JPH02165858A - Production of in-vivo implanting material - Google Patents

Production of in-vivo implanting material

Info

Publication number
JPH02165858A
JPH02165858A JP31997088A JP31997088A JPH02165858A JP H02165858 A JPH02165858 A JP H02165858A JP 31997088 A JP31997088 A JP 31997088A JP 31997088 A JP31997088 A JP 31997088A JP H02165858 A JPH02165858 A JP H02165858A
Authority
JP
Japan
Prior art keywords
porous
porous body
mold
alloy
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31997088A
Other languages
Japanese (ja)
Inventor
Koji Nishikawa
浩二 西川
Nobuo Matsuno
松野 伸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31997088A priority Critical patent/JPH02165858A/en
Publication of JPH02165858A publication Critical patent/JPH02165858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To produce the implanting material for in-vivo embedment by fixing a porous body consisting of Ti or Ti alloy into a casting mold, then pouring the melt of the Ti or Ti alloy into the mold to internally chill the porous body and exposing a part of the porous body by processing, such as machining, after solidifying the melt. CONSTITUTION:The porous sintered body 1 is produced by compressing and molding the fine powder of the Ti or Ti alloy, then sintering the molding. After this body is fixed into a cavity 6 in a casting mold 5, the melt of the Ti or Ti alloy is poured into the casting mold 5 to internally chill a part of the porous body 1 made of the Ti by which a casting 4 is formed. This casting is taken out of the casting mold 5 and the part which is not internally chilled is ground or polished or is chemically treated by an acid, alkali, etc., at need, by which a part of the porous body 1 is exposed and the implanting material for in-vivo embedment, such as artificial bones for plastic surgery and artificial fang for dental purposes is produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば整形外科用人工骨や歯科用人工歯根の
如く、主として人体埋設用に使用されるチタンまたはチ
タン合金製インプラント材料の製造方法に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing titanium or titanium alloy implant materials used primarily for implantation in the human body, such as orthopedic artificial bones and dental artificial tooth roots. It is related to.

〈従来技術とその問題点〉 整形外科用人工骨や歯科用人工歯根等の人体内インプラ
ント用生体材料においては、人体の骨組織との結合性を
高めることを目的として、骨と接触する生体材料の表面
に適度の凹凸を付与することが行なわれている。
<Prior art and its problems> In biomaterials for implants in the human body, such as orthopedic artificial bones and dental artificial tooth roots, biomaterials that come into contact with bone are It is practiced to provide the surface with appropriate irregularities.

生体インプラント材料の表面粗面化方法としては、特開
昭62−74004号公報に、チタンまたはチタン合金
粉末と酸可溶性金属粉末の混合粉末をチタンまたはチタ
ン合金材の表面に拡散接合せしめ、酸可溶性金属粉末の
みを酸によって溶解除去する方法が開示されている。
As a method for roughening the surface of biological implant materials, Japanese Patent Laid-Open No. 62-74004 discloses that a mixed powder of titanium or titanium alloy powder and acid-soluble metal powder is diffusion bonded to the surface of titanium or titanium alloy material, and acid-soluble A method is disclosed in which only metal powder is dissolved and removed using an acid.

しかし、この方法は、基本的にはチタンまたはチタン合
金粉末を焼結固着させる通常方法と同一であり、荷重が
負荷された場合に接合部が破壊して接合粒子が取れやす
いという欠点がある。
However, this method is basically the same as the usual method of sintering and fixing titanium or titanium alloy powder, and has the disadvantage that the joint part breaks when a load is applied, and the joint particles tend to come off.

また、生体インプラント材の所定面に純Ti製細線を織
り合わせた成形体を拡散接合する方法が考えられている
。 しかし、焼結時の収縮のため基材と該成形体の間に
すき間ができやすいという欠点がある。
Furthermore, a method has been considered in which a molded body made of fine pure Ti wires is diffusion bonded to a predetermined surface of a biological implant material. However, there is a drawback that a gap is likely to be formed between the base material and the molded body due to shrinkage during sintering.

