JPH0691301B2 - Method for manufacturing electrical laminate - Google Patents

Method for manufacturing electrical laminate

Info

Publication number
JPH0691301B2
JPH0691301B2 JP2125102A JP12510290A JPH0691301B2 JP H0691301 B2 JPH0691301 B2 JP H0691301B2 JP 2125102 A JP2125102 A JP 2125102A JP 12510290 A JP12510290 A JP 12510290A JP H0691301 B2 JPH0691301 B2 JP H0691301B2
Authority
JP
Japan
Prior art keywords
prepregs
prepreg
dielectric constant
laminate
glass cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2125102A
Other languages
Japanese (ja)
Other versions
JPH0424986A (en
Inventor
友彦 西田
幸生 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2125102A priority Critical patent/JPH0691301B2/en
Publication of JPH0424986A publication Critical patent/JPH0424986A/en
Publication of JPH0691301B2 publication Critical patent/JPH0691301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、プリント配線板に加工して使用される電気用
積層板の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing an electric laminate, which is processed into a printed wiring board and used.

【従来の技術】[Prior art]

電気機器や電子機器等に用いられるプリント配線板は、
金属箔を貼った電気用積層板を加工することによって作
成される。すなわち、複数枚のプリプレグを重ねると共
に、これにさらにその片面あるいは両面に銅箔等の金属
箔を重ね、これを加熱加圧して積層成形することによっ
て、電気用積層板を製造することができる。そしてこの
電気用積層板の金属箔をエッチング処理して回路パター
ンを作成する等の加工をおこなうことによって、プリン
ト配線板に仕上げることができる。 このようなプリント配線板において、最近では回路を微
細でち密に設けるファインパターン化の要求が高くなっ
ているが、ファインパターンでは回路間の間隔が狭くな
っているために、パターン間のインピーダンスが低くな
ってノイズ障害が生じる等の問題がある。そしてプリン
ト配線板を作成した電気用積層板の誘電率が高いとイン
ピーダンスが低くなってノイズ障害が大きく発生するた
めに、誘電率の低い電気用積層板を使用することが検討
されている。 ここで、電気用積層板において誘電率はその積層板を構
成する基材と樹脂とによって支配されるものであり、す
なわち基材に樹脂を含浸して形成されるプリプレグによ
って誘電率は支配されることになる。例えば、各種プリ
プレグにおいて誘電率(ε)は ・紙基材フェノール樹脂プリプレグ…4.3 ・紙基材エポキシ樹脂プリプレグ…4.3 ・ガラス布基材エポキシ樹脂プリプレグ…4.8 ・ガラス布基材ポリイミドプリプレグ…4.5 ・ガラス布基材ポリフェニレンオキサイドプリプレグ…
3.5 ・ガラス布基材フッ素樹脂プリプレグ…2.7 であり、これらのプリプレグを用いて作成した電気用積
層板はそれぞれのプリプレグに特定の誘電率を有するこ
とになる。従って、ファインパターンで回路形成する場
合には、誘電率の低いプリプレグを用いて作成した電気
用積層板を使用することによって、回路間にノイズ障害
等が発生することを低減することができることになる。 しかし、誘電率の小さいプリプレグは一般的に高価であ
るために、例えば、特に高いファインパターンで回路を
形成する必要がある場合には誘電率が2.7のガラス布基
材フッ素樹脂プリプレグを、中程度のファインパターン
で回路を形成する場合には誘電率が3.5のガラス布基材
ポリフェニレンオキサイドプリプレグを、ファインパタ
ーンの程度があまり高くないものではその他のプリプレ
グをそれぞれ使用するというように、ファインパターン
の度合に応じて使用するプリプレグを選択するようにし
ている。
Printed wiring boards used for electrical and electronic equipment,
It is created by processing an electrical laminate with a metal foil attached. That is, by stacking a plurality of prepregs, further stacking a metal foil such as a copper foil on one or both sides of the prepreg, and heating and pressurizing the metal foil for lamination molding, an electrical laminate can be manufactured. The printed wiring board can be finished by performing processing such as etching the metal foil of the electrical laminate to create a circuit pattern. Recently, in such printed wiring boards, there is an increasing demand for fine patterns in which circuits are finely and densely arranged. However, in the fine patterns, the distance between the circuits is narrow, so that the impedance between the patterns is low. Therefore, there is a problem that noise interference occurs. When the electric laminate of the printed wiring board having a high dielectric constant has a low impedance and causes a large noise disturbance, use of an electric laminate having a low dielectric constant has been studied. Here, in the electrical laminate, the permittivity is governed by the base material and the resin constituting the laminate, that is, the permittivity is governed by the prepreg formed by impregnating the base material with the resin. It will be. For example, the dielectric constant (ε) of various prepregs is: -Paper base material phenol resin prepreg ... 4.3-Paper base material epoxy resin prepreg ... 4.3-Glass cloth base material epoxy resin prepreg ... 4.8-Glass cloth base material polyimide prepreg ... 4.5-Glass Cloth substrate polyphenylene oxide prepreg…
3.5 ・ Glass cloth base material fluororesin prepreg ... 2.7, and electrical laminates made using these prepregs have a specific dielectric constant for each prepreg. Therefore, when forming a circuit with a fine pattern, it is possible to reduce the occurrence of noise interference between circuits by using an electrical laminate made of a prepreg having a low dielectric constant. . However, since a prepreg with a small dielectric constant is generally expensive, for example, when it is necessary to form a circuit with a particularly high fine pattern, a glass cloth-based fluororesin prepreg with a dielectric constant of 2.7 is used. In the case of forming a circuit with a fine pattern, a glass cloth base material polyphenylene oxide prepreg with a dielectric constant of 3.5 is used, and with a fine pattern not so high, other prepregs are used. The prepreg to be used is selected according to.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

