JPH0682762B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0682762B2
JPH0682762B2 JP63242787A JP24278788A JPH0682762B2 JP H0682762 B2 JPH0682762 B2 JP H0682762B2 JP 63242787 A JP63242787 A JP 63242787A JP 24278788 A JP24278788 A JP 24278788A JP H0682762 B2 JPH0682762 B2 JP H0682762B2
Authority
JP
Japan
Prior art keywords
opening
contact hole
semiconductor device
insulating film
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63242787A
Other languages
Japanese (ja)
Other versions
JPH0290511A (en
Inventor
孝行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63242787A priority Critical patent/JPH0682762B2/en
Publication of JPH0290511A publication Critical patent/JPH0290511A/en
Publication of JPH0682762B2 publication Critical patent/JPH0682762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特にパターン形成の相互
位置を設定するための位置検出マークを含む半導体装置
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device including a position detection mark for setting mutual positions of pattern formation.

〔従来の技術〕 従来、半導体装置の製造過程において、複数の工程から
なる拡散層や、薄層等を順次積層して半導体ウエハの主
表面に所要の素子を形成しているが、各工程のパターン
形成の相互位置を設定するために、通常半導体ウエハの
一部に位置検出マークを形成し、この位置検出マークを
後工程で検出することにより、各工程のパターンの位置
設定を行なっている。この位置検出マークは、高精度の
位置合わせを行なう為、位置合わせの必要な複数の工程
毎に逐次形成する必要がある。
[Prior Art] Conventionally, in a manufacturing process of a semiconductor device, required elements are formed on a main surface of a semiconductor wafer by sequentially laminating diffusion layers, thin layers, and the like, which include a plurality of steps. In order to set mutual positions for pattern formation, a position detection mark is usually formed on a part of a semiconductor wafer, and the position of the pattern in each process is set by detecting this position detection mark in a subsequent process. This position detection mark needs to be sequentially formed for each of a plurality of steps that require position adjustment, in order to perform position adjustment with high accuracy.

例えば、素子コンタクト孔を開口する工程では、後工程
の電極配線層のパターンの位置合わせのために、位置合
わせマークを形成する必要がある。第3図は従来の半導
体装置の一例を説明するための半導体チップの断面図で
ある。第3図に示すように、素子形成領域上を覆う絶縁
膜7を開口してコンタクト孔Aを、同時に、素子形成領
域以外の領域上の絶縁膜7上に位置合わせマークとして
使用する開口部Bを形成する。この開口部Bの段差をそ
のまま位置合わせマークとして使用し、次工程の電極配
線を行なっていた。
For example, in the step of opening the element contact hole, it is necessary to form an alignment mark for aligning the pattern of the electrode wiring layer in a later step. FIG. 3 is a sectional view of a semiconductor chip for explaining an example of a conventional semiconductor device. As shown in FIG. 3, the contact hole A is formed by opening the insulating film 7 covering the element forming region, and at the same time, the opening B is used as an alignment mark on the insulating film 7 on the region other than the element forming region. To form. The step of the opening B is used as it is as an alignment mark to carry out the electrode wiring in the next step.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した従来の半導体装置では、近年の半導体チップの
高集積化に伴なう多層配線構造に対し、コンタクト孔の
段差による上層配線の断線等が起こるという欠点があっ
た。そこで、上層の電極配線層を形成を容易にするため
に、コンタクト孔の内部を多結晶シリコン等の導電材料
で埋設し、コンタクト孔表面を平坦化する構造が最近用
いられている。しかし、このような構造では、位置合わ
せマークとして使用する開口部はコンタクト孔とほぼ同
じ幅寸法であるために、コンタクト孔を埋設すると、開
口部も同様に埋設され、開口部表面が平坦化してしま
い、位置合わせ時に、位置合わせマークからの反射、解
析光の信号強度が充分得ることができず、位置合わせマ
ークとしての役割を果たさないという欠点がある。この
問題を避けるために、素子コンタクト孔を開口する工程
とは独立の工程で、半導体ウエハの表面を部分的にエッ
チングして段差を形成し、位置検出マークとし、これに
電極配線パターンの位置合わせを行う事も可能である。
しかしこの場合、電極配線パターンを素子コンタクトパ
ターンと直接の位置合わせを行なっていないため、相互
に高精度の位置合わせを行なう事ができないという欠点
があった。
The conventional semiconductor device described above has a drawback in that the upper layer wiring is broken due to the step of the contact hole, as compared with the multilayer wiring structure which has been accompanied by the recent high integration of semiconductor chips. Therefore, in order to facilitate the formation of the upper electrode wiring layer, a structure in which the inside of the contact hole is filled with a conductive material such as polycrystalline silicon to flatten the surface of the contact hole is recently used. However, in such a structure, since the opening used as the alignment mark has almost the same width as the contact hole, when the contact hole is buried, the opening is also buried and the surface of the opening is flattened. However, there is a drawback that at the time of alignment, the signal intensity of the reflected light from the alignment mark and the analysis light cannot be sufficiently obtained, and it does not serve as the alignment mark. To avoid this problem, the surface of the semiconductor wafer is partially etched to form a level difference, which is used as a position detection mark in a process independent from the process of opening the element contact hole, and the position of the electrode wiring pattern is aligned with this. It is also possible to do.
However, in this case, since the electrode wiring pattern is not directly aligned with the element contact pattern, there is a drawback that mutual alignment cannot be performed with high precision.