さらに、本発明者らは先に特願昭62−323350号
で生体インプラント材の所定面が多孔質になるように直
接鋳造する金属多孔買鋳造体の製造方法を提案した。 
しかし、この方法でも空孔径の調整がむずかしいこと、
およびまだ強度的に不十分であるという欠点がある。
Furthermore, the present inventors previously proposed in Japanese Patent Application No. 62-323350 a method for manufacturing a porous metal casting body, in which a biological implant material is directly cast so that a predetermined surface thereof becomes porous.
However, even with this method, it is difficult to adjust the pore diameter.
However, it still has the disadvantage of being insufficient in strength.

〈発明が解決しようとする課題〉 本発明は、かかる事情に鑑みてなされたもので優れた骨
接合性を有し、しかも荷重の負荷に対して破壊あるいは
剥離し難い多孔質層を所要表面に有する整形外科用人工
骨や歯科用人工歯根等のTiあるいはTi合金製の生体
インプラント材を工業的に安価に、かつ安定して製造し
うる製造方法を提供することを目的とする。
<Problems to be Solved by the Invention> The present invention has been made in view of the above circumstances, and provides a porous layer on the required surface that has excellent osteointegration properties and is difficult to break or peel off under load. It is an object of the present invention to provide a manufacturing method that can industrially inexpensively and stably manufacture Ti or Ti alloy bioimplant materials such as orthopedic artificial bones and dental artificial tooth roots.

く課題を解決するための手段〉 チタンあるいはチタン合金は生体材料として優れた性能
を有し、整形外科用人工骨や歯科用人工歯根の素材とし
て急速に需要が増大している。
Means for Solving the Problems Titanium or titanium alloys have excellent performance as biomaterials, and demand is rapidly increasing as materials for orthopedic artificial bones and dental artificial tooth roots.

ところで人体の骨組織は200〜500μmの単位組織
からなっており、人工骨を人体に埋め込むとこれらの骨
組織が人工骨を取り囲むようにし・て成長し、骨と人工
骨が一体に結合していく。 このため骨と接合する人工
骨の表面は200〜500μm程度の間隔をもった凹凸
形状を有するか、さらには表面下部において互いに連結
した空孔が無数に存在する状態、すなわち海綿状の多孔
質体となることが最良である。
By the way, the bone tissue of the human body consists of unit tissues of 200 to 500 μm, and when an artificial bone is implanted into the human body, these bone tissues grow to surround the artificial bone, and the bone and the artificial bone are bonded together. go. For this reason, the surface of the artificial bone that connects with the bone has an uneven shape with an interval of about 200 to 500 μm, or even has countless interconnected pores in the lower part of the surface, that is, it is a spongy porous material. It is best that

こうした目的に沿って研究が種々行なわれているが、多
くは素材を加工した後に様々な方法で凹凸を付与するも
のである。
A variety of studies have been carried out with these objectives in mind, but most of them involve adding irregularities using various methods after processing the material.

そこで、上記問題点を解決すべく、本発明者らは鋭意研
究を重ねた結果、 (1)骨組織と接触する部分の表層のみ多孔質層とし、 (2)該多孔質層と生体インプラント材の基材とを鋳ぐ
るみで接合させる 方法を採用することにより、上記目的を達成できること
を知見した。
Therefore, in order to solve the above problems, the present inventors conducted extensive research and found that (1) only the surface layer in contact with the bone tissue is made a porous layer, and (2) the porous layer and the bioimplant material The inventors have discovered that the above objective can be achieved by employing a method of joining the base materials using cast inserts.

このような製造方法とすれば、多孔質層は、基材とは別
工程で作製ができるため、200〜500μの連続した
空孔を有し、しかも十分な強度を有するようにあらかじ
め成形しておくことが可能になる。
With this manufacturing method, the porous layer can be manufactured in a separate process from the base material, so it must be formed in advance to have continuous pores of 200 to 500 microns and sufficient strength. It becomes possible to leave it there.

