JP2673515B2 - Porous coat implant manufacturing method - Google Patents

Porous coat implant manufacturing method

Info

Publication number
JP2673515B2
JP2673515B2 JP62124174A JP12417487A JP2673515B2 JP 2673515 B2 JP2673515 B2 JP 2673515B2 JP 62124174 A JP62124174 A JP 62124174A JP 12417487 A JP12417487 A JP 12417487A JP 2673515 B2 JP2673515 B2 JP 2673515B2
Authority
JP
Japan
Prior art keywords
porous
metal
implant
mold
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62124174A
Other languages
Japanese (ja)
Other versions
JPS63290675A (en
Inventor
保典 田村
隆至 宮元
峯男 磯上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62124174A priority Critical patent/JP2673515B2/en
Publication of JPS63290675A publication Critical patent/JPS63290675A/en
Application granted granted Critical
Publication of JP2673515B2 publication Critical patent/JP2673515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0019Blade implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dental Prosthetics (AREA)
  • Prostheses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は歯科及び医科の医療分野に使用する生体用イ
ンプラントに関するものである。 〔従来技術及びその問題点〕 最近、歯科及び医科用インラント部材の開発の新しい
流れとして生体組織との係合性を重視したいわゆるセメ
ントレスタイプの各種デバイスの研究が盛んに行われて
いる。 特にインプラントの表面にポーラス層をコーティング
したポーラスタイプインプラントはポーラス表面への骨
の増生侵入によって骨組織と直接的に機械的係合が行わ
れるため、生体内での接合(固定)力が強固であり、従
来タイプのインプラントのようなインプラントとボーン
セメントの界面での破損やルースニング等が起きにくい
という優れた利点を有している。このような優れた固定
力を有するポーラスタイプインプラントを製造するため
に、これまで非常に多くのコーティング方法が開発され
て来た。 その代表例として金属ビーズの焼結法(米国特許明細
書第3,855,638号)、金属粉末の溶射法(米国特許明細
書第3,605,123号)そして繊維金属パッドの拡散結合法
(米国特許明細書第3,906,550号)などがある。 しかし乍ら、これらのコーティング方法はそれぞれ次
のような根本的な欠点を有している。 すなわち、金属ビーズの焼結法はビーズ同士及びビー
ズと金属基体とのシンターによるネック部の形成のた
め、しばしば金属の融点90〜95%の高温にまで加熱する
必要がある。この結果、金属基体の結晶状態の変化をも
たらし破断強度や疲労強度などの機械的性質の大幅な低
下を生ぜしめることが実証されている。また溶射法によ
るポーラス層の形成はインプラントのような複雑な形状
の基材へ均質な厚みでコーティングを施すことは実際上
非常に困難である。そして溶射だけでは付与されたコー
ト層は密着強度が十分でないため引き続き焼結工程で粒
子−基材間の結合力を強化する必要もしばしば生ずる。
加えてこの方法では骨の増生侵入に最適なコーティング
層のポロシティ及びポアサイズを所定値に制御すること
は不可能である。 次に繊維金属パッドの拡散結合であるがこの場合も金
属ビーズの焼結法と同様に基体金属の機械的強度の低下
が大きな問題となる。 以上のようなポーラス層のコーティングに伴う問題点
を克服するため、熱処理方法の改善など種々の対策が試
みられているが、未だ根本的な解決方法には至っていな
いのが現状である。 〔問題点を解決するための手段〕 本発明者らはかかるインプラント表面へのポーラス層
の形成方法に関して鋭意研究を行った結果、まず最初に
種々の形態の多孔質構成物を製作し、しかる後に当該多
孔質構成物を所望形状をした鋳型内に設置せしめ、つい
で鋳型内に生体用金属材料の溶湯を注入し、多孔質構成
物と金属基体とを溶着せしめることにより、金属基体固
有の機械的強度をほとんど低下せず、ポーラス層のポロ
シティ及びポアサイズを任意に制御可能であり、かつ密
着強度も大きいポーラス層を形成することを可能とし
た。 〔実施例〕 以下、本発明によるポーラスコートインプラントの製
造方法を実施例に基づいて説明する。 第1図から第4図は本発明によるポーラスコートイン
プラントの製造工程を説明するための図である。工程順
に説明すれば、まず第1図に示したように金属製ビーズ
あるいはメッシュ、ファイバーそしてワイヤーなどで多
孔質構成物Pを形成する。次に湯口1a、湯道1b、鋳造空
間1cを備えた金属あるいはセラミックス製の2つ割りの
鋳型1の半型ポーラス位置2a、2bに当該多孔質構成物
Pa,Pbをそれぞれ1個ずつ配置する。 図2はこのような2個の多孔質構成物Pa,Pbを具備し
た組み合わせ鋳型の断面図である。以上のような鋳型1
に生体用金属材料Mの溶湯Lを鋳型1の湯口1aから湯口
1bを通して注入する。かくして金属溶湯Lが注入され鋳
造空間1cが埋められ(第3図)、冷却された後鋳型1を
分割することにより第4図に示したように多孔質構成物
Pa,Pbと金属基体Mとが溶着一体化したインプラントI
が得られる。 〔実施例1〕 平均粒径約200〜250μの純チタン・ビーズを焼結方法
により厚さ約400μ、ポアサイズ約200μ、気孔率30%の
薄板状ポーラス体から成る多孔質構成物Pa,Pbを2個形
成した。 これを歯科ブレードタイプインプラント用鋳型内の両
面のポーラス部位に配置し、しかる後に鋳型内に純チタ
ンの溶湯を注入し、一体鋳造物を得た。このようにして
得られたポーラスコートデジタルブレードタイプインプ
ラントは表面のポーラス薄層が素地の純チタン基体と完
全に溶着し、かつ溶湯がビーズ粒子の間隙に侵入、固着
した従来法の約2倍の強固な密着力を有するインプラン
トが得られた。 〔実施例2〕 多孔質構成物として平均粒径約250〜350μの合金チタ
ンビーズを焼結法により厚さ約600μ、ポアサイズ約300
μ、気孔率約35%のポーラスシートを2個形成した。こ
れを整形外科人工股関節用鋳型内のセメントレス部位の
両側面に配置し、しかる後に鋳型内に合金チタンの溶湯
を注入し、一体鋳造物を得、引き続いて当該鋳造体を熱
間静水加圧装置(以後HIPという)にて860℃、1000気
圧、1時間の処理を行った。 このようにして得られた整形外科用ポーラスコート人