本発明の目的は、コンタクト孔の内部を多結晶シリコン
等で埋設した場合でも、位置合わせマークが存在する半
導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device in which the alignment mark exists even when the inside of the contact hole is filled with polycrystalline silicon or the like.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の半導体装置は、半導体基板の一主上面にフィー
ルド絶縁膜で区分された素子形成領域上に設けられた絶
縁膜と、前記絶縁膜に設けた第1の開口部に導電体材料
を埋設して形成したコンタクト孔と、前記素子形成領域
以外の領域に前記コンタクト孔の幅の2倍以上の幅で形
成した第2の開口部を埋設した前記導電体材料上面に形
成した凹部とを含んで構成される。
In the semiconductor device of the present invention, a conductive material is embedded in an insulating film provided on an element formation region divided by a field insulating film on one main upper surface of a semiconductor substrate and a first opening provided in the insulating film. And a recess formed in the upper surface of the conductor material in which a second opening having a width that is twice or more the width of the contact hole is buried in a region other than the element formation region. Composed of.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の半導体装置の一実施例を説明するため
の半導体チップの断面図、第2図(a),(b)は第1
図の実施例の製造方法を説明するための工程順に示した
半導体チップ断面図である。本実施例では、MOSトラン
ジスタの製造工程を例に説明をする。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of a semiconductor device of the present invention, and FIGS. 2 (a) and 2 (b) are first views.
FIG. 8 is a cross-sectional view of the semiconductor chip in process order for explaining the manufacturing method of the example in the drawing. In this embodiment, the manufacturing process of a MOS transistor will be described as an example.

第2図(a)に示すように、P型シリコン基板1主表面
にフィールド酸化膜2を形成することにより、素子形成
領域を形成する。この素子形成領域にソース及びドレイ
ンとなるN+拡散領域層6、ゲート酸化膜3、例えば0.35
μmの厚さの多結晶シリコンゲート電極4、例えば0.02
μmの厚さの酸化膜5を順次形成する。次に、基板全面
にリンシリケートガラス膜7を例えば、0.8μmの膜厚
で堆積する。次に、トランジスタのソース,ドレイン拡
散層に対するコンタクト孔Aを例えば、開口幅1.0μm,
深さ0.8μmで開口する。同時に、位置検出マーク形成
用開口部Bを例えば、開口幅2.4μm,深さ1.0μmで開口
する。次に、第2図(b)に示すように、リンをドープ
して低抵抗化した多結晶シリコン8を気相成長法によ
り、例えば、1.5μmの厚さに堆積する。この時、多結
晶シリコン8は、幅寸法の細いコンタクト孔A上では平
坦に近い状態となるが、幅の広い開口部B上では、約0.
6μm程度の凹部9aが発生する。次に、多結晶シリコン
8をリンシリケートガラス膜7が露出するまで異方性ド
ライエッチングすることにより、第1図に示すように、
コンタクト孔A上では平坦な多結晶シリコン面が得ら
れ、開口部B上では、凹部9aがそのまま凹部9bとして残
り、位置検出マークとして利用することができる。
As shown in FIG. 2 (a), an element formation region is formed by forming a field oxide film 2 on the main surface of the P-type silicon substrate 1. In this element formation region, an N + diffusion region layer 6 serving as a source and a drain, a gate oxide film 3, for example 0.35
μm thick polycrystalline silicon gate electrode 4, eg 0.02
An oxide film 5 having a thickness of μm is sequentially formed. Next, the phosphosilicate glass film 7 is deposited on the entire surface of the substrate to a thickness of 0.8 μm, for example. Next, a contact hole A for the source / drain diffusion layer of the transistor is formed, for example, with an opening width of 1.0 μm,
Open at a depth of 0.8 μm. At the same time, the position detection mark forming opening B is opened, for example, with an opening width of 2.4 μm and a depth of 1.0 μm. Next, as shown in FIG. 2 (b), phosphorus-doped polycrystalline silicon 8 having a low resistance is deposited to a thickness of, for example, 1.5 μm by a vapor phase epitaxy method. At this time, the polycrystalline silicon 8 is in a state of being almost flat on the contact hole A having a small width dimension, but on the wide opening B is about 0.
A recess 9a of about 6 μm is generated. Next, the polycrystalline silicon 8 is anisotropically dry-etched until the phosphosilicate glass film 7 is exposed, as shown in FIG.
On the contact hole A, a flat polycrystalline silicon surface is obtained, and on the opening B, the recess 9a remains as the recess 9b and can be used as a position detection mark.

本実施例では、開口部を埋設する材料は多結晶シリコン
を用いたが、他の導電体材料でも同様な効果が得られ
る。
In the present embodiment, polycrystalline silicon was used as the material for filling the opening, but other conductor materials can achieve the same effect.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、コンタクト孔の幅の2
倍以上の幅の開口部をコンタクト孔と同時に開口するこ
とにより、コンタクト孔に導電体材料を埋設しても、開
口部上には位置検出マークとして利用できる凹部が存在
することになる。つまり、素子コンタクト孔形成と同一
の工程で、位置検出マークも形成することができるた
め、製造工程数の増加を防止することができるととも
に、位置検出マークを用いた素子コンタクトパターンへ
の位置合わせの相対位置誤差を無くして、高精度の位置
設定を行なうことができる効果がある。
As described above, according to the present invention, the width of the contact hole is 2
By opening an opening having a width more than twice as large as the contact hole at the same time, even if a conductor material is embedded in the contact hole, a recess that can be used as a position detection mark exists on the opening. That is, since the position detection mark can be formed in the same process as the formation of the element contact hole, it is possible to prevent an increase in the number of manufacturing steps, and at the same time, to perform alignment with the element contact pattern using the position detection mark. There is an effect that relative position error can be eliminated and highly accurate position setting can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の半導体装置の一実施例を説明するため
の半導体チップの断面図、第2図(a),(b)は第1
図の実施例の製造方法を説明するための工程順に示した
半導体チップ断面図、第3図は従来の半導体装置の一例
を説明するための半導体チップの断面図である。 1……P型シリコン基板、2……フィールド酸化膜、3
……ゲート酸化膜、4……多結晶シリコンゲート電極、
5……酸化膜、6……N+型拡散層、7……リンシリケー
トガラス膜、8……多結晶シリコン、9a,9b……凹部。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of a semiconductor device of the present invention, and FIGS. 2 (a) and 2 (b) are first views.
FIG. 3 is a sectional view of a semiconductor chip showing the order of steps for explaining the manufacturing method of the embodiment shown in the figure, and FIG. 3 is a sectional view of the semiconductor chip for explaining an example of a conventional semiconductor device. 1 ... P-type silicon substrate, 2 ... field oxide film, 3
...... Gate oxide film, 4 …… Polycrystalline silicon gate electrode,
5 ... Oxide film, 6 ... N + type diffusion layer, 7 ... Phosphosilicate glass film, 8 ... Polycrystalline silicon, 9a, 9b ... Recesses.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の一主上面にフィールド絶縁膜
で区分された素子形成領域上に設けられた絶縁膜と、前
記絶縁膜に設けた第1の開口部に導電体材料を埋設して
形成したコンタクト孔と、前記素子形成領域以外の領域
に前記コンタクト孔の幅の2倍以上の幅で形成した第2
の開口部を埋設した前記導電体材料上面に形成した凹部
とを含んで形成されていることを特徴とする半導体装
置。
1. An insulating film provided on an element forming region divided by a field insulating film on one main upper surface of a semiconductor substrate, and a conductor material embedded in a first opening provided in the insulating film. The formed contact hole and the second formed in a region other than the element formation region with a width twice or more the width of the contact hole.
And a recess formed on the upper surface of the conductor material in which the opening of the semiconductor device is embedded.
JP63242787A 1988-09-27 1988-09-27 Semiconductor device Expired - Lifetime JPH0682762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242787A JPH0682762B2 (en) 1988-09-27 1988-09-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242787A JPH0682762B2 (en) 1988-09-27 1988-09-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0290511A JPH0290511A (en) 1990-03-30
JPH0682762B2 true JPH0682762B2 (en) 1994-10-19

Family

ID=17094286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242787A Expired - Lifetime JPH0682762B2 (en) 1988-09-27 1988-09-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0682762B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043201A (en) 2000-07-28 2002-02-08 Mitsubishi Electric Corp Method of manufacturing semiconductor device and semiconductor device
US8060167B2 (en) 2002-07-19 2011-11-15 Panasonic Corporation Portable wireless machine
JP5772301B2 (en) * 2011-06-30 2015-09-02 富士通セミコンダクター株式会社 Alignment mark forming method and semiconductor wafer

Also Published As

Publication number Publication date
JPH0290511A (en) 1990-03-30

Similar Documents

Publication Publication Date Title
US4970564A (en) Semiconductor memory device having stacked capacitor cells
KR100188822B1 (en) Dynamic random access memory device having reduced stepped portions
US20070035039A1 (en) Overlay marker for use in fabricating a semiconductor device and related method of measuring overlay accuracy
US5100828A (en) Method of manufacturing a semiconductor memory using dummy source/drain contacting method
JP2890538B2 (en) Semiconductor device
JPH0682762B2 (en) Semiconductor device
US6677193B2 (en) Method of producing semiconductor device and its structure
US4504333A (en) Method of making field oxide regions
JP2625362B2 (en) Method for manufacturing semiconductor device
JP2000294490A (en) Semiconductor device and its manufacture
JP3159168B2 (en) Semiconductor device and manufacturing method thereof
US5014109A (en) Miniaturization of a contact hole in a semiconductor device
JPS6387762A (en) Manufacture of semiconductor device
JP2695812B2 (en) Semiconductor device
JP2547882B2 (en) Method for manufacturing semiconductor device
JPH067576B2 (en) Method of manufacturing semiconductor device having multilayer wiring structure
JP2839007B2 (en) Semiconductor device and manufacturing method thereof
JPH01272133A (en) Semiconductor device
JP2993039B2 (en) Active layer stacked device
JP3223904B2 (en) Method for manufacturing semiconductor device
JP2700004B2 (en) Method for manufacturing semiconductor device
JPS59178773A (en) Manufacture of semiconductor device
KR950001756B1 (en) Manufacturing method of multi-layer wiring of semiconductor device
JPH07321227A (en) Semiconductor device and its manufacture
JPH0684733A (en) Semiconductor integrated circuit device, its manufacture, and semiconductor integrated circuit manufacturing device