すなわち、あらかじめ製作される多孔質層をもった成形
体は、単純な形状のもので良いので空孔径の調整、強度
の付与が容易となる。
That is, the pre-fabricated molded body having a porous layer may have a simple shape, making it easy to adjust the pore diameter and impart strength.

すなわち本発明は、あらかじめ成形されたチタンまたは
チタン合金よりなる多孔質体を金属鋳造用鋳型内に固定
し、この鋳型内に溶融チタンまたはチタン合金を注湯し
た後凝固せしめて、前記多孔質体の全部または一部分が
鋳ぐるまれた鋳造体を形成し、その後、研削、研磨また
は化学的処理により、あるいは無処理のままで、前記多
孔質体の一部分を前記鋳造体の表面に露出させることを
特徴とするチタンまたはチタン合金製生体内インプラン
ト材料の製造方法を提供する。
That is, the present invention fixes a previously formed porous body made of titanium or titanium alloy in a metal casting mold, pours molten titanium or titanium alloy into the mold, and then solidifies the porous body. forming a cast body in which all or a part of the porous body is cast, and then exposing a part of the porous body to the surface of the cast body by grinding, polishing, chemical treatment, or without any treatment. A method for manufacturing a titanium or titanium alloy in-vivo implant material is provided.

また、あらかじめ成形された、化学的処理を施すことに
より多孔質体となりうるチタンまたはチタン合金を主体
とする成形体を金属鋳造用鋳型内に固定し、この鋳型内
に溶融チタンまたはチタン合金を注湯した後凝固せしめ
て、前記成形体の全部または一部分が鋳ぐるまれた鋳造
体を形成し、その後研削、または研磨により、あるいは
無処理のままで前記成形体の一部分を前記鋳造体の表面
に露出させ、これに化学的処理を施して成形体を多孔質
体にすることを特徴とするチタンまたはチタン合金製生
体内インプラント材料の製造方法を提供する。
In addition, a pre-formed body made mainly of titanium or titanium alloy, which can become porous through chemical treatment, is fixed in a metal casting mold, and molten titanium or titanium alloy is poured into this mold. A cast body in which all or a part of the molded body is cast is formed by boiling and solidifying the molded body, and then a part of the molded body is applied to the surface of the cast body by grinding or polishing, or without any treatment. Provided is a method for manufacturing an in-vivo implant material made of titanium or a titanium alloy, which comprises exposing the material and chemically treating the material to make a porous material.

以下、第1〜第4図に基づいて本発明について詳細に説
明する。
Hereinafter, the present invention will be explained in detail based on FIGS. 1 to 4.

本発明方法は、第1〜第4図に好適実施例の1例を示す
ように、あらかじめ成形されたTiまたはTi合金より
なる多孔質体1 (第1図参照)を、金属鋳造用鋳型5
のキャビティ一部6内に固定しく第3図参照)、この鋳
型5内に溶融TiまたはTi合金を注湯した後凝固させ
、多孔質体1の全部または一部分が鋳込まれた鋳造体4
を形成し、その後、多孔質体1の一部分を鋳造体4の表
面に露出させる方法である。
In the method of the present invention, as shown in FIGS. 1 to 4, a porous body 1 (see FIG. 1) made of Ti or a Ti alloy is placed in a metal casting mold 5.
A cast body 4 is formed by pouring molten Ti or Ti alloy into the mold 5 (see FIG. 3) and solidifying the porous body 1 in whole or in part.
This is a method in which a portion of the porous body 1 is exposed on the surface of the cast body 4.

第1図は、本発明に用いるあらかじめ成形された多孔質
体1の横断面図を示す模式図である。 多孔質体1の成
形方法は特に規定しないが、例えば粒状のTiあるいは
Ti合金を強度を付加するため、圧縮成形した後焼結し
て作製するか、またはTtまたはTi合金の細線を格子
状に積層した後圧縮加工し、さらに焼結して強度を付加
する方法が好適である。 また、骨組織との結合を考慮
して、200〜500μmの径を有する連通した空孔が
多数存在する多孔質体であることが望ましい。 また、
この段階において多孔質体となっていなくとも、例えば
後に酸などの化学的処理によって200〜500μmの
径を有する連通した空孔を多数形成しうるような成形体
でありてもよい。
FIG. 1 is a schematic diagram showing a cross-sectional view of a preformed porous body 1 used in the present invention. The method of forming the porous body 1 is not particularly specified, but for example, in order to add strength to granular Ti or Ti alloy, it may be formed by compression molding and then sintering, or fine wires of Tt or Ti alloy may be formed into a lattice shape. A suitable method is to perform compression processing after lamination and further sintering to add strength. Further, in consideration of bonding with bone tissue, it is desirable that the porous body has a large number of interconnected pores having a diameter of 200 to 500 μm. Also,
Even if it is not a porous body at this stage, it may be a molded body that can later form a large number of interconnected pores having a diameter of 200 to 500 μm by chemical treatment with an acid or the like.

第2図は、整形外゛科用人工骨や歯科用人工歯根を鋳造
によって製造するための金属鋳造用鋳型5の断面図であ
る。 この鋳型は例えばセラミックモールド法で造型さ
れるような鋳型上部2および鋳型下部3からなる鋳型で
あってもよいし、またはロストワックス法で造型される
ような鋳型の分割をともなわない一体型であってもかま
わない。
FIG. 2 is a sectional view of a metal casting mold 5 for manufacturing orthopedic artificial bones and dental artificial tooth roots by casting. This mold may be a mold made of an upper mold part 2 and a lower mold part 3, such as is made by a ceramic molding method, or it may be an integral mold, which does not involve dividing the mold, such as is made by a lost wax method. It doesn't matter.

第3図は、第1図に示した多孔質体を、第2図に示した
鋳型5のキャビティ一部6のうち、製品として完成した
後に骨と接合する部分に固定したことを示す断面図であ
る。 固定方法としては無機粘結剤で接着する方法や、
金属またはセラミック等のアンカー材を利用して固定す
る方法が好ましい。 固定方法は、注湯時に移動したり
、または熱や溶融金属との反応によって生ずるガスによ
る鋳造欠陥を生じない方法であれば特に限定されない。
FIG. 3 is a cross-sectional view showing that the porous body shown in FIG. 1 is fixed to the part of the cavity part 6 of the mold 5 shown in FIG. 2 that will be connected to bone after the product is completed. It is. Fixing methods include gluing with an inorganic adhesive,
A method of fixing using an anchor material such as metal or ceramic is preferred. The fixing method is not particularly limited as long as it does not move during pouring or cause casting defects due to gas generated by heat or reaction with molten metal.

第4図は、第3図の鋳型5に注湯した溶融TiまたはT
i合金が凝固した後に鋳型を除去して得られた鋳造体4
の断面図を示す。 多孔質体1は、注湯時に溶融金属ま
たは合金と接触した部分のみ溶融し、注湯金属または合
金と一体化するとともに、多孔質体のほとんど全部は多
孔質状態を維持することが肝要であり、このような鋳込
み条件を設定する。
Figure 4 shows the molten Ti or T poured into the mold 5 of Figure 3.
Cast body 4 obtained by removing the mold after the i-alloy solidified
A cross-sectional view is shown. It is important that only the portion of the porous body 1 that comes into contact with the molten metal or alloy during pouring melts and becomes integrated with the poured metal or alloy, and that almost all of the porous body maintains a porous state. , such casting conditions are set.

箪4図に示すように多孔質体1の少なくとも一部が鋳造
体4の表面に露出している場合は無処理としてもよいが
、必要により鋳造体4を研削、研磨または化学処理し、
多孔質体1の少なくとも一部が鋳造体4の表面に露出す
るようにする。
As shown in Figure 4, if at least a portion of the porous body 1 is exposed on the surface of the cast body 4, no treatment may be performed, but if necessary, the cast body 4 may be ground, polished, or chemically treated.
At least a portion of the porous body 1 is exposed on the surface of the cast body 4.