工股関節はコンポーネント自体の引張り強度や疲労強度
などの機械的性質が未処理の合金チタンと比較して遜色
のない優れた特性を有していた。 〔実施例3〕 線径約200μの純チタンワイヤーを網状成形加工しプ
レス法により気孔率約50%、厚み1.5mmの半球殻状ファ
イバーメタルを形成した。これを整形外科臼蓋ソケット
用鋳型内の所定の位置にセットししかる後に鋳型内に合
金チタンの溶湯を注入し、一体鋳造物を得た。ついで実
施例2と同様に900℃、1000気圧、1時間のHIP処理を行
った。 このようにして得られたポーラスコート臼蓋ソケット
はポーラス層とソケット自体並びにポーラス層内のワイ
ヤー同士の金属結合状態は良好であり、ソケット自体も
一般の熱処理工程を経たものに比して結晶粒の粗大化も
顕著でなく、高い機械的性質を示した。 以上の実施例で示した本発明によるポーラスコートイ
ンプラントの機械的性質を調べるため比較サンプルとし
て、厚さ4mmの合金チタン板に厚み約1000μに合金チタ
ンビーズを焼結したもの、ファイバーメタルの拡散結合
したものそして未処理の鍛造品を用意して、30サイクル
/秒、107回の疲労試験とポーラス層の剪断強度試験を
行った。 その結果を表1に示す。 表1に示した結果から、本発明によるコーティング方
法は従来法に比較して一段と優れた機械的性質を有する
ことが確認された。 〔発明の効果〕 叙上のように、本発明の方法により製造したポーラス
コートインプラントは、あらかじめ形成したポーラ基材
を型内に設置しておき、ついでインプラント機材の溶湯
を鋳込むことによりインプラント基体表面にポーラス層
を溶着一体化し、または引き続き、熱間静水加圧下で処
理することからインプラント表層の結晶状態の変化や局
所的な応力集中を防ぐことができると同時にポーラス層
内への溶湯の侵入凝固による固結のためポーラス層とイ
ンプラント表面の密着強度が一段と優れており、かつま
たインプラント本来の機械的性質を保持することができ
るという最大の特徴を有する。従って、本発明によるポ
ーラスコートインプラントは生体内に長期に渡って安定
した強固な保持性能を維持できる。
TECHNICAL FIELD The present invention relates to a biomedical implant used in the medical fields of dentistry and medicine. [Prior Art and Problems Thereof] Recently, as a new trend of development of dental and medical inrant members, various studies on so-called cementless type devices, which place importance on engagement with living tissue, have been actively conducted. In particular, a porous type implant with a porous layer coated on the surface of the implant directly mechanically engages with bone tissue due to the invasion of bone into the porous surface, so that the bonding (fixing) force in vivo is strong. Therefore, it has an excellent advantage that breakage and loosening at the interface between the implant and the bone cement such as the conventional type implant do not easily occur. A great number of coating methods have been developed so far in order to manufacture a porous type implant having such an excellent fixing force. Typical examples thereof include a method of sintering metal beads (US Pat. No. 3,855,638), a method of spraying metal powder (US Pat. No. 3,605,123) and a diffusion bonding method of fiber metal pads (US Pat. No. 3,906,550). )and so on. However, each of these coating methods has the following fundamental drawbacks. That is, in the method of sintering metal beads, it is often necessary to heat up to a high temperature of 90 to 95% of the melting point of the metal because the neck portion is formed by sintering the beads and the beads and the metal substrate. As a result, it has been proved that the crystal state of the metal substrate is changed and the mechanical properties such as rupture strength and fatigue strength are significantly reduced. In addition, in forming a porous layer by a thermal spraying method, it is actually very difficult to coat a substrate having a complicated shape such as an implant with a uniform thickness. Since the coating strength applied by thermal spraying alone is not sufficient, it is often necessary to subsequently strengthen the bonding force between the particles and the substrate in the sintering step.
