JPH0653621B2 - How to join ceramics - Google Patents

How to join ceramics

Info

Publication number
JPH0653621B2
JPH0653621B2 JP61286140A JP28614086A JPH0653621B2 JP H0653621 B2 JPH0653621 B2 JP H0653621B2 JP 61286140 A JP61286140 A JP 61286140A JP 28614086 A JP28614086 A JP 28614086A JP H0653621 B2 JPH0653621 B2 JP H0653621B2
Authority
JP
Japan
Prior art keywords
joining
joint
ceramic bodies
acid
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61286140A
Other languages
Japanese (ja)
Other versions
JPS63139071A (en
Inventor
光雄 桑原
泰 伊勢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61286140A priority Critical patent/JPH0653621B2/en
Publication of JPS63139071A publication Critical patent/JPS63139071A/en
Publication of JPH0653621B2 publication Critical patent/JPH0653621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1)産業上の利用分野 本発明はセラミック体の接合方法、特に成形および焼結
工程を経て得られる第1および第2セラミック体を接合
する方法に関する。
Detailed Description of the Invention A. OBJECT OF THE INVENTION (1) Field of Industrial Application The present invention relates to a method for joining ceramic bodies, and more particularly to a method for joining first and second ceramic bodies obtained through molding and sintering steps.

(2)従来の技術 従来、この種接合方法として、両セラミック体の接合面
間に存する金属性接合材を溶融してそれらを接合する手
法が知られている(特開昭60−260479号公報参
照)。
(2) Conventional Technology Conventionally, as this type of joining method, a method has been known in which a metallic joining material existing between joining surfaces of both ceramic bodies is melted to join them (Japanese Patent Laid-Open No. 60-260479). reference).

(3)発明が解決しようとする問題点 しかしながら、前記方法は両セラミック体の接合面に対
する接合材の濡れ性および両接合面と接合材との化学反
応による結合を狙ったもので、あくまでも両接合面上に
おける接合材の接合効果を期待するものであるから、高
温下等、苛酷な状況下においては接合強度が不十分であ
るといった問題がある。
(3) Problems to be Solved by the Invention However, the above method aims at the wettability of the bonding material to the bonding surface of both ceramic bodies and the bonding by the chemical reaction between both bonding surfaces and the bonding material. Since the bonding effect of the bonding material on the surface is expected, there is a problem that the bonding strength is insufficient under severe conditions such as high temperature.

本発明は前記に鑑み、両セラミック体の接合面上におけ
る接合材の接合効果だけでなく、両接合面よりも内部に
対する接合材のアンカ効果を得、これにより両セラミッ
ク体の接合強度を大幅に向上させると共に安定化させる
ことのできる前記接合方法を提供することを目的とす
る。
In view of the above, the present invention obtains not only the bonding effect of the bonding material on the bonding surfaces of both ceramic bodies but also the anchoring effect of the bonding material to the inside rather than both bonding surfaces, thereby significantly increasing the bonding strength of both ceramic bodies. It is an object of the present invention to provide the above-mentioned joining method that can be improved and stabilized.

B.発明の構成 (1)問題点を解決するための手段 本発明は、成形および焼結工程を経て得られる第1およ
び第2セラミック体を接合するに当り、前記第1および
第2セラミック体より、それらの成形に先立って配合さ
れた、酸により溶出し得る溶出可能粒子を前記酸に超音
波振動を付与しながら溶出して、両セラミック体に、そ
れらの接合面に開口する多数の連続気孔を形成する工程
と;前記第1および第2セラミック体の前記両接合面間
に金属性接合材を介在させて両セラミック体を加圧する
と共に前記金属性接合材を溶融し、該接合材を前記両セ
ラミック体の前記連続気孔に加圧含浸させる工程と;を
用いることを特徴とする。
B. Structure of the Invention (1) Means for Solving the Problems In the present invention, when joining the first and second ceramic bodies obtained through a molding and sintering process, the first and second ceramic bodies are Elutable particles that can be dissolved by an acid, which were compounded prior to their molding, were dissolved while applying ultrasonic vibration to the acid, and both ceramic bodies were provided with a large number of continuous pores opening at their joint surfaces. Forming step; pressurizing both ceramic bodies by interposing a metallic bonding material between the both bonding surfaces of the first and second ceramic bodies, and melting the metallic bonding material; And a step of impregnating the continuous pores of the ceramic body with pressure.

(2)作用 溶出可能粒子の溶出に際し、酸を流通させると共にその
酸に超音波振動を付与するので、溶出可能粒子より生じ
た可溶性塩類の連続気孔内における沈積を回避し、また
溶出反応を促進して、連続気孔の形成を迅速、且つ確実
に行うことができる。
(2) Action During the elution of elutable particles, the acid is circulated and ultrasonic vibration is applied to the acid, so that the soluble salts generated from the elutable particles are prevented from depositing in the continuous pores and the elution reaction is promoted. As a result, continuous pores can be formed quickly and reliably.

溶融した接合材は両セラミック体の接合面を濡らすの
で、両接合面上における接合材の接合効果を得ることが
できる。また溶融した接合材を両セラミック体の連続気
孔へ加圧含浸させるので、その接合材によるアンカ効果
を確実に得ることができる。
Since the melted bonding material wets the bonding surfaces of both ceramic bodies, the bonding effect of the bonding material on both bonding surfaces can be obtained. Moreover, since the molten bonding material is pressure-impregnated into the continuous pores of both ceramic bodies, the anchoring effect of the bonding material can be reliably obtained.

このような手段を採用することにより、両セラミック体
の接合強度を大幅に向上させることができる。
By adopting such a means, it is possible to greatly improve the bonding strength of both ceramic bodies.