しかしながら、各プリプレグの誘電率は特定の数値であ
るために、プリプレグを用いて作成した電気用積層板の
誘電率もプリプレグに応じた特定の数値のものしか得ら
れないものであり、ファインパターンの程度に応じて電
気用積層板の誘電率を自由に設計することができないと
いう問題があった。 本発明は上記の点に鑑みて為されたものであり、電気用
積層板の誘電率の自由な設計が可能になる電気用積層板
の製造方法を提供することを目的とするものである。
However, since the dielectric constant of each prepreg has a specific numerical value, the dielectric constant of the electrical laminate produced using the prepreg can only be a specific numerical value corresponding to the prepreg, and the fine pattern of There is a problem that the permittivity of the electrical laminate cannot be freely designed according to the degree. The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an electrical laminate, which allows the dielectric constant of the electrical laminate to be freely designed.

【課題を解決するための手段】[Means for Solving the Problems]

本発明に係る電気用積層板の製造方法は、複数枚のプリ
プレグを重ねると共にこのプリプレグと誘電率が異なる
他の複数枚のプリプレグを重ね、この両者間をさらに重
ねると共にこれに金属箔をさらに重ねてこれらを積層一
体化することを特徴とするものである。 プリプレグは紙やガラス布等の基材に各種の熱硬化性樹
脂(場合によっては熱可塑性樹脂)のワニスを含浸させ
て乾燥することによって作成されるものであり、既述の
ようにプリプレグの誘電率はその基材と樹脂の種類等に
よって所定の数値に設定される。そしてこのプリプレグ
を複数枚重ねると共に、この片面もしくは両面に銅箔な
どの金属箔を重ね、これを加熱加圧して積層成形するこ
とによって、片面もしくは両面に金属箔が張られた電気
用積層板を得ることができる。 ここで本発明においては、複数枚のプリプレグとして誘
電率の異なるものを組み合わせて用いるものであり、例
えば8枚のプリプレグを用いる場合には、ある種類のプ
リプレグを4枚重ねると共に他の種類のプリプレグを4
枚重ね、さらにこれらを重ねるようにして用いるもので
ある。例えば第1図に示すように、ある種類のプリプレ
グ1aを4枚重ねると共に他の種類のプリプレグ1bを4枚
重ね、これを上下に重ねてさらに金属箔2を重ね、これ
らを加熱加圧して積層成形することによって電気用積層
板を得ることができる。もちろんプリプレグ1a,1bの枚
数はこれに限定されるものではなく、例えば第2図のよ
うに8枚のうちプリプレグ1aを5枚、プリプレグ1bを3
枚用いるようにしてもよい。また、プリプレグはこのよ
うに2種類だけでなく、3種類あるいはさらに多くの種
類を組み合わせて用いるようにしてもよい。 例えばプリプレグとして総てガラス布基材フッ素樹脂プ
リプレグを使用すれば、電気用積層板の積層板部分の誘
電率(ε)はこのプリプレグの誘電率と同じ2.7にな
り、またプリプレグとして総てガラス布基材エポキシ樹
脂プリプレグを使用すれば、電気用積層板の積層板部分
の誘電率はこのプリプレグの誘電率と同じ4.8になる
が、第1図のように4枚のプリプレグ1aとしてガラス布
基材フッ素樹脂プリプレグを、4枚のプリプレグ1bとし
てガラス布基材エポキシ樹脂プリプレグをそれぞれ使用
して電気用積層板を製造すると、この電気用積層板の積
層板部分の誘電率はほぼ(2.7×4+4.8×4)÷8=3.
7〜3.8になる。また、第2図のように5枚のプリプレグ
1aとしてガラス布基材フッ素樹脂プリプレグ、3枚のプ
リプレグ1bとしてガラス布基材エポキシ樹脂プリプレグ
を用いると、電気用積層板の積層板部分の誘電率はほぼ
(2.7×5+4.8×3)÷8=3.5となる。従って、誘電
率の異なる各種のプリプレグのうちどの種類のものを何
枚ずつ組み合わせて使用するかで、電気用積層板の積層
板部分の誘電率を任意の数値に設定することができ、回
路形成のファインパターンの程度に合わせた誘電率の設
計の自由度が大きくなるものである。
The method for manufacturing an electrical laminate according to the present invention includes stacking a plurality of prepregs, stacking a plurality of other prepregs having a different dielectric constant from the prepregs, stacking the prepregs, and stacking a metal foil on the prepregs. It is characterized in that these are laminated and integrated. A prepreg is made by impregnating a base material such as paper or glass cloth with a varnish of various thermosetting resins (in some cases, a thermoplastic