また、化学的処理を施すことにより多孔質体となりうる
TiまたはTi合金を主体とする成形体を用いた場合に
は、さらに成形体に化学的処理を施して、成形体を多孔
質体とする。 化学的処理は、酸、アルカリによるエツ
チング処理等があげられる。
In addition, when using a molded body mainly made of Ti or Ti alloy, which can be made into a porous body by chemical treatment, the molded body is further chemically treated to make the molded body porous. . Examples of the chemical treatment include etching treatment with acid or alkali.

〈実施例〉 以下に実施例により本発明を具体的に説明する。<Example> The present invention will be specifically explained below using Examples.

(実施例1) 粒径が0.5〜1.0mmのスポンヂTi粒子を金型内
に充填した後に加圧力550 kg/cm”で圧縮成形
して30x30x2mmの成形体を得た。 これを温度
1100℃の真空雰囲気中で焼結し、冷却した後5%H
F−15%HNO3−残H20溶液で化学処理して20
0〜500μmの径を持つ連続した空孔が多数存在する
多孔質体を得た。 この多孔質体を内径45mm、深さ
50mmのMgOルツボの底部に固定し、Ar雰囲気中
で純Tiを溶融温度約1720℃で約150g注湯した
。 室温まで冷却後鋳造体を半径方向に切断し、組織観
察試料を作成して光学顕微鏡により観察したところ、多
孔質体と鋳込み金属とは、その接触界面においてのみ完
全に一体、化していた。
(Example 1) Sponge Ti particles with a particle size of 0.5 to 1.0 mm were filled into a mold, and compression molded at a pressure of 550 kg/cm'' to obtain a molded product of 30 x 30 x 2 mm. Sintered in a vacuum atmosphere at 1100°C and 5% H after cooling.
Chemically treated with F-15% HNO3-residual H20 solution
A porous body containing a large number of continuous pores having a diameter of 0 to 500 μm was obtained. This porous body was fixed to the bottom of an MgO crucible with an inner diameter of 45 mm and a depth of 50 mm, and about 150 g of pure Ti was poured into the crucible at a melting temperature of about 1720° C. in an Ar atmosphere. After cooling to room temperature, the cast body was cut in the radial direction to prepare a microstructure observation sample and observed under an optical microscope. As a result, the porous body and the cast metal were completely integrated only at the contact interface.

(実施例2) 厚さ0.3mmの純Tiメツシュ12枚を積層して加圧
力500 kg/cm2で圧着した。 これを温度11
00℃の真空雰囲気中で焼結させた後室温まで冷却し、
10×8から15X25mm程度までの所定の形状に加
工した。 この際の純メツシュ積層圧着体は200〜5
00μmの連通空孔が多数存在する多孔質体となってい
た。 あらかじめ成形しておいた人工関節と同形状のワ
ックス製模型の所定箇所に前記多孔質体を貼付し、ロス
トワックス法の通常の工程に従い、多孔質体をその内部
に装着したセラミックシェル鋳型を造型した。 なお、
鋳型焼成は真空にて行なった。 この鋳型へ遠心鋳造法
によってTi−6%AJZ−4%■合金を1700℃で
注湯した。 冷却後鋳型を除去しサンドブラスト処理し
た後、外観観察、多孔質体の剥離試験、多孔質体と注湯
合金との接触界面の組織観察を行ない、多孔質体と注湯
合金とが一体化していることが確認された。
(Example 2) Twelve pure Ti meshes each having a thickness of 0.3 mm were laminated and pressed together with a pressing force of 500 kg/cm2. This temperature is 11
After sintering in a vacuum atmosphere at 00°C, cooling to room temperature,
It was processed into a predetermined shape ranging from about 10 x 8 to 15 x 25 mm. At this time, the pure mesh laminated crimped body was 200 to 5
It was a porous body in which many communicating pores of 00 μm were present. The porous body is attached to a predetermined location on a pre-formed wax model with the same shape as the artificial joint, and a ceramic shell mold with the porous body mounted inside is formed according to the normal process of the lost wax method. did. In addition,
Mold firing was performed in a vacuum. A Ti-6% AJZ-4% ■ alloy was poured into this mold at 1700° C. by centrifugal casting. After cooling, the mold was removed and sandblasted, and the appearance was observed, the porous body was tested for peeling, and the structure of the contact interface between the porous body and the poured alloy was observed, and it was found that the porous body and the poured alloy were integrated. It was confirmed that there is.