また予め配合しておいて溶出可能粒子を溶出させるの
で、その粒子の配合量によって両セラミック体の気孔
率、したがって接合材の加圧含浸によるアンカ効果を定
常化することは容易であり、これにより両セラミック体
の接合強度を安定化させることができる。
In addition, since the particles that can be eluted are mixed in advance and the particles that can be eluted are eluted, it is easy to stabilize the porosity of both ceramic bodies, and thus the anchor effect by pressure impregnation of the bonding material, by the amount of the particles mixed. It is possible to stabilize the bonding strength of both ceramic bodies.

(3)実施例 第1図(a)は第1セラミック体としてのタービン羽根車
1を示し、また同図(b)はタービン羽根車1に接合され
る第2セラミック体としての回転軸2を示す。
(3) Example FIG. 1 (a) shows a turbine impeller 1 as a first ceramic body, and FIG. 1 (b) shows a rotary shaft 2 as a second ceramic body joined to the turbine impeller 1. Show.

タービン羽根車1は、小径軸部3を備えた羽根車本体4
と、その小径軸部3の外面全体を覆うように羽根車本体
4と一体化された接合筒部5とよりなる。
The turbine impeller 1 includes an impeller body 4 having a small-diameter shaft portion 3.
And a joining cylinder portion 5 integrated with the impeller body 4 so as to cover the entire outer surface of the small diameter shaft portion 3.

回転軸2は、横断面四角形の角筒部6を備えた軸本体7
と、その角筒部6の内面全体を覆うように軸本体7と一
体化された接合筒部8とよりなる。
The rotating shaft 2 includes a shaft body 7 having a square tube portion 6 having a rectangular cross section.
And a joining cylinder portion 8 integrated with the shaft body 7 so as to cover the entire inner surface of the square cylinder portion 6.

タービン羽根車1および回転軸2は、原料の調製、成形
および焼結の各工程を経て製造される。
The turbine impeller 1 and the rotating shaft 2 are manufactured through the steps of raw material preparation, molding and sintering.

原料は、羽根車本体4および軸本体7と両接合筒部5,
8とでは異なり、羽根車本体4および軸本体7の原料と
してはセラミック粉末、その粉末の焼結温度で焼結作用
を発揮する焼結助剤等が用いられ、また両接合筒部5,
8の原料には、前記の外にそれら筒部5,8を、その接
合面としての内、外面に開口する多数の連続気孔を持つ
三次元網目構造にするため、酸により溶出し得る溶出可
能粒子が用いられる。
The raw material is the impeller body 4 and the shaft body 7, and the joint tube portions 5, 5.
8, the raw material of the impeller main body 4 and the shaft main body 7 is a ceramic powder, a sintering aid exhibiting a sintering action at the sintering temperature of the powder, and the like.
The raw material of 8 has a three-dimensional network structure having a large number of continuous pores that open to the inside and the outside as the joint surface of the cylinders 5 and 8 in addition to the above, and therefore can be eluted by an acid. Particles are used.

セラミック粉末としては、Si、SiC、ZrO
、TiC、TiN等の単独粉末およびこれらから選択
されたものの混合粉末が該当する。
As the ceramic powder, Si 3 N 4 , SiC, ZrO is used.
2 , single powders of TiC, TiN, and the like, and mixed powders selected from these powders are applicable.

焼結助剤としては、Al、Y、MgO、S
iO等の単独粉末およびこれらから選択されたものの
混合粉末が該当する。
As a sintering aid, Al 2 O 3 , Y 2 O 3 , MgO, S
Single powders such as iO 2 and mixed powders selected from these are applicable.

溶出可能粒子としては、Al、NaO、SiO
、MgO、KO、B、CaOおよび必要に応
じてCaClを混合、溶融、冷却固化および微粉砕の
各工程を経て製造されたものが該当する。
Examples of particles that can be eluted include Al 2 O 3 , Na 2 O, and SiO.
Those produced through the steps of mixing, melting, cooling and solidifying, and finely pulverizing 2 , MgO, K 2 O, B 2 O 3 , CaO and, if necessary, CaCl 2 are applicable.

原料の調製に当たっては、前記各種構成物質をボールミ
ル等の混合機を用いて所定時間混合し、それらを均一に
分散させる。
In preparing the raw materials, the various constituent substances are mixed for a predetermined time using a mixer such as a ball mill to uniformly disperse them.

前記原料を用いて成形体を得る場合には、加圧成形法、
射出成形法、水を分散媒としたスリップキャスティング
法等が用いられる。
When a molded body is obtained using the raw material, a pressure molding method,
An injection molding method, a slip casting method using water as a dispersion medium, or the like is used.

前記成形体に焼結処理を施す場合の条件は、Nガス等
の不活性ガス雰囲気中にて1200〜1800℃、0.5
〜24時間である。
The conditions for subjecting the molded body to the sintering treatment are 1200 to 1800 ° C. and 0.5 ° C. in an inert gas atmosphere such as N 2 gas.
~ 24 hours.

前記焼結処理によって緻密な組織を有するタービン羽根
車1および回転軸2が得られる。タービン羽根車1およ
び回転軸2の緻密化の程度は、主として焼結助剤の配合
量ならびに焼結処理における温度および時間によって制
御される。
By the sintering treatment, the turbine impeller 1 and the rotating shaft 2 having a dense structure can be obtained. The degree of densification of the turbine impeller 1 and the rotary shaft 2 is mainly controlled by the compounding amount of the sintering aid and the temperature and time in the sintering process.

また溶出可能粒子も焼結助剤的な機能をするので、両接
合筒部5,8においては前記粒子の配合量も緻密化に関
与する因子となる。
Further, since the elutable particles also function as a sintering aid, the compounding amount of the particles in both joining cylinders 5 and 8 is also a factor involved in the densification.