resin) and drying the varnish. The rate is set to a predetermined value depending on the type of base material and resin. Then, by stacking a plurality of these prepregs, a metal foil such as a copper foil is stacked on one or both sides of the prepreg, and by heat-pressing and laminating the laminated metal foil, an electrical laminate having a metal foil stretched on one or both sides is formed. Obtainable. Here, in the present invention, a plurality of prepregs having different dielectric constants are combined and used. For example, when eight prepregs are used, four prepregs of a certain type are stacked and another prepreg of another type is used. 4
It is used by stacking the sheets and further stacking them. For example, as shown in FIG. 1, four prepregs 1a of a certain type are piled up and four prepregs 1b of another type are piled up. An electric laminate can be obtained by molding. Of course, the number of prepregs 1a and 1b is not limited to this, and for example, as shown in FIG. 2, out of 8 prepregs 1a 5 and prepreg 1b 3
You may make it use one piece. Further, the prepregs may be used in combination of not only two kinds but three kinds or more kinds as described above. For example, if all glass cloth-based fluororesin prepregs are used as the prepreg, the dielectric constant (ε) of the laminate part of the electrical laminate will be 2.7, which is the same as that of this prepreg. If the base material epoxy resin prepreg is used, the dielectric constant of the laminate part of the electrical laminate is 4.8, which is the same as that of this prepreg, but as shown in Fig. 1, four prepregs 1a are made of glass cloth base material. When the electrical laminate is manufactured by using the fluororesin prepreg and the glass cloth base epoxy resin prepreg as the four prepregs 1b, the dielectric constant of the laminate of the electrical laminate is approximately (2.7 × 4 + 4. 8 × 4) ÷ 8 = 3.
7 to 3.8. Also, as shown in Fig. 2, 5 prepregs
When the glass cloth base material fluororesin prepreg is used as 1a and the glass cloth base material epoxy resin prepreg is used as the three prepregs 1b, the dielectric constant of the laminated part of the electrical laminate is approximately (2.7 × 5 + 4.8 × 3) ÷ 8 = 3.5. Therefore, it is possible to set the dielectric constant of the laminated plate portion of the electrical laminate to an arbitrary value by combining and using which of the various types of prepregs having different permittivities. The degree of freedom in designing the dielectric constant according to the degree of the fine pattern is increased.