In addition, it is not possible with this method to control the porosity and pore size of the coating layer, which are optimal for bone penetration, to predetermined values. Next, the diffusion bonding of the fiber metal pad is used, but in this case as well, similarly to the sintering method of the metal beads, the decrease in the mechanical strength of the base metal becomes a serious problem. In order to overcome the problems associated with the coating of the porous layer as described above, various measures such as improvement of the heat treatment method have been attempted, but the present situation is that the fundamental solution has not yet been reached. [Means for Solving Problems] As a result of earnest studies on the method for forming a porous layer on the surface of the implant, the present inventors firstly produced porous constituents of various forms, and then, By placing the porous composition in a mold having a desired shape, then injecting a molten metal of a biomedical metal material into the mold, and fusing the porous composition and the metal substrate, mechanical properties specific to the metal substrate are obtained. It has become possible to form a porous layer that has almost no decrease in strength, the porosity and pore size of the porous layer can be arbitrarily controlled, and the adhesion strength is large. [Examples] Hereinafter, a method for producing a porous coat implant according to the present invention will be described based on Examples. 1 to 4 are views for explaining the manufacturing process of the porous coat implant according to the present invention. Explaining in the order of steps, first, as shown in FIG. 1, a porous component P is formed from metal beads or mesh, fibers and wires. Next, the porous structure is placed at the half-die porous positions 2a, 2b of the metal or ceramic mold 2 having the sprue 1a, the runner 1b, and the casting space 1c.
One P a and one P b are arranged. FIG. 2 is a sectional view of a combination mold provided with such two porous components Pa and Pb. Mold 1 as above
The molten metal L of the biomedical metal material M is poured from the spout 1a of the mold 1 to the spout
Inject through 1b. Thus, the molten metal L is injected to fill the casting space 1c (Fig. 3), and after being cooled, the mold 1 is divided to form the porous composition as shown in Fig. 4.
Implant I in which P a , P b and metal substrate M are welded and integrated
Is obtained. Example 1 Pure titanium beads having an average particle size of about 200 to 250 μ were sintered by a sintering method to have a thickness of about 400 μ, a pore size of about 200 μ, and a porous structure P a , P composed of a thin plate-like porous body having a porosity of 30%. Two b were formed. This was placed in the porous portions on both sides in the dental blade type implant mold, and then a molten solution of pure titanium was injected into the mold to obtain an integral casting. The porous coat digital blade type implant obtained in this manner has a porous thin layer on the surface completely welded to the pure titanium substrate of the base material, and the molten metal penetrates into the gaps between the bead particles and is fixed about twice as much as the conventional method. An implant with strong adhesion was obtained. [Example 2] Alloy titanium beads having an average particle size of about 250 to 350 µm as a porous composition were formed by a sintering method to have a thickness of about 600 µm and a pore size of about 300 µm.