両接合筒部5,8から溶出可能粒子を溶出するために用
いられる酸としては、硝酸、塩酸等の単一酸、これらの
混酸、前記単一酸または前記混酸に少量のフッ化水素酸
を添加したもの等が用いられる。
As the acid used for eluting the elutable particles from both the joining cylinders 5 and 8, a single acid such as nitric acid or hydrochloric acid, a mixed acid thereof, the single acid or a small amount of hydrofluoric acid in the mixed acid is used. Those added are used.

各酸により溶出可能粒子を可溶性塩類に変えて両接合筒
部5,8より溶出し、両接合筒部5,8を多数の連続気
孔を持つ三次元網目構造にする。その際、酸を流通させ
ると共にそれに超音波振動を付与し、これにより連続気
孔内における可溶性塩類の沈積を回避し、また溶出反応
を促進して、連続気孔の形成を迅速、且つ確実に行うこ
とができる。
The particles that can be eluted by each acid are changed to soluble salts and are eluted from both joint cylinders 5 and 8 to form both joint cylinders 5 and 8 into a three-dimensional network structure having a large number of continuous pores. At that time, the acid is circulated and ultrasonic vibration is applied to the acid, thereby avoiding the deposition of soluble salts in the continuous pores, and promoting the elution reaction to form the continuous pores quickly and reliably. You can

この場合両接合筒部5,8の強度は、主として連続気孔
の大きさ(直径)および気孔率により左右される。
In this case, the strength of the two joining cylinders 5 and 8 mainly depends on the size (diameter) of the continuous pores and the porosity.

第2図は、両接合筒部5,8の気孔率と曲げ強さとの関
係を示し、それらの接合強度を考慮すると、気孔率は1
0〜30%が適当であり、また連続気孔の大きさは1〜
10μmが適当である。このように連続気孔の大きさお
よび気孔率を設定することにより、前記焼結処理におけ
る緻密化に伴うセラミック粉末の結晶成長もあって、両
接合筒部5,8に、必要強度を持たせることができる。
FIG. 2 shows the relationship between the porosity and the bending strength of the two joining cylinders 5 and 8. Considering the joining strengths thereof, the porosity is 1
0-30% is suitable, and the size of continuous pores is 1-
10 μm is suitable. By setting the size and the porosity of the continuous pores in this way, there is a crystal growth of the ceramic powder due to the densification in the sintering process, so that both the joining cylinder parts 5 and 8 have a necessary strength. You can

前記連続気孔の大きさおよび気孔率は溶出可能粒子の粒
径および配合量によって左右されるものであるから、前
記適当範囲を得ることができるように前記粒径および配
合量が決定される。
Since the size and porosity of the continuous pores depend on the particle size and blending amount of the elutable particles, the particle size and blending amount are determined so that the appropriate range can be obtained.

タービン羽根車1と回転軸2とを一体化する場合は、溶
出処理後の両接合筒部5,8を嵌合すると共に接合筒部
5の外面および接合筒部8の内面、したがって両接合面
間に金属性接合材を介在させる。そして、大気下、真空
下等の雰囲気下において角筒部6をその外周から加圧す
ると共に接合材を溶融し、その接合材によって両接合筒
部5,8の接合面を濡らし、またその接合材を両接合筒
部5,8の連続気孔に加圧含浸させるものである。接合
材の溶融は真空下で行う方が、その接合材の酸化を防止
し得るので、接合強度を増す上に有効である。
When the turbine impeller 1 and the rotating shaft 2 are integrated, both the joining cylinder parts 5 and 8 after the elution treatment are fitted and the outer surface of the joining cylinder part 5 and the inner surface of the joining cylinder part 8, and thus both the joining surfaces. A metallic bonding material is interposed therebetween. Then, in an atmosphere such as an atmosphere or a vacuum, the square tube portion 6 is pressed from its outer periphery and the bonding material is melted, and the bonding material wets the bonding surfaces of both the bonding tube portions 5 and 8. Is to be impregnated under pressure into the continuous pores of both joint cylinders 5, 8. It is more effective to melt the bonding material under vacuum because it can prevent the bonding material from being oxidized and thus increase the bonding strength.

また接合材は、蒸着等の手段を用いて予め両接合筒部
5,8の少なくとも一方に保持させておいてもよい。
Further, the bonding material may be held in advance in at least one of the bonding cylinder portions 5 and 8 by using a means such as vapor deposition.

前記手法により、接合材の濡れ性に基づく両接合面上に
おける接合効果および接合材の加圧含浸によるアンカ効
果を確実に得ることができ、これにより両接合筒部5,
8、したがってタービン羽根車1と回転軸2との接合強
度を大幅に向上させることができる。
By the above method, it is possible to surely obtain the joining effect on both joining surfaces based on the wettability of the joining material and the anchor effect by the pressure impregnation of the joining material.
8, therefore, the joint strength between the turbine impeller 1 and the rotating shaft 2 can be significantly improved.

また予め配合しておいた溶出可能粒子を溶出させるの
で、その粒子の配合量によって両接合筒部5,8の気孔
率、したがって接合材の加圧含浸によるアンカ効果を定
常化することは容易であり、これによりタービン羽根車
1と回転軸2との接合強度を安定化させることができ
る。
In addition, since the elutable particles that have been mixed in advance are eluted, it is easy to stabilize the porosity of both joining cylinders 5, 8 and hence the anchoring effect by pressure impregnation of the joining material depending on the amount of the particles. Therefore, the joint strength between the turbine impeller 1 and the rotary shaft 2 can be stabilized.

金属性接合材としては、5〜8重量%Cuを含むNi−
Cu系ろう材、14重量%Cr、4重量%Si、3.4重
量%Bを含むNi−Cr系ろう材、その為公知のろう材
等が用いられる。
As the metallic bonding material, Ni-containing 5 to 8 wt% Cu
A Cu-based brazing material, a Ni-Cr-based brazing material containing 14% by weight Cr, 4% by weight Si, and 3.4% by weight B, and thus a known brazing material is used.

〔実施例I〕[Example I]

(a)羽根車本体および軸本体用原料の調製 セラミック粉末 平均粒径0.5μm、最大粒径5μmの Si 89重量% 焼結助剤粉末 Y 5重量% Al 6重量% をボールミルにて24時間混合する。(a) Preparation of raw materials for impeller body and shaft body Ceramic powder Si 3 N 4 89% by weight with an average particle size of 0.5 μm and maximum particle size of 5 μm Sintering aid powder Y 2 O 3 5% by weight Al 2 O 3 6 Mix by weight in a ball mill for 24 hours.

(b)両接合筒部用原料の調製 先ず、溶出可能粒子を下記の手法を用いて製造する。(b) Preparation of Raw Material for Both Jointed Cylinders First, elutable particles are manufactured using the following method.

Al5.9重量%、NaO11.4重量%、SiO2
5.2重量%、MgO13.0重量%、KO4.0重量%、B
38.0重量%、CaO2.5重量%よりなる配合物をボ
ールミルにて十分に混合し、その混合物を1400℃ま
で昇温して溶融し、その後溶融物を冷却固化する。この
固化物に微粉砕処理を施して平均粒径0.5μm、最大粒
径5μmの溶出可能粒子を得る。この溶出可能粒子の粒
度分布はセラミック粉末のそれに合せてある。
Al 2 O 3 5.9 wt%, Na 2 O11.4 wt%, SiO 2 2
5.2 wt%, MgO 13.0 wt%, K 2 O 4.0 wt%, B 2
A mixture consisting of 38.0 wt% O 3 and 2.5 wt% CaO is thoroughly mixed in a ball mill, the mixture is heated to 1400 ° C. to be melted, and then the melt is cooled and solidified. The solidified material is subjected to fine pulverization treatment to obtain elutable particles having an average particle size of 0.5 μm and a maximum particle size of 5 μm. The particle size distribution of the elutable particles is matched to that of the ceramic powder.

セラミック粉末 平均粒径0.5μm、最大粒径5μmの Si 81重量% 焼結助剤粉末 Y 2重量% Al 3重量% 溶出可能粒子 14重量% をボールミルにて24時間混合する。Ceramic powder having an average particle size of 0.5 μm and a maximum particle size of 5 μm Si 3 N 4 81% by weight Sintering aid powder Y 2 O 3 2% by weight Al 2 O 3 3% by weight Elutable particles 14% by weight in a ball mill 24 Mix for hours.

前記(a)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して羽根車本体1に対応する成
形体を得る。
A slip casting method is applied using the raw material of (a) and water as a dispersion medium to obtain a molded body corresponding to the impeller body 1.

前記(b)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して接合筒部5に対応する成形
体を得ると同時にその成形体と前記成形体とを一体化し
てタービン羽根車1に対応する最終成形体を作製する。
Using the raw material (b) and water as a dispersion medium, a slip casting method is applied to obtain a molded body corresponding to the joining cylinder portion 5, and at the same time, the molded body and the molded body are integrated to form a turbine impeller 1 The final molded body corresponding to is manufactured.

同様の手法により回転軸2に対応する最終成形体を作製
する。
A final molded body corresponding to the rotary shaft 2 is manufactured by the same method.

両最終成形体を焼結炉内に設置し、炉内にNガスを流
通させながら炉内温度を1600℃まで昇温し、この温
度を2時間維持する。
Both final molded bodies are installed in a sintering furnace, the temperature in the furnace is raised to 1600 ° C. while N 2 gas is passed through the furnace, and this temperature is maintained for 2 hours.

この焼結処理によってタービン羽根車1および回転軸2
を得る。
By this sintering treatment, the turbine impeller 1 and the rotating shaft 2
To get

タービン羽根車1および回転軸2における密度は、理論
密度の95%以上であって非常に緻密であり、また室温
での曲げ強さは3点曲げ試験において85〜90kgf/m
m2である。また破断面を走査型電子顕微鏡を用いて観察
したところ、結晶の成長に伴いセラミック粉末は粒径3
〜4μmの六角柱状晶となっており、結晶の異常成長は
認められていない。
The density in the turbine impeller 1 and the rotary shaft 2 is 95% or more of the theoretical density, which is very dense, and the bending strength at room temperature is 85 to 90 kgf / m in a three-point bending test.
m 2 . When the fracture surface was observed with a scanning electron microscope, the grain size of the ceramic powder was 3 with the growth of the crystal.
It is a hexagonal columnar crystal having a size of ˜4 μm, and no abnormal crystal growth is observed.

前記タービン羽根車1の接合筒部5に、以下に述べる溶
出処理を施す。
The joining cylinder portion 5 of the turbine impeller 1 is subjected to the elution treatment described below.

25%の硝酸を50℃に加熱し、その硝酸を流通させる
と共にそれに超音波振動を付与し、この状況下にある硝
酸に接合筒部5を30分間浸漬して溶出可能粒子を溶出
する。
25% nitric acid is heated to 50 ° C., the nitric acid is circulated and ultrasonic vibration is applied to the nitric acid, and the joining cylinder 5 is immersed in nitric acid under this condition for 30 minutes to elute the elutable particles.

同様の手法により回転軸2の接合筒部8に溶出処理を施
す。
By the same method, the joining cylinder portion 8 of the rotary shaft 2 is subjected to the elution treatment.

両接合筒部5,8の重量減少率は15.0%であり、溶出可
能粒子の略全量が溶出されたことになる。
The weight reduction rate of both the joining cylinders 5 and 8 was 15.0%, which means that almost all of the elutable particles were eluted.