【実施例】【Example】

以下本発明を実施例によって例証する。 実施例1 厚み0.15mmのガラス布に乾燥後の樹脂量が50%になるよ
うにエポキシ樹脂を含浸し、乾燥することによって誘電
率が4.8のガラス布基材エポキシ樹脂プリプレグを得
た。また厚み0.15mmのガラス布にポリフェニレンオキサ
イド(PPO)を乾燥後の樹脂量が50%になるように含浸
し、乾燥することによって誘電率が3.5のガラス布基材
ポリフェニレンオキサイドプリプレグを得た。 次に第1図の配置で4枚のガラス布基材エポキシ樹脂プ
リプレグと4枚のガラス布基材ポリフェニレンオキサイ
ドプリプレグとを重ねると共に、さらに両面に厚み0.03
5mmの銅箔を重ね、これを30kg/cm2、180℃、90分の条
件で加熱加圧して積層成形することによって、厚み1.6m
mの電気用積層板を得た。この電気用積層板の誘電率は
約4.1であった。 従来例1 実施例1で得たガラス布基材エポキシ樹脂プリプレグの
みを8枚用い、あとは同様に積層成形することによっ
て、厚み1.6mmの電気用積層板を得た。この電気用積層
板の誘電率は4.8であった。 従来例2 実施例1で得たガラス布基材ポリフェニレンオキサイド
プリプレグのみを8枚用い、あとは同様に積層成形する
ことによって、厚み1.6mmの電気用積層板を得た。この
電気用積層板の誘電率は3.5であった。 実施例2 厚み0.15mmのガラス布にポリイミドを乾燥後の樹脂量が
50%になるように含浸し、乾燥することによって誘電率
が4.5のガラス布基材ポリイミドプリプレグを得た。 次に第2図の配置で実施例1で得た5枚のガラス布基材
ポリフェニレンオキサイドプリプレグと3枚のガラス布
基材ポリイミドプリプレグとを重ね、あとは同様に積層
成形することによって、厚み1.6mmの電気用積層板を得
た。この電気用積層板の誘電率は約3.9mmであった。 従来例3 実施例1で得たガラス布基材ポリイミドプリプレグのみ
を8枚用い、あとは同様に積層成形することによって、
厚み1.6mmの電気用積層板を得た。この電気用積層板の
誘電率は4.5であった。
The invention will now be illustrated by the examples. Example 1 A glass cloth base material epoxy resin prepreg having a dielectric constant of 4.8 was obtained by impregnating a glass cloth having a thickness of 0.15 mm with an epoxy resin so that the amount of resin after drying was 50% and drying. Further, a glass cloth having a thickness of 0.15 mm was impregnated with polyphenylene oxide (PPO) so that the amount of resin after drying was 50%, and dried to obtain a glass cloth-based polyphenylene oxide prepreg having a dielectric constant of 3.5. Next, four glass cloth base material epoxy resin prepregs and four glass cloth base material polyphenylene oxide prepregs were stacked in the arrangement shown in FIG.
By stacking 5mm copper foil and heating and pressurizing it under the conditions of 30kg / cm 2 , 180 ℃, 90 minutes, 1.6m thickness is obtained.
A m electrical laminate was obtained. The dielectric constant of this electrical laminate was about 4.1. Conventional Example 1 An electric laminate having a thickness of 1.6 mm was obtained by using only eight glass cloth base epoxy resin prepregs obtained in Example 1 and laminating the same in the same manner. The dielectric constant of this electrical laminate was 4.8. Conventional Example 2 Eight glass cloth-based polyphenylene oxide prepregs obtained in Example 1 were used alone, and thereafter laminated in the same manner to obtain a 1.6 mm-thick electrical laminate. The dielectric constant of this electrical laminate was 3.5. Example 2 The amount of resin after drying polyimide on a glass cloth having a thickness of 0.15 mm is
A glass cloth base polyimide prepreg having a dielectric constant of 4.5 was obtained by impregnating it to 50% and drying. Next, the glass cloth base material polyphenylene oxide prepreg obtained in Example 1 and the three glass cloth base material polyimide prepregs obtained in Example 1 in the arrangement shown in FIG. mm electrical laminate was obtained. The dielectric constant of this electrical laminate was about 3.9 mm. Conventional Example 3 By using only eight glass cloth-based polyimide prepregs obtained in Example 1 and laminating in the same manner,
An electric laminate having a thickness of 1.6 mm was obtained. The dielectric constant of this electrical laminate was 4.5.