Two porous sheets with μ and a porosity of about 35% were formed. These are placed on both sides of the cementless site in the orthopedic artificial hip joint mold, and then molten titanium alloy is poured into the mold to obtain an integral casting, and subsequently the casting is hot isostatically pressed. A device (hereinafter referred to as HIP) was used for treatment at 860 ° C. and 1000 atmospheric pressure for 1 hour. The thus obtained porous coated artificial hip joint for orthopedic surgery had excellent properties in which mechanical properties such as tensile strength and fatigue strength of the component itself were comparable to those of untreated titanium alloy. [Example 3] A pure titanium wire having a wire diameter of about 200 µ was formed into a net shape by a pressing method to form a hemispherical shell-shaped fiber metal having a porosity of about 50% and a thickness of 1.5 mm. This was set in a predetermined position in a mold for an orthopedic acetabular socket, and then a molten alloy of titanium alloy was injected into the mold to obtain an integral casting. Then, in the same manner as in Example 2, HIP treatment was performed at 900 ° C. and 1000 atmospheric pressure for 1 hour. The porous coated acetabular socket thus obtained has a good metal bonding state between the porous layer and the socket itself and the wires in the porous layer, and the socket itself has crystal grains more than those obtained after a general heat treatment step. Coarsening was not remarkable and showed high mechanical properties. As a comparative sample for investigating the mechanical properties of the porous coat implant according to the present invention shown in the above examples, as a comparative sample, an alloy titanium plate having a thickness of about 1000 μ was sintered to an alloy titanium plate having a thickness of 4 mm, and diffusion bonding of fiber metal. the ones and are prepared untreated forgings were subjected to shear strength test of 30 cycles / second, 107 times of fatigue test and porous layer. Table 1 shows the results. From the results shown in Table 1, it was confirmed that the coating method according to the present invention has much more excellent mechanical properties than the conventional method. [Effects of the Invention] As described above, the porous coat implant manufactured by the method of the present invention is an implant substrate prepared by placing a preformed polar substrate in a mold and then pouring the molten metal of the implant material. Since the porous layer is welded and integrated on the surface, or it is subsequently treated under hot hydrostatic pressure, changes in the crystalline state of the implant surface layer and local stress concentration can be prevented, and at the same time the intrusion of the molten metal into the porous layer. Due to the solidification by solidification, the adhesion strength between the porous layer and the implant surface is further excellent, and the most important feature is that the original mechanical properties of the implant can be maintained. Therefore, the porous coat implant according to the present invention can maintain stable and strong retention performance in the living body for a long period of time.

【図面の簡単な説明】 第1図は金属製のビーズ、メッシュ、ファイバー、ワイ
ヤーなどで形成された多孔質構成物の斜視図、第2図は
多孔質構成物を設置した状態を示した鋳型の中央断面
図、第3図は鋳型に金属溶湯を注入した状態の鋳型の中
央断面図、第4図は多孔質構成物と金属基体を本発明に
係る製造方法により溶着一体化して得られたインプラン
トの例を示す斜視図である。 1:鋳型 P、Pa、Pb:多孔質構成物 1a:湯口 1b:湯道 1c:鋳造空間 L:金属溶湯 M:金属基体 I:インプラント
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a porous composition formed of metal beads, mesh, fibers, wires, etc., and FIG. 2 is a mold showing a state in which the porous composition is installed. 3 is a central sectional view of the mold in which the molten metal is poured into the mold, and FIG. 4 is obtained by welding and integrating the porous component and the metal substrate by the manufacturing method according to the present invention. It is a perspective view which shows the example of an implant. 1: Molds P, P a , P b : Porous composition 1a: Gate 1b: Runner 1c: Casting space L: Molten metal M: Metal substrate I: Implant

Claims (1)

(57)【特許請求の範囲】 1.金属製のビーズ、メッシュ、ファイバー、ワイヤー
などで多孔質構成物を形成し、該多孔質構成物を鋳型中
に配置せしめた後、生体用金属材料の溶湯を注入し、多
孔質構成物と金属基体とを溶着せしめ一体化することを
特徴とするポーラスコートインプラントの製造方法。
(57) [Claims] After forming a porous composition with metal beads, mesh, fibers, wires, etc. and placing the porous composition in the mold, the molten metal of the biomedical metal material is injected to form the porous composition and the metal. A method for producing a porous coat implant, which comprises fusing and fusing a substrate.
JP62124174A 1987-05-21 1987-05-21 Porous coat implant manufacturing method Expired - Fee Related JP2673515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124174A JP2673515B2 (en) 1987-05-21 1987-05-21 Porous coat implant manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124174A JP2673515B2 (en) 1987-05-21 1987-05-21 Porous coat implant manufacturing method

Publications (2)

Publication Number Publication Date
JPS63290675A JPS63290675A (en) 1988-11-28
JP2673515B2 true JP2673515B2 (en) 1997-11-05

Family

ID=14878797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124174A Expired - Fee Related JP2673515B2 (en) 1987-05-21 1987-05-21 Porous coat implant manufacturing method

Country Status (1)

Country Link
JP (1) JP2673515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524381B2 (en) * 2004-12-01 2010-08-18 独立行政法人産業技術総合研究所 Composite material of titanium and ceramics and method for producing the same
JP2009254581A (en) * 2008-04-16 2009-11-05 Toyo Advanced Technologies Co Ltd Implant for living body and its production method

Also Published As

Publication number Publication date
JPS63290675A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
JP4385285B2 (en) Surgical implant manufacturing method and surgical implant
US4570271A (en) Porous coatings from wire mesh for bone implants
EP1773418B1 (en) Pulsed current sintering for surfaces of medical implants
US4969913A (en) Ceramics composites
JP5318864B2 (en) Surgical implant composed of a porous core and a dense surface layer
US20100028191A1 (en) Method for Producing Tooth Replacements and Auxiliary Dental Parts
EP0405556B1 (en) Living hard tissue replacement, its preparation, and preparation of integral body
US4854496A (en) Porous metal coated implant and method for producing same
US4492577A (en) Surgical implants with solid interiors and porous surfaces
JP2984375B2 (en) Cast bone ingrowth surface
US5123844A (en) Living hard tissue replacement prepared by superplastic forming of a calcium phosphate base
EP1354570A1 (en) Method of making an orthopaedic implant having a porous metal surface
JPS62137050A (en) Production of mesh screen having affinity to living body
JPS5995041A (en) Implantable substitute for bone
JP2673515B2 (en) Porous coat implant manufacturing method
JPH07500873A (en) Alloy transfer sintering method
JP4572287B2 (en) Method for producing high strength porous body and high strength porous body
JP3837502B2 (en) Biological porous composite, method for producing the same, and use thereof
JP4572286B2 (en) Method for producing high strength porous body and high strength porous body
JP3038397B2 (en) Porous implant material
EP3524280B1 (en) Method for producing a metallic implant
WO2009152562A1 (en) A method of fabricating a micro-cavity in a solid
WO2009004069A1 (en) Porous dental implant
JPH02165858A (en) Production of in-vivo implanting material
JPH0531168A (en) Production of implant material for living body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees