881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2125101A Expired - Lifetime JPH0691300B2 (en) | 1990-05-15 | 1990-05-15 | Method for manufacturing electrical laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0691300B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013000995A (en) | 2011-06-17 | 2013-01-07 | Panasonic Corp | Metal-clad laminated plate and printed wiring board |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5375285A (en) * | 1976-12-15 | 1978-07-04 | Matsushita Electric Works Ltd | Manufacture of synthetic resin laminate |
JPS5375284A (en) * | 1976-12-15 | 1978-07-04 | Matsushita Electric Works Ltd | Manufacture of synthetic resin laminate |
JPS5418885A (en) * | 1977-07-14 | 1979-02-13 | Fujitsu Ltd | Laminate sheet |
JPS5574874A (en) * | 1978-11-30 | 1980-06-05 | Mitsubishi Gas Chemical Co | Method of making coated composite sheet and copperrcoated laminated sheet |
JPH0627144B2 (en) * | 1985-07-05 | 1994-04-13 | 三菱油化株式会社 | Ethylene copolymer |
JPS6335418A (en) * | 1986-07-31 | 1988-02-16 | Chlorine Eng Corp Ltd | Concentration of yttrium solution |
JP2793824B2 (en) * | 1989-01-11 | 1998-09-03 | イビデン株式会社 | Electronic circuit board |
-
1990
- 1990-05-15 JP JP2125101A patent/JPH0691300B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0424985A (en) | 1992-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0691301B2 (en) | Method for manufacturing electrical laminate | |
JPH0691300B2 (en) | Method for manufacturing electrical laminate | |
JPH0748589B2 (en) | Method for manufacturing multilayer printed circuit board | |
JPH0424996A (en) | Manufacture of multilayer printed board | |
JPH07117174A (en) | Metal-foiled laminated plate and manufacture thereof | |
JPH02244786A (en) | Composite board for printed circuit | |
JPS59125689A (en) | Electric laminated board | |
JP2950969B2 (en) | Manufacturing method of laminated board | |
JPH03285391A (en) | Manufacture of multilayer wiring board | |
JPH05200940A (en) | Metal clad laminated sheet | |
JPH0221694A (en) | Multilayer printed circuit board | |
JPH03142996A (en) | Manufacture of multilayer printed wiring board | |
KR910007393A (en) | Multilayer printed board and its manufacturing method | |
JPH10272732A (en) | Copper-clad laminate and printed-wiring board | |
JPH0771839B2 (en) | Laminated board manufacturing method | |
JPH0890713A (en) | Production of metal clad laminated sheet | |
JPH0354876B2 (en) | ||
JPH03274788A (en) | Manufacture of printed circuit board | |
JPH02133444A (en) | Production of electrical laminate | |
JPS60257598A (en) | Multilayer printed circuit board | |
JPS62238680A (en) | Printed wiring board | |
JPH05169582A (en) | Production of laminated sheet | |
JPH08148832A (en) | Multilayered printed board | |
JPH044145B2 (en) | ||
JPH0236592A (en) | Multilayer printed wiring board |