〈発明の効果〉 以上詳述したように、本発明によればあらかじめ十分な
強度および骨の成長に最適な空孔径を持つ多孔質体を製
造し、これを溶融金属または合金によって鋳ぐるむとい
う手段によりて両者を一体化させることができ、外圧等
の荷重の負荷によっても破壊あるいは剥離し難い多孔質
層を有する整形外科用人工骨や歯科用人工歯根を工業的
に安価に、かつ安定した品質をもって製造しつる技術を
提供することができる。
<Effects of the Invention> As detailed above, according to the present invention, a porous body having sufficient strength and an optimum pore size for bone growth is manufactured in advance, and then the porous body is cast with molten metal or alloy. It is possible to integrate the two by means of a method, and to produce orthopedic artificial bones and dental artificial tooth roots that have porous layers that are difficult to break or peel off even when subjected to loads such as external pressure, at low cost and in a stable manner. We can provide quality manufacturing technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋳ぐるまれる多孔質体の断面図である。 第2図は、溶融金属または合金鋳造用鋳型の断面図であ
る。 第3図は、第2図の鋳型に第1図の多孔質体を装着した
状態を示す断面図である。 第4図は、多孔質層が一体化された鋳造体の断面図であ
る。 符号の説明 1・・・多孔質体、 2・・・鋳型上部、 3・・・鋳型下部、 4・・・鋳造体、 5・・・鋳型、 6・・・キャビティ一部
FIG. 1 is a sectional view of a porous body to be cast. FIG. 2 is a cross-sectional view of a mold for casting molten metal or alloy. FIG. 3 is a sectional view showing a state in which the porous body shown in FIG. 1 is attached to the mold shown in FIG. 2. FIG. 4 is a cross-sectional view of a cast body with an integrated porous layer. Explanation of symbols 1...Porous body, 2...Mold upper part, 3...Mold lower part, 4...Cast body, 5...Mold, 6...Cavity part

Claims (2)

【特許請求の範囲】[Claims] (1)あらかじめ成形されたチタンまたはチタン合金よ
りなる多孔質体を金属鋳造用鋳型内に固定し、この鋳型
内に溶融チタンまたはチタン合金を注湯した後凝固せし
めて、前記多孔質体の全部または一部分が鋳ぐるまれた
鋳造体を形成し、その後、研削、研磨または化学的処理
により、あるいは無処理のままで、前記多孔質体の一部
分を前記鋳造体の表面に露出させることを特徴とするチ
タンまたはチタン合金製生体内インプラント材料の製造
方法。
(1) A pre-formed porous body made of titanium or titanium alloy is fixed in a metal casting mold, and molten titanium or titanium alloy is poured into the mold and solidified, so that all of the porous body is Alternatively, a part of the porous body is formed into a cast body, and then a part of the porous body is exposed on the surface of the cast body by grinding, polishing, chemical treatment, or without any treatment. A method for producing a titanium or titanium alloy in-vivo implant material.
(2)あらかじめ成形された、化学的処理を施すことに
より多孔質体となりうるチタンまたはチタン合金を主体
とする成形体を金属鋳造用鋳型内に固定し、この鋳型内
に溶融チタンまたはチタン合金を注湯した後凝固せしめ
て、前記成形体の全部または一部分が鋳ぐるまれた鋳造
体を形成し、その後研削、または研磨により、あるいは
無処理のままで前記成形体の一部分を前記鋳造体の表面
に露出させ、これに化学的処理を施して成形体を多孔質
体にすることを特徴とするチタンまたはチタン合金製生
体内インプラント材料の製造方法。
(2) A pre-formed body made mainly of titanium or titanium alloy, which can become porous through chemical treatment, is fixed in a metal casting mold, and molten titanium or titanium alloy is poured into this mold. After pouring the molten metal, it is solidified to form a cast body in which all or a part of the molded body is cast, and then a part of the molded body is polished by grinding or polishing, or without any treatment, on the surface of the cast body. 1. A method for producing an in-vivo implant material made of titanium or a titanium alloy, which comprises exposing the material to a porous material and subjecting it to chemical treatment to make the molded material porous.
JP31997088A 1988-12-19 1988-12-19 Production of in-vivo implanting material Pending JPH02165858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31997088A JPH02165858A (en) 1988-12-19 1988-12-19 Production of in-vivo implanting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31997088A JPH02165858A (en) 1988-12-19 1988-12-19 Production of in-vivo implanting material