【発明の効果】【The invention's effect】

上述のように本発明にあっては、複数枚のプリプレグを
重ねると共にこのプリプレグと誘電率が異なる他の複数
枚のプリプレグを重ね、この両者をさらに重ねると共に
これに金属箔をさらに重ねてこれらを積層一体化するよ
うにしたので、誘電率の異なる各種のプリプレグのうち
どの種類のものを何枚づつ組み合わせて使用するかによ
って、電気用積層板の誘電率を任意の数値に設定するこ
とができ、回路形成のファインパターンの程度に合わせ
た誘電率の設計の自由度が大きくなるものである。
As described above, in the present invention, a plurality of prepregs are overlapped with each other, and a plurality of other prepregs having different dielectric constants from the prepregs are overlapped with each other. Since it is made to be laminated and integrated, it is possible to set the dielectric constant of the electrical laminate to an arbitrary value depending on how many kinds of prepregs with different dielectric constants are used in combination. The degree of freedom in designing the dielectric constant according to the degree of fine pattern for circuit formation is increased.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は積層成形の際のプリプレグの配置を
示す分解図である。 1a,1bはプリプレグ、2は金属箔である。
FIG. 1 and FIG. 2 are exploded views showing the arrangement of prepregs during laminated molding. 1a and 1b are prepregs, and 2 is a metal foil.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数枚のプリプレグを重ねると共にこのプ
リプレグと誘電率が異なる他の複数枚のプリプレグを重
ね、この両者を重ねると共にこれに金属箔をさらに重ね
てこれらを積層一体化することを特徴とする電気用積層
板の製造方法。
1. A method of stacking a plurality of prepregs, stacking a plurality of other prepregs having a different dielectric constant from this prepreg, stacking both of them, and further stacking a metal foil on the prepregs to integrate them. And a method for manufacturing an electrical laminate.
JP2125102A 1990-05-15 1990-05-15 Method for manufacturing electrical laminate Expired - Lifetime JPH0691301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125102A JPH0691301B2 (en) 1990-05-15 1990-05-15 Method for manufacturing electrical laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125102A JPH0691301B2 (en) 1990-05-15 1990-05-15 Method for manufacturing electrical laminate

Publications (2)

Publication Number Publication Date
JPH0424986A JPH0424986A (en) 1992-01-28
JPH0691301B2 true JPH0691301B2 (en) 1994-11-14

Family

ID=14901902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125102A Expired - Lifetime JPH0691301B2 (en) 1990-05-15 1990-05-15 Method for manufacturing electrical laminate

Country Status (1)

Country Link
JP (1) JPH0691301B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117174A (en) * 1993-10-26 1995-05-09 Matsushita Electric Works Ltd Metal-foiled laminated plate and manufacture thereof
JP2013000995A (en) * 2011-06-17 2013-01-07 Panasonic Corp Metal-clad laminated plate and printed wiring board
JP2021132060A (en) * 2020-02-18 2021-09-09 オムロン株式会社 Built-in component board and power supply device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375285A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5375284A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5418885A (en) * 1977-07-14 1979-02-13 Fujitsu Ltd Laminate sheet
JPS5574874A (en) * 1978-11-30 1980-06-05 Mitsubishi Gas Chemical Co Method of making coated composite sheet and copperrcoated laminated sheet
JPH0627144B2 (en) * 1985-07-05 1994-04-13 三菱油化株式会社 Ethylene copolymer
JPS6335418A (en) * 1986-07-31 1988-02-16 Chlorine Eng Corp Ltd Concentration of yttrium solution
JP2793824B2 (en) * 1989-01-11 1998-09-03 イビデン株式会社 Electronic circuit board

Also Published As

Publication number Publication date
JPH0424986A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
JPH0691301B2 (en) Method for manufacturing electrical laminate
JPH0748589B2 (en) Method for manufacturing multilayer printed circuit board
JPH0691300B2 (en) Method for manufacturing electrical laminate
JPH0424996A (en) Manufacture of multilayer printed board
JPH07117174A (en) Metal-foiled laminated plate and manufacture thereof
JPS63199636A (en) Laminated board
JPH02244786A (en) Composite board for printed circuit
JP2950969B2 (en) Manufacturing method of laminated board
JPS63224934A (en) Laminated board
JPH0356583B2 (en)
JPH05200940A (en) Metal clad laminated sheet
JPH0722731A (en) Manufacture of laminated sheet copper-clad on both-sides
JPH10272732A (en) Copper-clad laminate and printed-wiring board
JPH04267588A (en) Multilayer printed wiring board
JPH0221694A (en) Multilayer printed circuit board
JPH08148832A (en) Multilayered printed board
JPH03285391A (en) Manufacture of multilayer wiring board
JPH0771839B2 (en) Laminated board manufacturing method
JPH0890713A (en) Production of metal clad laminated sheet
JPH03274788A (en) Manufacture of printed circuit board
JPH044145B2 (en)
JPH0466182B2 (en)
KR910007393A (en) Multilayer printed board and its manufacturing method
JPS63199638A (en) Laminated board
JPH03142996A (en) Manufacture of multilayer printed wiring board