両接合筒部5,8の破断面観察により、両接合筒部5,
8における気孔の大きさは約2μm、また気孔率は16
%であり、大部分の気孔が連続していることが確認され
ている。焼結後の気孔率は見掛上0%であったから、約
1%の閉鎖された気孔が存在することになる。
By observing the fracture surface of both joint cylinder parts 5, 8, both joint cylinder parts 5, 8
The size of the pores in 8 is about 2 μm, and the porosity is 16
%, And it is confirmed that most of the pores are continuous. Since the porosity after sintering was apparently 0%, there is about 1% of closed porosity.

第3図に示すように、両接合筒部5,8を嵌合すると共
に接合筒部5の外面および接合筒部8の内面、したがっ
て両接合面間に、前記Ni−Cu系ろう材を介在させ、
両者1,2をプレス機9に設置する。そして真空下にお
いて上、下部パンチ10,11により角筒部6を圧力2
00kgf/mm2を以て加圧すると共にNi−Cu系ろう材
を1200℃に加熱して溶融し、そのNi−Cu系ろう
材によって両接合筒部5,8の接合面を濡らし、またN
i−Cu系ろう材を両接合筒部5,8の連続気孔に加圧
含浸させる。
As shown in FIG. 3, the Ni-Cu-based brazing filler metal is interposed between the joint tubular portions 5 and 8 and the outer surface of the joint tubular portion 5 and the inner surface of the joint tubular portion 8, and thus both the joint surfaces. Let
Both 1 and 2 are installed in the press 9. Then, under vacuum, the upper and lower punches 10 and 11 press the square tube portion 6 under pressure 2.
The Ni-Cu brazing material is heated to 1200 ° C. and melted while being pressurized with 00 kgf / mm 2, and the Ni-Cu brazing material wets the joint surfaces of both joint cylinders 5 and 8.
The i-Cu-based brazing material is pressure-impregnated into the continuous pores of both joint cylinders 5 and 8.

前記接合作業後、回転軸2の角筒部6に仕上げ加工を施
して、第4図に示すタービン羽根車1および回転軸2の
接合体を得る。
After the joining work, the square tubular portion 6 of the rotary shaft 2 is subjected to finishing work to obtain a joined body of the turbine impeller 1 and the rotary shaft 2 shown in FIG.

この接合体においては、第5図に示すように両接合筒部
5,8の接合面間がNi−Cu系ろう材Bにより接合さ
れ、またSiを主体とするセラミック材料C間の
連続気孔PがNi−Cu系ろう材Bにより埋められてア
ンカ効果が発生している。このNi−Cu系ろう材Bの
含浸状況を光学顕微鏡および走査型電子顕微鏡にて観察
したところ、含浸不良箇所のないことが確認されてい
る。
In this joined body, as shown in FIG. 5, the joining surfaces of the joining tubular portions 5 and 8 are joined by the Ni—Cu brazing filler metal B, and between the ceramic materials C mainly composed of Si 3 N 4 . The continuous pores P are filled with the Ni—Cu brazing filler metal B, and the anchor effect occurs. The state of impregnation of the Ni—Cu brazing filler metal B was observed with an optical microscope and a scanning electron microscope, and it was confirmed that there were no impregnated defects.

第6図は、両接合筒部5,8およびNi−Cu系ろう材
Bよりなる接合部分における温度と曲げ強さとの関係を
示し、第6図よりタービン羽根車1と回転軸2とは、そ
れらの一部を構成する、室温および高温下において高強
度な接合部分によって一体化されていることが明らかで
ある。
FIG. 6 shows the relationship between the temperature and the bending strength at the joints composed of both joint cylinders 5, 8 and the Ni—Cu brazing filler metal B. From FIG. 6, the turbine impeller 1 and the rotary shaft 2 are It is clear that they are integrated by a high-strength joint part that forms part of them at room temperature and high temperature.

また、前記接合体を、温度差700℃に急熱した後、直
ちに水中に投下し、この操作を繰返す、繰返し熱衝撃性
試験を行ったところ、セラミック材料単体部分には20
回でクラックを生じたが、前記接合部分にはクラックの
発生といったような異状のないことが確認されている。
Also, when the joined body was rapidly heated to a temperature difference of 700 ° C., immediately dropped in water, and this operation was repeated, a repeated thermal shock resistance test was conducted.
It was confirmed that cracks were generated during the rotation, but no abnormalities such as cracks were generated in the joint portion.

したがって、タービン羽根車1と回転軸2との接合強度
が大幅に向上していることが明らかである。
Therefore, it is clear that the joint strength between the turbine impeller 1 and the rotating shaft 2 is significantly improved.

〔実施例II〕Example II

(a)羽根車本体および軸本体用原料の調製 セラミック粉末 平均粒径0.4μm、最大粒径5μmの Si 90重量% 焼結助剤粉末 Y 5重量% Al 5重量% をボールミルにて24時間混合する。(a) Preparation of raw materials for impeller body and shaft body Ceramic powder Si 3 N 4 90% by weight with an average particle size of 0.4 μm and maximum particle size of 5 μm Sintering aid powder Y 2 O 3 5% by weight Al 2 O 3 5 Mix by weight in a ball mill for 24 hours.

(b)両接合筒部用原料の調製 溶出可能粒子において、そのAl、MgO成分等はセ
ラミック粉末であるSiと固溶する等の報告もあ
るため、実施例Iの場合と配合量を変え、また異常な結
晶成長を抑制するため新たな成分としてハロゲン化物、
実施例ではCaClを用い、溶出可能粒子を下記の手
法を用いて製造する。
(b) Preparation of raw materials for both joint cylinders In the case of Example I, there is a report that the Al 2 O 3 , MgO components, etc. of the elutable particles form a solid solution with Si 3 N 4 which is a ceramic powder. And halide as a new component to change the compounding amount and suppress abnormal crystal growth,
In the examples, CaCl 2 is used, and elutable particles are manufactured using the following method.