Publications (1)

Publication Number Publication Date
JPH02165858A true JPH02165858A (en) 1990-06-26

Family

ID=18116288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31997088A Pending JPH02165858A (en) 1988-12-19 1988-12-19 Production of in-vivo implanting material

Country Status (1)

Country Link
JP (1) JPH02165858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045040A (en) * 2013-08-27 2015-03-12 株式会社神戸製鋼所 Titanium ingot and method of producing titanium ingot
CN108380850A (en) * 2018-03-28 2018-08-10 昆明理工大学 A kind of wear-resisting rake teeth tooth head of ceramic particle multi-scale enhancement metal-based compound and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045040A (en) * 2013-08-27 2015-03-12 株式会社神戸製鋼所 Titanium ingot and method of producing titanium ingot
CN108380850A (en) * 2018-03-28 2018-08-10 昆明理工大学 A kind of wear-resisting rake teeth tooth head of ceramic particle multi-scale enhancement metal-based compound and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4385285B2 (en) Surgical implant manufacturing method and surgical implant
US4722870A (en) Metal-ceramic composite material useful for implant devices
US4492577A (en) Surgical implants with solid interiors and porous surfaces
JP2010513330A (en) Dental implant and manufacturing method thereof
JPH11341A (en) Orthopedic implant
JP2010540077A (en) Cementless tibial tray
US20130150227A1 (en) Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof
GB2210363A (en) Ceramics composites and production process thereof
JPH0523782B2 (en)
CN110508788A (en) A kind of preparation method of zinc or kirsite or its microstructure of composite engineering rack
JP5846591B2 (en) Implant
FR2601699A1 (en) PROCESS FOR THE PRODUCTION OF A COMPOSITE MATERIAL COATED WITH A CALCIUM PHOSPHATE
KR100858105B1 (en) Porous Implant Fixture with multiplicity shapes
KR20110065391A (en) Drug delivery system using magnesium alloy
JPH02165858A (en) Production of in-vivo implanting material
WO2005039544A1 (en) Porous calcium phosphate ceramic and process for producing the same
CN110157936B (en) Preparation method of biomedical ordered porous as-cast zinc-based material
JP4061581B2 (en) Artificial tooth root
CN115414526B (en) Biodegradable zinc alloy bearing bone bracket with bionic structure and processing method
CN111187942B (en) Porous titanium bone nail and method for molding and sintering porous titanium bone nail by gel injection molding method
JP2673515B2 (en) Porous coat implant manufacturing method
JP5947564B2 (en) Method for producing compressed fiber structure
JP4524381B2 (en) Composite material of titanium and ceramics and method for producing the same
WO2009004069A1 (en) Porous dental implant
JP2002306518A (en) Indwelling implement