Al8.6重量%、NaO10.3重量%、SiO2
4.2重量%、MgO15.0重量%、KO2.1重量%、B
39.16重量%、CaO0.6重量%、CaCl0.04重
量%よりなる配合物をボールミルにて十分に混合し、そ
の混合物を1200℃まで昇温して溶融し、その後溶融
物を冷却固化する。この固化物に微粉砕処理を施して平
均粒径1μm、最大粒径5μmの溶出可能粒子を得る。
Al 2 O 3 8.6 wt%, Na 2 O10.3 wt%, SiO 2 2
4.2 wt%, MgO 15.0 wt%, K 2 O 2.1 wt%, B 2
A mixture consisting of 39.16% by weight of O 3, 0.6% by weight of CaO and 0.04% by weight of CaCl 2 is thoroughly mixed in a ball mill, and the mixture is heated to 1200 ° C. to be melted, and then the melt is cooled and solidified. . The solidified product is subjected to fine pulverization treatment to obtain elutable particles having an average particle size of 1 μm and a maximum particle size of 5 μm.

また溶出可能粒子と焼結助剤とが反応したり、焼結助剤
のうち前記溶出処理により溶出されるものもあることが
懸念されるため焼結助剤を除き、 セラミック粉末 平均粒径0.4μM、最大粒径5μmの Si 93重量% 溶出可能粒子 7重量% をボールミルにて24時間混合する。
Also, since it is feared that the particles that can be dissolved out will react with the sintering aid and that some of the sintering aids will be eluted by the above-mentioned elution treatment, the sintering aid is excluded and the average particle size of the ceramic powder is 0.4 93% by weight of Si 3 N 4 having a maximum particle size of 5 μm and 7% by weight of elutable particles are mixed in a ball mill for 24 hours.

前記(a)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して羽根車本体4に対応する成
形体を得る。
A slip casting method is applied using the raw material of (a) and water as a dispersion medium to obtain a molded body corresponding to the impeller body 4.

前記(b)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して接合筒部5に対応する成形
体を得ると同時にその成形体と前記成形体とを一体化し
てタービン羽根車1に対応する最終成形体を作製する。
Using the raw material (b) and water as a dispersion medium, a slip casting method is applied to obtain a molded body corresponding to the joining cylinder portion 5, and at the same time, the molded body and the molded body are integrated to form a turbine impeller 1 The final molded body corresponding to is manufactured.

同様の手法により回転軸2に対応する最終成形体を作製
する。
A final molded body corresponding to the rotary shaft 2 is manufactured by the same method.

両最終成形体を焼結炉内に設置し、炉内にNガスを流
通させながら炉内温度を1600℃まで昇温し、この温
度を2時間維持する。
Both final molded bodies are installed in a sintering furnace, the temperature in the furnace is raised to 1600 ° C. while N 2 gas is passed through the furnace, and this temperature is maintained for 2 hours.

この焼結処理によってタービン羽根車1および回転軸2
を得る。
By this sintering treatment, the turbine impeller 1 and the rotating shaft 2
To get

このタービン羽根車1および回転軸2における密度は、
理論密度の95〜97%であって非常に緻密であり、ま
た室温での曲げ強さは3点曲げ試験において約80kgf
/mm2である。また破断面を走査型電子顕微鏡を用いて
観察したところ、結晶成長に伴いセラミック粉末は粒径
3〜4μmの六角柱状晶となっており、結晶の異常成長
は認められていない。
The densities of the turbine impeller 1 and the rotating shaft 2 are
It is 95 to 97% of the theoretical density and is very dense, and the bending strength at room temperature is about 80 kgf in the three-point bending test.
/ Mm 2 . When the fracture surface was observed using a scanning electron microscope, the ceramic powder became hexagonal columnar crystals with a grain size of 3 to 4 μm along with the crystal growth, and no abnormal crystal growth was observed.

前記タービン羽根車1の接合筒部5に、以下に述べる溶
出処理を施す。
The joining cylinder portion 5 of the turbine impeller 1 is subjected to the elution treatment described below.

25%の硝酸および0.1%のフッ化水素酸よりなる混酸
を50℃に加熱し、その混酸を流通させると共にそれに
超音波振動を付与し、この状況下にある硝酸に接合筒部
5を30分間浸漬して溶出可能粒子を溶出する。
A mixed acid consisting of 25% nitric acid and 0.1% hydrofluoric acid is heated to 50 ° C., the mixed acid is circulated and ultrasonic vibration is applied to the mixed acid. Immerse to elute the elutable particles.

同様の手法により回転軸2の接合筒部8に溶出処理を施
す。
By the same method, the joining cylinder portion 8 of the rotary shaft 2 is subjected to the elution treatment.

両接合筒部5,8の重量減少率は5.8%であり、溶出可
能粒子の配合量よりも少ないが、これは溶出可能粒子の
成分のうちAl、MgO等がSiと固溶
し、またSiOが窒化されたことに起因するものと思
われる。
The weight reduction rate of both joining cylinders 5 and 8 is 5.8%, which is smaller than the compounding amount of the elutable particles, but this is because Al 2 O 3 , MgO, etc. are among the components of the elutable particles as Si 3 N 4 . It is believed that this is due to solid solution and nitridation of SiO 2 .

両接合筒部5,8の破断面観察により、両接合筒部5,
8における連続気孔の大きさは最大約3μm、また気孔
率は15%であり、閉鎖気孔はなく全ての気孔が連続し
ていることが確認されている。
By observing the fracture surface of both joint cylinder parts 5, 8, both joint cylinder parts 5, 8
The size of continuous pores in Example 8 was about 3 μm at the maximum, and the porosity was 15%, and it was confirmed that all the pores were continuous without closed pores.

第3図に示すように、両接合筒部5,8を嵌合すると共
に接合筒部5の外面および接合筒部8の内面、したがっ
て両接合面間に前記Ni−Cr系ろう材を介在させ、両
者1,2をプレス機9に設置する。そしてN、Ar等
による不活性ガス雰囲気下において上、下部パンチ1
0,11により角筒部6を圧力150kgf/mm2を以て加
圧すると共にNi−Cr系ろう材を1200℃に加熱し
て溶融し、そのNi−Cr系ろう材によって両接合筒部
5,8の接合面を濡らし、またNi−Cr系ろう材を両
接合筒部5,8の連続気孔に加圧含浸させる。
As shown in FIG. 3, both the joining cylinder parts 5 and 8 are fitted together, and the Ni-Cr brazing filler metal is interposed between the outer surface of the joining cylinder part 5 and the inner surface of the joining cylinder part 8, and thus both joining surfaces. , 1 and 2 are installed in the press 9. Then, in an inert gas atmosphere of N 2 , Ar or the like, the upper and lower punches 1
0, 11 presses the rectangular tube portion 6 with a pressure of 150 kgf / mm 2, and heats the Ni-Cr brazing material to 1200 ° C to melt it. The joint surfaces are wetted, and the Ni-Cr brazing material is pressure-impregnated into the continuous pores of both joint cylinders 5, 8.

前記接合作業後、回転軸2の角筒部6に仕上げ加工を施
して、第4図に示すタービン羽根車1および回転軸2の
接合体を得る。
After the joining work, the square tubular portion 6 of the rotary shaft 2 is subjected to finishing work to obtain a joined body of the turbine impeller 1 and the rotary shaft 2 shown in FIG.

この接合体においては、第5図に示すように接合筒部
5,8の接合面間がNi−Cr系ろう材Bにより接合さ
れ、またSiを主体とするセラミック材料C間の
連続気孔PがNi−Cr系ろう材Bにより埋められてア
ンカ効果が発生している。
In this joined body, as shown in FIG. 5, the joining surfaces of the joining tubular portions 5 and 8 are joined by the Ni—Cr brazing filler metal B, and the continuity between the ceramic materials C mainly composed of Si 3 N 4 is continuous. The pores P are filled with the Ni—Cr brazing filler metal B, and the anchor effect occurs.

両接合筒部5,8およびNi−Cr系ろう材Bよりなる
接合部分の室温での曲げ強さは、3点曲げ試験において
90kgf/mm2で、セラミック材料Cの曲げ強さ85〜9
0kgf/mm2と略同等であり、また室温〜500℃におい
て接合部分の強度劣化も殆どみられず、曲げ強さ80〜
100kgf/mm2を保持していることが判明している。し
たがって実施例I同様にタービン羽根車1と回転軸2と
の接合強度が大幅に向上していることが明らかである。
The bending strength at room temperature of the joint portion composed of both joint cylinders 5 and 8 and the Ni-Cr brazing filler metal B was 90 kgf / mm 2 in the three-point bending test, and the bending strength of the ceramic material C was 85 to 9
It is almost equivalent to 0 kgf / mm 2, and at room temperature to 500 ° C, there is almost no deterioration in the strength of the joint, and the bending strength is 80 to
It is known to hold 100 kgf / mm 2 . Therefore, it is apparent that the joining strength between the turbine impeller 1 and the rotary shaft 2 is significantly improved as in the case of the embodiment I.

なお、本発明はタービン羽根車と回転軸との接合に限ら
ず、各種セラミック体の接合、例えば板状セラミック体
と板状セラミック体の接合等にも適用される。
The present invention is not limited to joining the turbine impeller and the rotary shaft, but is also applicable to joining various ceramic bodies, for example, joining plate-shaped ceramic bodies to each other.

C.発明の効果 本発明によれば、第1および第2セラミック体の接合面
に対する接合材の濡れ性に基づく接合効果および両セラ
ミック体の連続気孔への接合材の加圧含浸によるアンカ
効果を得ると共にそのアンカ効果の定常化を実現し、こ
れにより両セラミック体の接合強度を大幅に向上させる
と共に安定化させることができる。
C. EFFECTS OF THE INVENTION According to the present invention, the bonding effect based on the wettability of the bonding material to the bonding surfaces of the first and second ceramic bodies and the anchor effect by the pressure impregnation of the bonding material into the continuous pores of both ceramic bodies are obtained. The anchor effect is stabilized, and the bonding strength of both ceramic bodies can be significantly improved and stabilized.

また両セラミック体への連続気孔の形成を、溶出可能粒
子の配合、その粒子の酸による溶出およびその酸の流通
と共にそれに対する超音波振動の付与といった手段を採
用することによって迅速、且つ確実に行うことができ
る。
In addition, continuous pores are formed in both ceramic bodies quickly and reliably by adopting a means such as mixing of elutable particles, elution of the particles with an acid, and circulation of the acid as well as application of ultrasonic vibration thereto. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)はタービン羽根車の縦断正面図、第1図(b)は
回転軸の要部縦断正面図、第2図はタービン羽根車およ
び回転軸における接合筒部の気孔率と曲げ強さとの関係
を示すグラフ、第3図は接合材の含浸作業を示す縦断正
面図、第4図は接合体の要部縦断正面図、第5図は第4
図V矢示部の拡大図、第6図はタービン羽根車と回転軸
との接合部分における曲げ強さと温度との関係を示すグ
ラフである。 1…第1セラミック体としてのタービン羽根車、2…第
2セラミック体としての回転軸、 B…金属性接合材としてのNi−Cu系ろう材、Ni−
Cr系ろう材、C…セラミック材料、P…連続気孔
FIG. 1 (a) is a vertical sectional front view of a turbine impeller, FIG. 1 (b) is a vertical sectional front view of a main portion of a rotating shaft, and FIG. 2 is a porosity and bending of a joining cylinder portion of a turbine impeller and a rotating shaft. Graph showing the relationship with the strength, FIG. 3 is a vertical sectional front view showing the impregnation work of the bonding material, FIG. 4 is a vertical sectional front view of the main part of the bonded body, and FIG.
FIG. 6 is an enlarged view of the portion indicated by the arrow V in FIG. 6, and FIG. 6 is a graph showing the relationship between bending strength and temperature at the joint between the turbine impeller and the rotating shaft. DESCRIPTION OF SYMBOLS 1 ... Turbine impeller as a 1st ceramic body, 2 ... Rotating shaft as a 2nd ceramic body, B ... Ni-Cu type | system | group brazing | wax material as a metallic joining material, Ni-
Cr-based brazing material, C ... Ceramic material, P ... Continuous pores

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】成形および焼結工程を経て得られる第1お
よび第2セラミック体(1,2)を接合するに当り、前
記第1および第2セラミック体(1,2)より、それら
の成形に先立って配合された、酸により溶出し得る溶出
可能粒子を前記酸を流通させると共にその酸に超音波振
動を付与しながら溶出して、両セラミック体(1,2)
に、それら(1,2)の接合面に開口する多数の連続気
孔(P)を形成する工程と;前記第1および第2セラミ
ック体(1,2)の前記両接合面間に金属性接合材
(B)を介在させて両セラミック体(1,2)を加圧す
ると共に前記金属性接合材(B)を溶融し、該接合材
(B)を前記両セラミック体(1,2)の前記連続気孔
(P)に加圧含浸させる工程と;を用いることを特徴と
するセラミック体の接合方法。
1. When joining first and second ceramic bodies (1, 2) obtained through a forming and sintering process, the forming of the first and second ceramic bodies (1, 2) from the first and second ceramic bodies (1, 2) The eluable particles that have been mixed prior to the step of eluting with an acid are eluted while the acid is passed through and ultrasonic vibration is applied to the acid.
A step of forming a large number of continuous pores (P) opening on the joint surfaces of the (1, 2); and a metallic joint between the joint surfaces of the first and second ceramic bodies (1, 2). Both ceramic bodies (1, 2) are pressed with the material (B) interposed, and the metallic bonding material (B) is melted, and the bonding material (B) is applied to the both ceramic bodies (1, 2). A step of impregnating continuous pores (P) under pressure;
JP61286140A 1986-12-01 1986-12-01 How to join ceramics Expired - Fee Related JPH0653621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286140A JPH0653621B2 (en) 1986-12-01 1986-12-01 How to join ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286140A JPH0653621B2 (en) 1986-12-01 1986-12-01 How to join ceramics

Publications (2)

Publication Number Publication Date
JPS63139071A JPS63139071A (en) 1988-06-10
JPH0653621B2 true JPH0653621B2 (en) 1994-07-20

Family

ID=17700453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286140A Expired - Fee Related JPH0653621B2 (en) 1986-12-01 1986-12-01 How to join ceramics

Country Status (1)

Country Link
JP (1) JPH0653621B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045314U (en) * 1997-07-14 1998-01-27 玉井環境システム株式会社 Gaze guidance sign for guard rope
JP2005536434A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Composite comprising ceramic layers and method for producing the composite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288470A (en) * 1988-09-24 1990-03-28 Eagle Ind Co Ltd Method for joining silicon carbide material
JP4666791B2 (en) * 2001-02-27 2011-04-06 京セラ株式会社 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141466A (en) * 1983-01-31 1984-08-14 三井造船株式会社 Ceramic member bonding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045314U (en) * 1997-07-14 1998-01-27 玉井環境システム株式会社 Gaze guidance sign for guard rope
JP2005536434A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Composite comprising ceramic layers and method for producing the composite
JP4646202B2 (en) * 2002-08-28 2011-03-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Composite comprising ceramic layers and method for producing the composite

Also Published As

Publication number Publication date
JPS63139071A (en) 1988-06-10

Similar Documents

Publication Publication Date Title
DE1758845C3 (en) Process for the production of precision casting molds for reactive metals
EP2104582B1 (en) Metal-ceramic composite with good adhesion and method for its production
EP0309378B1 (en) Method for bonding ceramic casting cores
JP4261130B2 (en) Silicon / silicon carbide composite material
DE1964639A1 (en) Method for joining ceramic bodies using metal-coated particles of molybdenum or tungsten
JPH01234536A (en) Production of aluminum/magnesium alloy containing refractory particles
JPH0653621B2 (en) How to join ceramics
US5909612A (en) Method for manufacturing a dental restoration, in which a refractory model is coated with a powdered metal-containing composition
JP3380892B2 (en) Ti-Al alloy, method for producing the same, and method for joining the same
EP1674437B1 (en) Process of manufacture of shaped ceramic bodies on the basis of sinterable powders
EP1390321B1 (en) Metal-ceramic composite material and method for production thereof
CN115490538B (en) Preparation method of alumina/glass composite material and application of alumina/glass composite material in repairing internal cracks of alumina ceramic
EP0754659A1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JPH0653623B2 (en) Method of joining ceramic body and metal body
EP1525330A1 (en) Method for producing a component, component and use thereof
JPH11172348A (en) Metal-ceramics composite and its production
JP2995661B2 (en) Manufacturing method of porous cemented carbide
JPH0342176A (en) Binding method by diffusion of metal alloy powder
KR101657919B1 (en) Mold for precision casting, and method for producing same
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JPH01283330A (en) Manufacture of aluminum-based composite member
JP2673515B2 (en) Porous coat implant manufacturing method
DE102006000402A1 (en) Corrosion-resistant element and manufacturing method therefor
JPH01133986A (en) Method for bonding silicon carbide-based ceramic
JPH02137664A (en) Production of wear resistant material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees