JP2002306518A - Indwelling implement - Google Patents

Indwelling implement

Info

Publication number
JP2002306518A
JP2002306518A JP2000389309A JP2000389309A JP2002306518A JP 2002306518 A JP2002306518 A JP 2002306518A JP 2000389309 A JP2000389309 A JP 2000389309A JP 2000389309 A JP2000389309 A JP 2000389309A JP 2002306518 A JP2002306518 A JP 2002306518A
Authority
JP
Japan
Prior art keywords
porous metal
metal
indwelling device
pore
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000389309A
Other languages
Japanese (ja)
Inventor
Yuichi Mori
森  有一
Hideo Nakajima
英雄 中嶋
Yasuharu Noisshiki
泰晴 野一色
Yuichi Higuchi
裕一 樋口
Shigeki Mototsu
茂樹 本津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000389309A priority Critical patent/JP2002306518A/en
Priority to AU2001225537A priority patent/AU2001225537A1/en
Priority to PCT/JP2001/000202 priority patent/WO2002049548A1/en
Publication of JP2002306518A publication Critical patent/JP2002306518A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • A61F2002/30807Plurality of blind bores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0082Three-dimensional shapes parallelepipedal

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Transplantation (AREA)
  • Neurology (AREA)
  • Ceramic Engineering (AREA)
  • Dentistry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)
  • Surgical Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a indwelling implement, which is light in weight, has superior mechanical physical properties and improves the characteristics of bonding with invivo tissues. SOLUTION: In the indwelling implement provided with a metallic portion in one part at least, at least one part of the metallic portion is configured by using a porous metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移植等の操作によ
り体内に留置(または配置)可能な体内留置用具、典型
的には例えば外科領域(整形外科、脳外科等)または歯
科領域で使用可能な医療用具(例えば、骨等の硬組織中
に移植することが可能な人工骨、骨折部固定用プレー
ト、ネジ及びワイヤー等の整形外科領域で使用可能な医
療用具;脳動脈瘤結紮用クリップ及び脳動脈瘤内充填用
コイル等の脳外科領域で使用可能な医療用具;人工歯根
等の歯科領域で使用可能な医療用具)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indwelling device which can be indwelled (or placed) in a body by an operation such as transplantation, and can be typically used in, for example, a surgical area (orthopedic surgery, brain surgery, etc.) or a dental area. Medical tools (eg, artificial bones that can be implanted into hard tissue such as bones, fracture fixing plates, medical tools that can be used in the orthopedic field such as screws and wires, etc .; clips for cerebral aneurysm ligation and brain Medical tools such as a coil for filling an aneurysm, which can be used in the field of brain surgery; and medical tools which can be used in a dental field, such as an artificial tooth root).

【0002】本発明の体内留置用具は、強度の低下をも
たらすことなく軽量化、体内組織との適合性(好ましく
は、更に、治癒の促進、感染防止等)を達成しつつ、長
期間、安定した状態で体内に留置することが可能であ
る。
The indwelling device according to the present invention is stable for a long period of time while achieving weight reduction and compatibility with internal tissues (preferably, further promoting healing, preventing infection, etc.) without reducing strength. It is possible to leave it in the body in the state of being done.

【0003】[0003]

【従来の技術】本発明の留置用具の適用部位、適用方法
は特に制限されないが、説明の便宜上、近年の体内留置
用具の典型的な使用方法たる「植え込み器材」を例にと
って、従来の技術について述べる。整形外科及び歯科領
域等における体内植え込み器材に関しては、多くの該器
材が金属製である。これらに金属が使用されるのは、金
属材料への力学的強度の期待からである。このような期
待に応え、金属材料は治療が困難と思われていた多くの
疾患の治療に大きく貢献してきた。
2. Description of the Related Art The application site and application method of the indwelling device of the present invention are not particularly limited, but for convenience of explanation, the conventional technology will be described by taking an example of "implanted device" which is a typical usage method of the indwelling device in recent years. State. With respect to implantable devices in orthopedic and dental fields, many such devices are made of metal. Metals are used for these because of the expectation of mechanical strength for metal materials. In response to these expectations, metallic materials have greatly contributed to the treatment of many diseases that were considered difficult to treat.

【0004】特に人工関節、人工骨、人工歯根や骨折治
療に使用可能である金属プレート、ネジ、ワイヤー等の
領域では、金属材料はその主材料として独壇場であっ
た。又、脳血管領域で使用される脳動脈瘤結紮用クリッ
プ、脳動脈瘤内充填用コイル等も体内の安定性、優れた
機械的強度、良好な加工性等の点から金属材料が使用さ
れてきた。体内に留置すべき金属材料としては、ステン
レススチール、チタン、白金、タンタル、ニッケル/チ
タンの合金である形状記憶合金等が主として使用されて
きた。
[0004] In the area of metal plates, screws, wires, and the like that can be used for artificial joints, artificial bones, artificial dental roots, and fracture treatments, metallic materials have been the main material. Metallic materials have also been used for cerebral aneurysm ligation clips and cerebral aneurysm filling coils used in the cerebral vascular region in terms of stability in the body, excellent mechanical strength, and good workability. Was. As metal materials to be left in the body, stainless steel, titanium, platinum, tantalum, a shape memory alloy which is an alloy of nickel / titanium, and the like have been mainly used.

【0005】しかしながら今日の医療では、更なる期待
が金属材料に寄せられており、これまでの強度、しなや
かさ、連続的刺激に対する耐久性、体内ステルス性、耐
腐蝕性、無刺激性等の他に加えて、更に高級な、例えば
生物学的な機能や体内組織材料と同等の物性、体内組織
組織との細胞レベルでの相互交流性、といった機能性の
高い要素が要求されるようになってきた。
[0005] In today's medical care, however, further expectations are placed on metallic materials, such as strength, suppleness, durability against continuous stimulation, stealth in the body, corrosion resistance, and non-irritability. In addition, higher-functional elements such as biological functions and physical properties equivalent to body tissue materials, and interoperability at the cell level with body tissue are required. Was.

【0006】ところが、今日の金属材料ではそれらの諸
要求には応えることが不可能である。加えて、金属材料
は通常、その容積、重量、力学的特性等のバランス面に
おいて、体内組織組織のそれらと比較して大きな差異を
も示すため、今日要求されている単純な条件(例えば、
体内組織組織により近い材料の創成)に関する問題もも
未解決のままである。
However, it is impossible for today's metal materials to meet these requirements. In addition, metallic materials also typically show large differences in balance in terms of volume, weight, mechanical properties, etc. compared to those of body tissue, so that simple conditions required today (for example,
The problem of creating materials closer to body tissue remains unsolved.

【0007】過去30年間は金属材料に課せられた課題
は体内組織親和性であって、チタン等の使用や、プラズ
マ照射によるセラミック加工等の表面処理加工における
改良による細胞との親和性は改善してきた。しかしなが
らそれ以上の改良は、行われていない。金属材料が、こ
れらの多くの問題点の基本的解消のための改良手段を持
ち合わせていなかったことが、主な原因であったと考え
られる。そのためいくつかの臨床上での不都合な現象が
放置されたままとなっている。
[0007] In the past 30 years, a problem that has been imposed on metal materials is the affinity for tissue in the body, and the affinity for cells has been improved by using titanium or the like and improving surface treatment such as ceramic processing by plasma irradiation. Was. However, no further improvements have been made. It is believed that the main reason was that the metal material did not have an improved means for fundamentally solving many of these problems. This leaves some clinically inconvenient phenomena.

【0008】例えば、高齢者においての人工股関節、人
工骨頭、または骨折部を固定するプレート、ボルト、ワ
イヤーでは金属材料の強度が強すぎ、しかも重すぎて患
者自身の骨を磨耗させたり、破壊させたり、または破断
させるといった不都合が生じている。また、従来の人工
歯根のアバットメントは歯肉線維がアバットメントと結
合せず、容易に細菌の侵入を許した。
For example, a plate, a bolt, and a wire for fixing an artificial hip joint, an artificial head, or a fracture in an elderly person are too strong and too heavy to wear or destroy the patient's own bone. Inconvenience such as breaking or breaking. In addition, in the conventional artificial root abutment, the gingival fibers did not bond with the abutment, and bacteria could easily enter.

【0009】更に、金属材料内へ体内組織組織が侵入す
ることがあり得ないため、体内に挿入された場合には、
体内組織は金属材料全体を体内組織組織で取り囲み「被
包、encapsulation」という現象で異物処理を行ってい
る。この現象は、あたかも一つの国の中での治外法権的
な領域を呈している。そのため感染等が生じた時、抗生
物質等の薬剤を使用してもその領域に入り込むことは難
しく、治療効果は不確実となる。
[0009] Furthermore, since it is impossible for tissue of the body to invade into the metal material, when inserted into the body,
The body tissue surrounds the entire metal material with the body tissue, and performs a foreign substance treatment by a phenomenon called “encapsulation”. This phenomenon represents an extraterritorial territory within one country. Therefore, when an infection or the like occurs, it is difficult to enter the area even if a drug such as an antibiotic is used, and the therapeutic effect is uncertain.

【0010】また、金属部分のごく一部に感染が生じた
場合には、その被包組織内面と材料との境界領域で感染
が材料の全表面に急速に拡がるため、金属材料が極めて
感染に弱いという結果ももたらす。他方、従来から使用
されてきた金属材料に対しては、体内組織組織に積極的
に作用して、例えば治癒促進、抗菌、凝血、抗凝血等の
作用を促進させる性状を付与することは、ほとんど不可
能であった。例えば脳動脈瘤内充填コイル等の血管内に
挿入し塞栓剤として使用される医療用具として白金等が
使用されてきたが、白金コイルの表面に形成された血栓
によって動脈瘤内部は閉塞されるものの、形成された血
栓が基質化し血管内皮細胞に覆われるプロセス(血管内
皮化)が非常に遅く完全な治療とは言い難く、しかも、
血栓が脳動脈内に遊離する危険性がいつまでも続くとい
う大きな問題があった。
[0010] In addition, when an infection occurs in a very small part of the metal part, the infection spreads quickly to the entire surface of the material at the boundary area between the inner surface of the encapsulating tissue and the material, so that the metal material becomes extremely infected. It also results in weakness. On the other hand, for a metal material that has been used conventionally, it has a property to positively act on the body tissue, for example, to impart properties of promoting healing, antibacterial, coagulation, anticoagulation, etc. It was almost impossible. For example, platinum or the like has been used as a medical device that is inserted into a blood vessel such as a filling coil in a cerebral aneurysm and used as an embolizing agent, but the inside of the aneurysm is closed by a thrombus formed on the surface of the platinum coil. However, the process by which the formed thrombus becomes a matrix and is covered by vascular endothelial cells (vascular endothelialization) is extremely slow and cannot be said to be complete treatment.
There was a major problem that the risk of blood clots being released into the cerebral arteries would last forever.

【0011】勿論、従来の金属材料を上述した人工骨、
骨折用プレート、人工歯根等として使用した場合にも積
極的に体内組織組織に作用し治療を促進したり、感染を
防止したりする作用を付与することは不可能であった。
Of course, the conventional metal material is replaced with the above-described artificial bone,
Even when used as a fracture plate, artificial root, or the like, it has not been possible to positively act on body tissue to promote treatment or prevent infection.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術の欠点を解消した体内留置用具を提供する
ことにある。本発明の他の目的は、体内周囲組織と同様
の機械的物性、優れた強度と軽量性を付与した体内留置
用具を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a device for indwelling a living body which has solved the above-mentioned disadvantages of the prior art. Another object of the present invention is to provide an in-dwelling device having the same mechanical properties as the tissue around the body, excellent strength and light weight.

【0013】本発明の更に他の目的は、体内留置用具に
周囲の体内組織との親和性及び結合性を付与した体内留
置用具を提供することにある。本発明の更に他の目的
は、治癒促進、抗菌、凝血、抗凝血作用等の積極的な機
能を付与した体内留置用具を提供することにある。
It is still another object of the present invention to provide a device for indwelling the body in which the device for indwelling the body is given an affinity and a binding property with surrounding body tissue. Still another object of the present invention is to provide an in-dwelling device provided with positive functions such as healing promotion, antibacterial, blood coagulation, and anticoagulant effects.

【0014】[0014]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、体内留置用具を構成する金属自体に多孔性構造を
付与することが、上記目的の達成のために極めて効果的
なことを見出した。本発明の金属製体内留置用具は上記
知見に基づくものであり、その少なくとも一部に金属部
分を含む体内留置用具であって、該金属部分の少なくと
も一部がポーラス金属を含むことを特徴とするものであ
る。
Means for Solving the Problems As a result of earnest studies, the present inventors have found that it is extremely effective to impart a porous structure to the metal itself constituting the indwelling device in order to achieve the above object. I found it. The metal indwelling device of the present invention is based on the above findings, and is an indwelling device including a metal portion in at least a part thereof, wherein at least a part of the metal portion contains a porous metal. Things.

【0015】上記構成を有する本発明の体内留置用具
は、これを構成するポーラス金属材料が多孔性であるた
め軽量であるのみならず、体内組織との接触面積が著し
く増加するため充分な接合強度を容易に得ることができ
る。更に、後述する異方性ポアの構造を有するポーラス
金属を用いる態様においては、体内留置用具が優れた機
械的強度を有するのみならず、体内硬組織と同様の靭性
を示すことが容易となる。
The indwelling device of the present invention having the above-described structure is not only lightweight because the porous metal material constituting the device is porous, but also has a sufficient bonding strength because the contact area with the body tissue is significantly increased. Can be easily obtained. Further, in the embodiment using a porous metal having an anisotropic pore structure described later, not only the indwelling device has excellent mechanical strength, but also it is easy to exhibit the same toughness as hard tissue in the body.

【0016】更に上記構成を有する本発明の体内留置用
具は構成する金属材料が多孔性であるため(特に、後述
するような異方性ポアの構造の場合には)内部に体内組
織が侵入し易く、更に金属材料と周囲の体内組織との結
合を強固することが容易である。この場合、特にポアの
大きさによって体内組織の侵入度合を制御することが可
能である。
Further, in the indwelling device of the present invention having the above-mentioned structure, since the metallic material constituting the device is porous (especially in the case of an anisotropic pore structure as described later), the body tissue invades inside. It is easy to strengthen the bond between the metal material and the surrounding body tissue. In this case, it is possible to control the degree of invasion of the body tissue particularly by the size of the pore.

【0017】ポアのサイズが8〜15μmの場合にはコ
ラーゲン繊維等の体内組織が、40〜100μmの場合
には骨様組織が、150〜200μmの場合には骨組織
がそれぞれポアの内部に侵入すると言われている。従っ
て、ポアのサイズを正確にコントロールすることが、留
置用具と周囲の体内組織との結合を強化するためには非
常に重要である。
When the pore size is 8 to 15 μm, a body tissue such as collagen fiber enters the pore, when the pore size is 40 to 100 μm, the bone-like tissue enters, and when the pore size is 150 to 200 μm, the bone tissue enters the pore. It is said that. Therefore, accurate control of the pore size is very important to enhance the connection between the indwelling device and the surrounding body tissue.

【0018】以上のように留置用具と周囲との体内組織
の接合を強化できた場合には、例えば骨吸収、骨粗鬆症
や骨再性能の低下等が生じても、該医療用具は安定して
体内に保持される。例えば人工歯根の場合には、咬合力
に充分耐えるだけの接合強度を得ることが容易である。
骨折部用プレート、ボルト、ワイヤー等の場合も、充分
な接合強度を得ることが容易である。
As described above, when the connection between the indwelling device and the surrounding body tissue can be strengthened, even if bone resorption, osteoporosis, deterioration of bone re-performance, etc. occur, the medical device can be stabilized in the body. Is held. For example, in the case of an artificial tooth root, it is easy to obtain bonding strength enough to withstand occlusal force.
In the case of a fracture plate, a bolt, a wire, and the like, it is easy to obtain a sufficient joint strength.

【0019】更に前述したように、金属表面のごく一部
に感染が生じたとしても金属表面と周囲組織の結合が強
固な場合は、感染部分は局所に限定されるため大きな障
害には至らない。また、人工歯根の場合、該人工歯根と
周囲組織との接合が強固な場合には食カス(垢)、細菌
等による歯垢(プラーク)の人工歯根の表面への付着が
抑制されるため、インプラント周囲炎等を予防する。
Furthermore, as described above, even if infection occurs on a very small portion of the metal surface, if the connection between the metal surface and the surrounding tissue is strong, the infected portion is limited to a local area and does not cause a major obstacle. . In addition, in the case of an artificial tooth root, if the bonding between the artificial tooth root and the surrounding tissue is strong, the adhesion of food plaque (plaque), bacteria and the like to plaque (plaque) on the surface of the artificial tooth root is suppressed, Prevent peri-implantitis.

【0020】更に上記構成を有する本発明の体内留置用
具は構成する金属材料が多孔性であるため、該ポア中に
種々の機能性物質(例えば凝固剤、抗凝固剤、抗菌剤等
の薬剤、細胞増殖抑制または促進剤等の生理活性物質ま
たは細胞等、必要に応じて高分子化合物と組合わせて)
を充填することが極めて容易になる。したがって、該機
能性物質を該医療用具表面から周囲の組織中に徐放化す
ることが可能になり、該医療用具に治癒促進、抗菌、凝
血、抗凝血作用を積極的に付与することが可能である。
Further, since the metal material constituting the indwelling device of the present invention having the above-mentioned structure is porous, various functional substances (for example, agents such as a coagulant, an anticoagulant and an antibacterial agent, A biologically active substance such as a cell growth inhibitor or a promoter or a cell, etc., in combination with a polymer compound if necessary)
Is extremely easy to fill. Therefore, the functional substance can be gradually released from the surface of the medical device into the surrounding tissue, and healing promotion, antibacterial, blood coagulation, and anticoagulant action can be positively imparted to the medical device. It is possible.

【0021】特に後述する異方性ポア構造を有するポー
ラス金属を用いる態様においては、該ポアが開放型であ
るため、該ポーラス金属内部に大量の機能性物質を充填
し、且つ徐放化させることが、より容易になる。上記の
機能性物質として細胞増殖促進物質を用いた場合には、
例えば、脳動脈瘤内充填コイルの態様とした本発明の留
置用器具から該物質を徐放化することにより、従来、決
定的な問題であった血管内皮化の遅延を著しく促進する
ことが可能である。
Particularly, in an embodiment using a porous metal having an anisotropic pore structure described later, since the pores are open, it is necessary to fill a large amount of a functional substance inside the porous metal and to release the porous metal gradually. But easier. When a cell growth promoting substance is used as the above functional substance,
For example, by slowly releasing the substance from the indwelling device of the present invention in the form of a filling coil in a cerebral aneurysm, it is possible to remarkably promote the delay of vascular endothelialization, which was conventionally a critical problem. It is.

【0022】また、骨折部固定用プレート、人工歯根の
態様とした本発明の留置用器具から細胞増殖促進因子等
を徐放化することにより、治癒の促進を著しく向上させ
ることが可能である。また、機能性物質として抗菌剤等
を用いた場合には、人工関節、人工歯根の大きな問題で
あった感染を積極的に防止することが可能である。本発
明において上記ポーラス金属のポアの方向が一方向に揃
っており(Smax/Smin ≧2)、且つ該方向と直角の
方向のポア断面の形状が円形に近い態様では、ポーラス
金属材料の強度の維持により、本発明の人工関節、骨折
部固定用プレート、ネジ、人工歯根等に充分な強度を発
現させることが更に容易となる。
Further, the sustained release of a cell growth promoting factor or the like from the indwelling device of the present invention in the form of a plate for fixing a fractured portion or an artificial tooth root can significantly improve the promotion of healing. In addition, when an antibacterial agent or the like is used as a functional substance, it is possible to positively prevent infection, which is a major problem of artificial joints and artificial roots. In the present invention, when the pore direction of the porous metal is aligned in one direction (Smax / Smin ≧ 2) and the shape of the pore cross section in a direction perpendicular to the direction is almost circular, the strength of the porous metal material is reduced. Maintaining the artificial joint, the plate for fixing a fractured part, the screw, the artificial tooth root and the like of the present invention further facilitates the maintenance.

【0023】本発明において上記ポーラス金属のポア内
表面が固溶強化層またはセラミック層によって形成され
ている態様では、ポーラス金属の強度の更なる向上が容
易となる。本発明において上記ポーラス金属を金属−ガ
ス系を用いて金属の溶融状態と凝固状態におけるガス原
子の溶解度の差を利用して製造される態様では、ポーラ
ス金属の強度を維持しつつ、異方性ポアを得ることが極
めて容易となる。このような態様においては、更に、ポ
ーラス金属の製造工程で金属原子とガス原子の反応によ
って、ポアの内表面に固溶強化層を形成することが容易
となる。
In the embodiment of the present invention, in which the pore inner surface of the porous metal is formed by the solid solution strengthening layer or the ceramic layer, the strength of the porous metal can be further improved. In the embodiment of the present invention, the porous metal is produced using a difference in solubility of gas atoms in a molten state and a solidified state of the metal using a metal-gas system, while maintaining the strength of the porous metal, It is extremely easy to obtain pores. In such an embodiment, the solid solution strengthening layer can be easily formed on the inner surface of the pore by the reaction between the metal atom and the gas atom in the production process of the porous metal.

【0024】本発明においては、必要に応じて、化学的
気相堆積法または物理的気相堆積法により、上記ポーラ
ス金属のポアの内表面にセラミック層を形成することも
可能である。このようなポア内表面のセラミック層は、
イオンプランテーション法によって形成することも可能
である。
In the present invention, if necessary, a ceramic layer can be formed on the inner surface of the pores of the porous metal by a chemical vapor deposition method or a physical vapor deposition method. Such a ceramic layer on the inner surface of the pore
It can also be formed by an ion plantation method.

【0025】[0025]

【発明の実施の形態】以下、必要に応じて図面を参照し
つつ本発明を更に具体的に説明する。以下の記載におい
て量比を表す「部」および「%」は、特に断らない限り
質量基準とする。 (体内留置用具)本発明において「体内留置用具」と
は、移植等の操作により、体内に一時的または(半)永
久的に留置または配置されて使用される医療用具を言
う。ここに、「医療用具」とは、ヒトもしくは動物の疾
病の診断、治療もしくは予防に使用されること、または
ヒトもしくは動物の身体の構造もしくは機能に影響を及
ぼすことが目的とされている器具器械を言う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantitative ratios are based on mass unless otherwise specified. (In-vivo indwelling device) In the present invention, the "in-vivo indwelling device" refers to a medical device that is temporarily or (semi) permanently indwelled or placed in the body by an operation such as transplantation. As used herein, the term "medical device" refers to a device or device intended to be used for diagnosis, treatment or prevention of human or animal diseases, or to affect the structure or function of the human or animal body. Say

【0026】また、「体内」とは、ヒトまたは動物の体
内を言う。体内に留置する意義(例えば、体内組織の防
腐・変質の防止)がある限り、体内組織のみならず死体
の体内をも包含する。本発明においては、侵入、挿入等
により留置用具の少なくとも一部が体内組織内に留置可
能である限り、「体内」留置用具とする。ポーラス金属
の使用が効果的である限り、本発明における「医療用
具」は特に制限されない。本発明における「医療用具」
は、典型的な例として例えば、人工関節(図1)、骨折
部固定用プレート(図2)、ネジ(図3)、ワイヤー、
人工歯根(図4)、脳動脈瘤内充填コイル等を包含す
る。 (多孔性構造を有する金属)本発明の体内留置用具を構
成するポーラス金属は、多孔性を有する限り特に制限さ
れないが、以下の物性を有するものが、特に好適に使用
可能である。 (ポアサイズ)本発明のステントを構成するポーラス金
属は、平均ポアサイズ(孔径)が、0.1〜1000μ
m程度、更には0.5〜500μm程度であることが好
ましい。このようなポアサイズは、例えば、米国Porous
Materials, Inc.社製の測定装置(商品名:自動パーム
ポロメーター;Automated Perm-Porometer)を用いて好
適に測定可能である。 (ポロシティ)本発明のステントを構成するポーラス金
属は、ポロシティ(多孔度ないし空隙率)が、5〜80
%程度、更には10〜40%程度であることが好まし
い。このようなポロシティは、例えば、米国Porous Mat
erials, Inc.社製の測定装置(商品名:自動パームポロ
メーター;Automated Perm-Porometer)を用いて好適に
測定可能である。 (ポアの方向性)本発明の体内留置用具を構成するポー
ラス金属は、ポアの方向性(Smax/Smin )で2以上
であることが好ましい。更には、この方向性(Smax/
Smin )は、10以上、更には20以上(特に50以
上)であることが好ましい。このようなポアの方向性
は、以下の方法により好適に測定可能である。 <ポア方向性の測定方法>図5の模式斜視図に示すよう
なポーラス金属の軸方向に添って中空円筒形状を有する
ポーラス金属の筒(圧延前、ポーラス金属の内径:約3
mm)を作製する。
The term "body" refers to a human or animal body. As long as the indwelling body has a meaning (for example, preservation of the body tissue and prevention of deterioration), it includes not only the body tissue but also the body of a dead body. In the present invention, as long as at least a part of the indwelling device can be indwelled in a body tissue by invasion, insertion, or the like, the device is referred to as an “in-vivo” indwelling device. The “medical device” in the present invention is not particularly limited as long as the use of the porous metal is effective. "Medical device" in the present invention
As typical examples, for example, artificial joints (FIG. 1), fracture fixing plates (FIG. 2), screws (FIG. 3), wires,
Artificial roots (FIG. 4), cerebral aneurysm filling coils, etc. are included. (Metal having porous structure) The porous metal constituting the indwelling device of the present invention is not particularly limited as long as it has porosity, but those having the following physical properties can be particularly preferably used. (Pore Size) The porous metal constituting the stent of the present invention has an average pore size (pore diameter) of 0.1 to 1000 μm.
m, more preferably about 0.5 to 500 μm. Such pore sizes are, for example,
The measurement can be suitably performed using a measuring device (trade name: Automated Perm-Porometer) manufactured by Materials, Inc. (Porosity) The porous metal constituting the stent of the present invention has a porosity (porosity or porosity) of 5 to 80.
%, More preferably about 10 to 40%. Such porosity is, for example, the US Porous Mat
It can be suitably measured using a measuring device (trade name: Automated Perm-Porometer) manufactured by erials, Inc. (Direction of Pore) The porous metal constituting the indwelling device of the present invention preferably has a pore directionality (Smax / Smin) of 2 or more. Furthermore, this direction (Smax /
Smin) is preferably 10 or more, more preferably 20 or more (especially 50 or more). The directionality of such pores can be suitably measured by the following method. <Method of Measuring Pore Directivity> A porous metal tube having a hollow cylindrical shape along the axial direction of the porous metal as shown in the schematic perspective view of FIG.
mm).

【0027】上記で得られたポーラス金属の筒を、ポア
軸方向に添って1箇所切断し、図6の模式斜視図に示す
ようなポーラス金属の板(厚さ:約1mm、大きさ約1
2mm×約20mm程度)を作製する。上記で得られた
ポーラス金属の板を、ポア軸と垂直の方向に添って厚さ
約1mmで切断して、ポーラス金属断片を得る。この金
属断片を10枚程度並べて、エポキシ樹脂を用いて互い
に接着し、図7の模式斜視図に示すようなポーラス金属
断片からなるポアの方向性測定用の試料を作製する。こ
の試料を適当な大きさ(例えば、径が約10mmφ程度
の円盤)で切り出して、以下の測定に用いる。
The porous metal tube obtained above is cut at one position along the pore axis direction, and a porous metal plate (thickness: about 1 mm, size: about 1 mm) as shown in the schematic perspective view of FIG.
(About 2 mm × about 20 mm). The porous metal plate obtained above is cut at a thickness of about 1 mm along a direction perpendicular to the pore axis to obtain a porous metal fragment. Approximately ten such metal fragments are arranged and adhered to each other using an epoxy resin, and a sample for measuring the directionality of pores made of porous metal fragments as shown in the schematic perspective view of FIG. 7 is prepared. This sample is cut out in an appropriate size (for example, a disk having a diameter of about 10 mmφ) and used for the following measurements.

【0028】図8の模式断面図に示すような装置を用い
て、試料の上方に留置された水にP=133×105
a(=100mmHg)の圧力を加えて、上記試料の所
定面積(例えば、径が約7mmφ程度の円盤)を透過す
る水量を約5分間測定する。3回程度測定を繰り返し
て、その平均を求める。試料面A(すなわち、ポアの方
向性が最大となる方向に水が透過するような面)の測定
値をSmax 、試料面B(すなわち、ポアの方向性が最小
となる方向に水が透過するような面)の測定値をSmin
として、ポアの方向性(Smax/Smin)を計算する。 (機械的強度)本発明で用いるポーラス金属は、その耐
久性、信頼性(医療関係では特に重要である)の点から
は、下記のような機械的強度特性を有することが好まし
い。
Using an apparatus as shown in the schematic cross-sectional view of FIG. 8, P = 133 × 10 5 P was added to water retained above the sample.
The pressure of a (= 100 mmHg) is applied, and the amount of water passing through a predetermined area (for example, a disk having a diameter of about 7 mmφ) of the sample is measured for about 5 minutes. The measurement is repeated about three times, and the average is obtained. The measured value of the sample surface A (that is, the surface through which water permeates in the direction in which the directionality of the pore is maximum) is Smax, and the sample surface B (that is, the water permeation in the direction in which the directionality of the pore is minimum) Smin
, The directionality of the pore (Smax / Smin) is calculated. (Mechanical Strength) The porous metal used in the present invention preferably has the following mechanical strength characteristics from the viewpoint of durability and reliability (particularly important in medical fields).

【0029】例えば、ポーラス金属のポアの方向と平行
方向の引張り強度(σ)と、ポーラス金属のポロシティ
がゼロの時、すなわち無垢の(ポアの無い)時の引張り
強度(σ0 )をそれぞれ測定する。これらの相対的引張
り強度(σ/σ0 )と、該ポーラス金属のポロシティ
(P%)との比(A)を機械的強度の指標とすることが
できる。
For example, the tensile strength (σ) in the direction parallel to the direction of the pores of the porous metal and the tensile strength (σ 0 ) when the porosity of the porous metal is zero, ie, when the porous metal is solid (no pores) are measured. I do. The ratio (A) between the relative tensile strength (σ / σ 0 ) and the porosity (P%) of the porous metal can be used as an index of the mechanical strength.

【0030】 A={(σ/σ0 )/(100−P)}×100 本発明においては、上記式で表されるAが、0.8以
上、更には0.9以上であることが好ましい。 (体内留置用具の態様)ポーラス金属の使用が効果的で
ある限り、本発明の体内留置用具の態様は、特に制限さ
れない。本発明の体内留置用具としては、典型的には例
えば、人工関節(図1)、骨折部固定用プレート(図
2)、ネジ(図3)、ワイヤー、人工歯根(図4)、脳
動脈瘤内充填コイル等が挙げられる。 (人工関節の態様)図1は、本発明の体内留置用具を人
工関節の態様とした一例を示す模式斜視図である。この
図は、いわゆるチャンレー型人工股関節の例である。こ
の人工股関節は、高密度ポリエチレン(HDP)、超高
密度ポリエチレン(UH−MWPE)等を人工軟骨とし
て使用する骨盤側ソケット1と、大腿骨側の金属製の骨
頂(ボール)部2と、金属製のステム3とからなる。こ
の図1において、例えば、ステムとしてポーラス金属
(例えば、ポーラスチタン合金)を用いた際には、母材
の軽量化と衝撃力の吸収および生体との親和性が増し感
染の防止、治癒の促進などの利点を得ることができる。 (骨折部修復用プレートの態様)図2(a)および
(b)は、それぞれ、本発明の体内留置用具を骨折部修
復用プレートの態様とした一例を示す模式平面および模
式断面図である。この図2の骨折部修復用プレートは、
やや平べったい細長い部材4であって、所望の数の孔5
を有する。この図2において、例えば、細長い部材4と
してポーラス金属(例えば、ポーラスチタン合金)を用
いた際には、衝撃力の吸収や応力の吸収により固定ネジ
のゆるみの防止、生体との親和性が増し感染の防止、治
癒の促進などの利点を得ることができる。 (骨折部修復用ネジの態様)図3は、本発明の体内留置
用具を骨折部修復用ネジの態様とした一例を示す模式平
面図である。この図3の骨折部修復用ネジは、ネジ山部
6を有する柄部7を有する。この図3において、例え
ば、柄部7としてポーラス金属(例えば、ポーラスチタ
ン合金)を用いた際には、衝撃力の吸収によるネジのゆ
るみの防止、生体との親和性の向上による感染の防止、
治癒の促進などの利点を得ることができる。 (人工歯根の態様)図4は、本発明の体内留置用具を人
工歯根(インプラント)の態様とした一例を示す模式斜
視図である。この図4の人工歯根は、歯肉10に該人工
歯根を固定するためのフィクスチャー11と、かみ合わ
せを支えるアバットメント12と、ヒトの歯の形に準じ
た形状の上部構造13とを有する。この図4において、
例えば、アバットメントとしてポーラス金属(例えば、
ポーラスチタン合金)を用いた際には、歯肉線維との強
固な結合による感染の防止、治癒の促進などの利点を得
ることができる。 (ポーラス金属の製造方法)上記した特性を有するポー
ラス金属を製造可能な限り、その製造法は特に制限され
ない。一般に、ポーラス金属の製造法としては、以下に
述べるような鋳造法、メッキ法、粉末冶金法、スパッタ
堆積法等の方法が開発されている。鋳造法 鋳造法には溶湯発泡法、粒子間浸透法、インベストメン
ト鋳造法等がある。溶湯発泡法には不活性ガスや炭酸ガ
スを溶融金属中に注入し撹拌し発泡させ凝固する物理的
な方法と、チタン水素化合物やジルコニウム水素化合物
等の発泡剤を溶融金属に添加し水素化合物の分解反応に
よって生ずる水素ガスによって発泡させ凝固する化学的
な方法がある。これらの方法により得られる多孔性構造
は独立したポアから成り立つ傾向が強く、異方性ポアを
有するポーラス金属を得ることは比較的困難である。
A = {(σ / σ 0 ) / (100−P)} × 100 In the present invention, A represented by the above formula may be 0.8 or more, and more preferably 0.9 or more. preferable. (Embodiment of indwelling device) The embodiment of the indwelling device of the present invention is not particularly limited as long as the use of the porous metal is effective. The indwelling device of the present invention typically includes, for example, an artificial joint (FIG. 1), a plate for fixing a fractured part (FIG. 2), a screw (FIG. 3), a wire, an artificial root (FIG. 4), a cerebral aneurysm. And an inner filling coil. (Embodiment of Artificial Joint) FIG. 1 is a schematic perspective view showing an example in which the indwelling device of the present invention is in the form of an artificial joint. This figure is an example of a so-called Chanley type artificial hip joint. The hip prosthesis includes a pelvis-side socket 1 using high-density polyethylene (HDP), ultra-high-density polyethylene (UH-MWPE), or the like as an artificial cartilage; a metal bone tip (ball) portion 2 on the femur side; And a stem 3 made of stainless steel. In FIG. 1, for example, when a porous metal (for example, a porous titanium alloy) is used as the stem, the weight of the base material is reduced, the impact force is absorbed, the affinity with the living body is increased, the infection is prevented, and the healing is promoted. Advantages such as can be obtained. (Aspect of Fracture Repair Plate) FIGS. 2A and 2B are a schematic plan view and a schematic cross-sectional view, respectively, showing an example of the in-vivo indwelling device of the present invention as a fracture repair plate. The fracture repair plate of FIG.
A slightly flat elongated member 4 having a desired number of holes 5
Having. In FIG. 2, for example, when a porous metal (for example, a porous titanium alloy) is used as the elongated member 4, the fixing screw is prevented from loosening due to the absorption of the impact force and the stress, and the affinity with the living body is increased. Advantages such as prevention of infection and promotion of healing can be obtained. (Embodiment of Fracture Repair Screw) FIG. 3 is a schematic plan view showing an example in which the indwelling device of the present invention is an embodiment of a fracture repair screw. 3 has a handle 7 having a thread 6. In FIG. 3, for example, when a porous metal (for example, a porous titanium alloy) is used as the handle portion 7, the screw is prevented from being loosened by absorbing an impact force, and the infection is prevented by improving affinity with a living body.
Benefits such as accelerating healing can be obtained. (Embodiment of Artificial Root) FIG. 4 is a schematic perspective view showing an example in which the indwelling device of the present invention is used as an artificial root (implant). The artificial dental root shown in FIG. 4 has a fixture 11 for fixing the artificial dental root to the gingiva 10, an abutment 12 for supporting engagement, and an upper structure 13 having a shape similar to the shape of a human tooth. In FIG.
For example, as an abutment, a porous metal (for example,
When a porous titanium alloy is used, advantages such as prevention of infection and promotion of healing due to strong bonding with gingival fibers can be obtained. (Method for Producing Porous Metal) The method for producing the porous metal is not particularly limited as long as the porous metal having the above-described characteristics can be produced. In general, as a method for producing a porous metal, methods such as a casting method, a plating method, a powder metallurgy method, and a sputter deposition method described below have been developed. Casting methods Casting methods include a molten metal foaming method, an interparticle infiltration method, and an investment casting method. The molten metal foaming method is a physical method in which an inert gas or carbon dioxide gas is injected into a molten metal, stirred, foamed, and solidified, or a foaming agent such as a titanium hydride compound or a zirconium hydride compound is added to the molten metal to form a hydrogen compound. There is a chemical method of foaming and solidifying with hydrogen gas generated by a decomposition reaction. The porous structure obtained by these methods has a strong tendency to consist of independent pores, and it is relatively difficult to obtain a porous metal having anisotropic pores.

【0031】粒子間浸透法は、鋳型に詰め込んだ小球の
間隙に溶融金属をしみ込ませて凝固させる方法であり、
該小球には中空ガラス球や塩化ナトリウムを用いること
が多い。塩化ナトリウムからなる小球は、凝固後に水で
溶かし出すことができる。他方、インベストメント鋳造
法においては、ポリウレタンフォームの空隙部分を耐火
物のスラリーで充填し乾燥した後、焼成して鋳型を作製
する。そこに溶融金属を減圧鋳造した後、鋳型を除去し
てポーラス金属を作製する。
The interparticle infiltration method is a method in which molten metal is impregnated into gaps between small spheres packed in a mold and solidified.
For the small spheres, hollow glass spheres or sodium chloride are often used. The globules of sodium chloride can be dissolved with water after solidification. On the other hand, in the investment casting method, a void portion of a polyurethane foam is filled with a refractory slurry, dried, and then fired to produce a mold. After casting the molten metal there under reduced pressure, the mold is removed to produce a porous metal.

【0032】粒子間浸透法またはインベストメント鋳造
法は大きな孔径を有するポーラス金属を製造することが
できるが、本発明のステントに好適なポーラス金属の孔
径、即ち数μm 〜数十μmの小さな孔径のポーラス金属
を作製することは比較的困難である。また上記の方法で
作製したポーラス金属はポアがランダムとなり機械的物
性が低下する傾向が強く、得られたポーラス金属のステ
ントへの加工は比較的困難である。メッキ法 ポリウレタンフォームの骨格の表面にグラファイト等を
化学的方法によりコーティングし、これを陰極とする。
この陰極に、電解浴槽内においてニッケル等をメッキし
た後、ポリウレタンフォームを焼成除去してポーラス金
属を作製する。この方法に於いても、本発明に好適な孔
径を有し、且つ機械的強度の良好なポーラス金属の作製
は比較的困難である。粉末治金法 有機媒体と金属粉末のスラリーに発泡剤を混合し発泡さ
せ固化した後、焼成するスラリー発泡法、HIP(熱間
静水圧処理)やCIP(冷間等方加工処理)せずに常圧
で金属粉体を焼結する常圧焼結法、ポリウレタンフォー
ムを金属粉末のスラリー中に浸漬し、乾燥させた後、ポ
リウレタンフォームを熱分解させ焼結処理するスポンジ
法等がある。スパッタ堆積法 スパッタリング法を用いて、不活性ガス中で水冷した基
板上に金属をスパッタ堆積させ、薄膜を合成させる。こ
のような薄膜には、通常20〜2000ppm程度の不
活性ガスが混入している。該薄膜を融点直下で加熱する
と、混合ガス原子によるバブルが形成されて成長し、加
熱によってバブル体積が増大することにより発泡金属が
形成される。
Although the porous metal having a large pore diameter can be produced by the interparticle infiltration method or the investment casting method, the pore diameter of the porous metal suitable for the stent of the present invention, that is, the small pore diameter of several μm to several tens μm is used. It is relatively difficult to make metal. In addition, the porous metal produced by the above method has a strong tendency that the pores become random and the mechanical properties deteriorate, and it is relatively difficult to process the obtained porous metal into a stent. Plating method The surface of the skeleton of the polyurethane foam is coated with graphite or the like by a chemical method, and this is used as a cathode.
After the cathode is plated with nickel or the like in an electrolytic bath, the polyurethane foam is removed by firing to produce a porous metal. Also in this method, it is relatively difficult to produce a porous metal having a pore size suitable for the present invention and good mechanical strength. Powder metallurgy method A foaming agent is mixed with a slurry of an organic medium and a metal powder, foamed, solidified, and then fired, without using the slurry foaming method, HIP (hot isostatic pressure treatment) or CIP (cold isostatic processing). There are a normal pressure sintering method in which metal powder is sintered at normal pressure, a sponge method in which a polyurethane foam is immersed in a slurry of metal powder and dried, and then the polyurethane foam is thermally decomposed and sintered. Sputter deposition A metal is sputter-deposited on a water-cooled substrate in an inert gas using a sputtering method to synthesize a thin film. Such a thin film usually contains about 20 to 2000 ppm of an inert gas. When the thin film is heated just below the melting point, bubbles formed by the mixed gas atoms grow and grow, and the volume of the bubble is increased by the heating to form a foamed metal.

【0033】以上、種々のポーラス金属または発泡金属
の製造法について概観したが、他の新しい方法として、
後述する金属−ガス法がある。本発明の体内留置用具用
ポーラス金属に好適に使用可能な開放型ポアが容易に得
られる点、または孔径の均一性、ポアの方向性および数
μm〜数百μmの小さな孔径の制御が容易である等の点
からは、上記した種々の方法のうち金属−ガス法が特に
好適に使用可能である。
[0033] In the above, an overview of various methods for producing a porous metal or a foamed metal has been given.
There is a metal-gas method described later. An open pore that can be suitably used for the porous metal for indwelling device of the present invention can be easily obtained, or the uniformity of the pore diameter, the directionality of the pore and the control of the small pore diameter of several μm to several hundred μm are easy. From a certain point of view, the metal-gas method can be particularly preferably used among the various methods described above.

【0034】更に、この金属−ガス法により得られるポ
ーラス金属に対しては、開放型であり且つ異方性ポアの
付与が容易である。このようなポアの特徴を活かすこと
により、機械的強度を維持したまま軽量化を達成するこ
とができる。更に前にも述べたように体内組織が該ポア
中に侵入することが可能になり金属材料と周囲組織との
間に強固の結合層が得られる。更に機能性物質(薬剤な
いし生理活性物質等)をポア内に充填することにより、
徐放化機能の付与が容易となり、治癒の促進、抗菌性等
の機能を本発明の留置用具に付与することが可能にな
る。 (金属−ガス法)以下に、本発明に最も好適に使用可能
な多孔性構造の付与方法(金属−ガス法)を記述する。
Further, the porous metal obtained by the metal-gas method is of an open type and can easily provide anisotropic pores. By utilizing the characteristics of such pores, weight reduction can be achieved while maintaining mechanical strength. Further, as described above, the body tissue can penetrate into the pore, and a strong bonding layer can be obtained between the metal material and the surrounding tissue. Further, by filling the pores with functional substances (drugs or physiologically active substances, etc.),
It is easy to impart a sustained release function, and it is possible to impart functions such as promotion of healing and antibacterial properties to the indwelling device of the present invention. (Metal-gas method) Hereinafter, a method (metal-gas method) of imparting a porous structure that can be most preferably used in the present invention will be described.

【0035】この方法においては、金属−ガス系を用い
て、金属の溶融状態と凝固状態におけるガス原子の溶解
度の差を利用してポーラス金属を作製する(特開平10
−88254号、特願平10−227624号、特願平
11−42575号、特願平11−195260号;生
産と技術、第51巻、第3号、第60頁(199
9))。金属をガス(水素、酸素または窒素等)雰囲気
中で溶融すると、多量のガス原子が解離し金属中に溶解
する。その後、この溶融金属を凝固させると、過飽和ガ
ス原子が析出し、金属内にポアが形成される。金属をガ
ス雰囲気中で溶融する際のガス圧を増加させると、ガス
原子の溶融金属中への溶解度が増大して、ポロシティも
増大する。
In this method, using a metal-gas system, a porous metal is produced by utilizing the difference in solubility of gas atoms between a molten state and a solidified state of a metal (Japanese Patent Laid-Open No.
-88254, Japanese Patent Application No. 10-227624, Japanese Patent Application No. 11-42575, Japanese Patent Application No. 11-195260; Production and Technology, Vol. 51, No. 3, page 60 (199)
9)). When a metal is melted in a gas (hydrogen, oxygen or nitrogen) atmosphere, a large amount of gas atoms dissociate and dissolve in the metal. Thereafter, when the molten metal is solidified, supersaturated gas atoms are precipitated, and pores are formed in the metal. Increasing the gas pressure when melting a metal in a gas atmosphere increases the solubility of gas atoms in the molten metal and increases the porosity.

【0036】一方、溶融金属の冷却の速度および冷却方
式により、孔径およびポアの方向の制御がそれぞれ可能
である。この方法においてはポア形成が過飽和ガス原子
の析出に基づくため、例えば、ポーラス金属のポア断面
の形状をほぼ円形とすることが極めて容易である。この
ようなほぼ円形ポア断面を有するポーラス金属において
は、(不定形のポア断面形状を有する従来のポーラス金
属とは異なり)変形時にポアの周囲に応力集中が起こら
ず、引張応力を付加した場合に、応力を実質的な断面積
で割った「比強度」は、ポロシティに依存しないことが
実証されている(例えば、文献S. K. Hyun et al. "Mec
hanical properties of porous copperfabricated by u
nidirectional solidification under high pressure h
ydrogen", Proceedings of the International Confere
nce on Solid-Solid Phase Transformation '99 (JIMIC
-3), p.341、edited by M. Koiwa et al., The Ja
pan Institute of Materials,1999を参照)。換言
すれば、ほぼ円形ポア断面を有するポーラス金属のポロ
シティをある程度増大させても、該ポーラス金属の機械
的強度の維持が容易である。
On the other hand, the hole diameter and the direction of the pores can be controlled by the cooling speed and cooling system of the molten metal. In this method, since the pore formation is based on the precipitation of supersaturated gas atoms, for example, it is extremely easy to make the shape of the pore cross section of the porous metal substantially circular. In such a porous metal having a substantially circular pore cross section, unlike a conventional porous metal having an irregular pore cross section, stress concentration does not occur around the pore during deformation, and when a tensile stress is applied. It has been demonstrated that the "specific strength" of stress divided by substantial cross-sectional area does not depend on porosity (eg, SK Hyun et al. "Mec
hanical properties of porous copperfabricated by u
nidirectional solidification under high pressure h
ydrogen ", Proceedings of the International Confere
nce on Solid-Solid Phase Transformation '99 (JIMIC
-3), p. 341, edited by M. Koiwa et al., The Ja
pan Institute of Materials, 1999). In other words, even if the porosity of the porous metal having a substantially circular pore cross section is increased to some extent, it is easy to maintain the mechanical strength of the porous metal.

【0037】金属−ガス法によるポーラス金属のポア
は、開放型ポア(すなわち、ポアの開口がポーラス金属
の表面にある)とすることが容易である。このような開
放型ポアを有するポーラス金属は、従来のポーラス金属
と異なり、薬剤ないし生理活性物質を該ポア内に充填し
徐放化することが容易である。金属−ガス法によるポー
ラス金属のポアは、該ポアの方向が軸方向に揃っている
ポア形状、即ち、いわゆる「レンコン型ポア」とするこ
とも容易である。このような「レンコン型ポア」は、無
垢の(ポアの無い)棒状試料に比べて、むしろ、ねじり
強度や軸方向圧縮強度が大きいことが実証されている
(例えば、文献「機械設計のための材料選定」、149
〜153頁、金子純一・大塚正久訳、内田老鶴圃出版、
1997年を参照)。
The pores of the porous metal formed by the metal-gas method can be easily formed as open pores (that is, the pores are formed on the surface of the porous metal). Unlike a conventional porous metal, such a porous metal having an open-type pore is easy to fill a drug or a physiologically active substance into the pore and release the same gradually. The pores of the porous metal formed by the metal-gas method can be easily formed into a pore shape in which the directions of the pores are aligned in the axial direction, that is, a so-called "lotus root type pore". It has been demonstrated that such a “lotus root type pore” has a higher torsional strength and an axial compressive strength than a solid (no pore) rod-shaped sample (for example, the literature “for mechanical design”). Material selection ", 149
153 pages, translated by Junichi Kaneko and Masahisa Otsuka, published by Uchida Lao Tsuruho,
1997).

【0038】更に、本発明者の実験によれば、この金属
−ガス法を用いて作製したポーラス銅(ポロシティが約
30%)の引張り強度は20〜30%の低下にとどまる
のに対して、前述した粉末治金法によって約30%のポ
ロシティのポーラス銅を作製した場合には、引張り強度
は60〜90%も低下する傾向があることが見出されて
いる。図9は、金属−ガス法を用いて製造した「レンコ
ン型」ポーラス銅のσ/σ0 (相対的引張り強度)と、
ポロシティとの関係の一例を示すグラフである。このグ
ラフから明らかなように、従来の焼結金属ないし発泡金
属に比べて、上記「レンコン型」ポーラス銅は、同じポ
ロシティにおける強度に優れている。(ポーラス金属の
材質)上記した特性を有するポーラス金属を製造可能な
限り、ポーラス金属の材質は特に制限されない。本発明
においては、例えば、鉄、ニッケル、アルミニウム、
銅、マグネシウム、コバルト、タングステン、マンガ
ン、クロム、ベリリウム、チタン、銀、金とその合金
(中嶋英雄、“ポーラス金属の創製と応用”、マテリア
ルインテグレーション12,37,1999)が挙げら
れる。ステントの材料として好適に使用可能であるステ
ンレススチールおよびニチノール等も、例えば金属−ガ
ス法を用いてポーラス化が可能である。 (ポーラス金属のポア内表面)本発明においては、ポー
ラス金属のポア内表面に、必要に応じて改質層(例え
ば、固溶強化層またはセラミック層)を形成してもよ
い。例えば、改質層を用いてポーラス金属のポア内表面
の硬度を高めることにより、該ポーラス金属の強度(引
張り強度、圧縮強度、曲げ強度等)を著しく向上させる
ことが可能である。
Further, according to the experiments of the present inventor, the tensile strength of porous copper (porosity of about 30%) produced by using the metal-gas method is reduced by only 20 to 30%, It has been found that when porous copper having a porosity of about 30% is produced by the powder metallurgy method described above, the tensile strength tends to decrease by as much as 60 to 90%. FIG. 9 shows σ / σ 0 (relative tensile strength) of “Renkon type” porous copper manufactured using the metal-gas method,
It is a graph which shows an example of the relationship with porosity. As is clear from this graph, the above-mentioned "Ronkon-type" porous copper is superior in strength at the same porosity as compared with the conventional sintered metal or foamed metal. (Material of Porous Metal) The material of the porous metal is not particularly limited as long as a porous metal having the above-described characteristics can be manufactured. In the present invention, for example, iron, nickel, aluminum,
Copper, magnesium, cobalt, tungsten, manganese, chromium, beryllium, titanium, silver, gold and alloys thereof (Hideo Nakajima, “Creation and Application of Porous Metals”, Material Integration 12 , 37, 1999). Stainless steel, nitinol, and the like, which can be suitably used as a material for the stent, can also be made porous using, for example, a metal-gas method. (Inner Pore Surface of Porous Metal) In the present invention, a modified layer (for example, a solid solution strengthening layer or a ceramic layer) may be formed on the inner surface of the pore of the porous metal as needed. For example, by using the modified layer to increase the hardness of the inner surface of the pore of the porous metal, the strength (tensile strength, compressive strength, bending strength, etc.) of the porous metal can be significantly improved.

【0039】このようなポーラス金属のポア内表面の改
質層の形成方法としては、以下の2通りの方法が好適に
使用可能である。 (1)上述したように、本発明においてポーラス金属
は、例えば金属−ガス系に於いて金属の溶融状態と凝固
状態のガス原子の溶解度の差を利用して製造することが
できる(金属−ガス法)。この態様においては、溶融金
属を冷却し凝固すると水素、酸素、窒素等のガス原子の
金属中への溶解度が減少しガス相と金属相が分離しポア
が形成されるが、この際、微量のガス原子をポアの内壁
から金属内部に拡散させることにより、固溶強化層を容
易に形成できる。固溶強化層を形成することにより、ポ
アの内表面の硬度等が向上させることが出来る。
As a method for forming the modified layer on the inner surface of the pore of the porous metal, the following two methods can be suitably used. (1) As described above, the porous metal in the present invention can be produced, for example, by utilizing the difference in solubility of gas atoms in a molten state and a solidified state in a metal-gas system (metal-gas). Law). In this embodiment, when the molten metal is cooled and solidified, the solubility of gas atoms such as hydrogen, oxygen, and nitrogen in the metal is reduced, and the gas phase and the metal phase are separated to form pores. The solid solution strengthening layer can be easily formed by diffusing the gas atoms from the inner wall of the pore into the metal. By forming the solid solution strengthening layer, the hardness and the like of the inner surface of the pore can be improved.

【0040】(2)本発明のポーラス金属を種々の方法
(例えば、金属−ガス法)によって作製した後に、必要
に応じて、公知のセラミック形成法により、ポーラス金
属のポアの内表面にセラミック層を形成することができ
る。このようなセラミック形成法としては、化学的気相
堆積法(chemical vapor deposition )または物理的気
相堆積法(physical vapor deposition ;例えばイオン
プランテーション法)が好適に使用可能である。
(2) After preparing the porous metal of the present invention by various methods (for example, metal-gas method), if necessary, a ceramic layer may be formed on the inner surface of the porous metal pore by a known ceramic forming method. Can be formed. As such a ceramic formation method, a chemical vapor deposition method (chemical vapor deposition) or a physical vapor deposition method (physical vapor deposition; for example, an ion plantation method) can be suitably used.

【0041】ポア内表面の硬度を高めることを目的とし
ては、チタンナイトライド(TiN)またはチタンカー
バイド(TiC)等のセラミック層の形成が有効であ
る。例えばイオンプレーティング法により、チタンを蒸
発源として、窒素またはアセチレン等を反応ガス元素と
して用いることにより、TiNまたはTiCをポーラス
金属の内表面に形成することが可能である。このような
セラミック層をポーラス金属の内表面に形成する際に
は、例えば、気相堆積条件をコントロールすることによ
り、セラミック層の膜厚は100Å(オングストロー
ム)〜数μmの範囲で制御することが可能である。 (ポーラス金属を用いた体内留置用具の作製)上記した
ポーラス金属に体内留置用具形状を付与する方法は特に
制限されず、公知の方法を使用可能である。
For the purpose of increasing the hardness of the inner surface of the pore, it is effective to form a ceramic layer such as titanium nitride (TiN) or titanium carbide (TiC). For example, TiN or TiC can be formed on the inner surface of a porous metal by using titanium as an evaporation source and using nitrogen or acetylene as a reaction gas element by an ion plating method. When such a ceramic layer is formed on the inner surface of the porous metal, for example, the thickness of the ceramic layer can be controlled in the range of 100 ° (angstrom) to several μm by controlling the vapor deposition conditions. It is possible. (Preparation of in-vivo indwelling device using porous metal) The method for imparting the in-vivo indwelling device shape to the porous metal described above is not particularly limited, and a known method can be used.

【0042】例えば、上記した金属−ガス法を用いる態
様においては、溶融した金属材料中にガスを溶解させた
後、凝固させて固体に相変態させる過程において過飽和
の該ガスが固相内に析出されるという性質を利用してポ
ーラス金属を作製して体内留置用具母材として用いる。
該ポーラス金属を用いて体内留置用具を作製する方法と
しては、例えば線状ポーラス金属を用いる方法、板状ま
たは棒状のポーラス金属から切削加工により希望する形
状に仕上げる等の方法がある。前者からは骨折部固定用
ワイヤー、脳動脈瘤結紮用クリップ、脳動脈瘤充填用コ
イル等がまた、後者の方法によって骨折部固定用プレー
ト、ネジ、人工歯根等がそれぞれ作製できる。 (体内留置用具のポーラス金属を用いた部分)本発明の
体内留置用具を構成する金属部分の全部または一部は、
基本的に、ポーラス金属で構成することが可能である。
体内留置用具の下記態様において、ポーラス金属で構成
することが特に好適な部分を例示すれば、以下の通りで
ある。
For example, in the above-described embodiment using the metal-gas method, a supersaturated gas is deposited in a solid phase in a process of dissolving a gas in a molten metal material, and then solidifying and transforming the solid into a solid. A porous metal is produced using the property of being used as a base material for indwelling devices.
Examples of a method for producing an indwelling device using the porous metal include a method using a linear porous metal and a method of finishing a desired shape by cutting a plate-shaped or rod-shaped porous metal. From the former, a fracture part fixing wire, a cerebral aneurysm ligating clip, a cerebral aneurysm filling coil, and the like can be produced by the latter method, and a fracture part fixing plate, a screw, an artificial root, and the like, respectively. (Part Using Porous Metal of Indwelling Device) All or a part of the metal part constituting the indwelling device of the present invention is
Basically, it can be made of a porous metal.
In the following embodiment of the device for indwelling in a body, a portion particularly preferable to be made of a porous metal is exemplified as follows.

【0043】 人工関節(図1の態様、等):金属製のステム部分3 骨折部固定用プレート(図2の態様、等):プレートの
本体4 骨折部固定用ネジ(図2の態様、等):ネジ山部6を有
するネジ本体7 骨折部固定用ワイヤー:ワイヤー本体 人工歯根(図3の態様、等):フィクスチャー11とア
バットメント12 脳動脈瘤結紮用クリップ:クリップ本体 脳動脈瘤充填用コイル:コイル本体 (線状ポーラス金属の作製方法)図10は、線状ポーラ
ス金属を作製するための装置の一例を示す模式断面図で
ある。
Artificial joint (as in FIG. 1, etc.): metal stem portion 3 Fracture fixing plate (as in FIG. 2, etc.): plate body 4 Fracture fixing screw (as in FIG. 2, etc.) ): Screw body 7 having thread portion 6 Wire for fixing fracture part: Wire body Artificial dental root (as in FIG. 3, etc.): Fixture 11 and abutment 12 Clip for ligating cerebral aneurysm: Clip body Filling cerebral aneurysm Coil for use: coil body (Method for producing linear porous metal) FIG. 10 is a schematic cross-sectional view showing an example of an apparatus for producing a linear porous metal.

【0044】図10を参照して、ノズル21aを有する
セラミックるつぼ21の中にステンレス鋼、タンタル、
チタン、チタンとニッケルの合金(ニチノール)等の素
材を充填して、高周波加熱22等の手段で周辺から熱を
与えて加熱溶融する。その際、雰囲気には水素、酸素、
窒素またはそれらとアルゴンやヘリウム等の不活性ガス
との混合ガス23を用いて、溶融した金属(または合
金)24に、水素、酸素、または窒素ガス原子を溶解さ
せる。その後、るつぼ21に若干の圧力を負荷してノズ
ル21aから溶融金属を流出させ、該ノズル21aの下
部に設置された冷却部25に接触させることによって、
ノズルを介して放出された線状溶融金属の形状を保持し
たまま、該溶融金属を所定の凝固速度で凝固させて細線
26を製造する。ノズル21aの口径を小さくすること
により、かなり長い細線26を製造することが可能であ
る。ノズルの口径を変えることによって、容易にポーラ
ス金属細線26の太さを変えることができる。また、冷
却部に循環させる冷却媒体の温度と流量を制御すること
によって、または冷却部25に加熱部を設置することに
よって、凝固速度を制御することが可能であり、それに
よってポアのサイズ、長さ(ポアのアスペクト比)、ポ
ロシティ、線状母線とのポア成長方向とのなす角度等を
自由に制御することができる。このようにして生成され
たポーラス金属細線26の表面は極端に冷却速度が大き
いために、通常、該細線の表面ではポアを生成すること
ができず、ノンポーラスの表面を形成している。そのた
めに、必要に応じて、酸溶液による腐食エッチング等の
化学的研磨方法、または、サンドポリッシング、機械切
削等の物理的、機械的研磨方法等により細線のノンポー
ラス表面を除去してもよい。
Referring to FIG. 10, in a ceramic crucible 21 having a nozzle 21a, stainless steel, tantalum,
A material such as titanium, an alloy of titanium and nickel (Nitinol) is filled, and heat is applied from the periphery by means such as high frequency heating 22 to heat and melt. At that time, the atmosphere is hydrogen, oxygen,
Hydrogen, oxygen, or nitrogen gas atoms are dissolved in a molten metal (or alloy) 24 using nitrogen or a mixed gas 23 of them and an inert gas such as argon or helium. Thereafter, by applying a slight pressure to the crucible 21 to cause the molten metal to flow out from the nozzle 21a, and by bringing the molten metal into contact with the cooling unit 25 installed at the lower part of the nozzle 21a,
While maintaining the shape of the linear molten metal discharged through the nozzle, the molten metal is solidified at a predetermined solidification rate to produce the fine wire 26. By reducing the diameter of the nozzle 21a, it is possible to manufacture a considerably long thin wire 26. By changing the diameter of the nozzle, the thickness of the porous fine metal wire 26 can be easily changed. The solidification rate can be controlled by controlling the temperature and flow rate of the cooling medium circulating in the cooling unit, or by installing a heating unit in the cooling unit 25, and thereby the size and length of the pores can be controlled. It is possible to freely control the aspect ratio (pore aspect ratio), the porosity, the angle between the linear busbar and the pore growth direction, and the like. Since the surface of the fine porous metal wire 26 generated in this manner has an extremely high cooling rate, pores cannot normally be generated on the surface of the fine wire, and a nonporous surface is formed. Therefore, if necessary, the nonporous surface of the fine wire may be removed by a chemical polishing method such as corrosion etching using an acid solution, or a physical or mechanical polishing method such as sand polishing or mechanical cutting.

【0045】このような処理をした後のポーラス金属細
線26の最終形状は、例えば、図11に示したように、
表面にはポアが露出し細線母線の方向にやや傾斜を有し
ながら成長しているものとなる。その細線26の表面を
平滑にするために、必要に応じて線引き塑性加工を行い
一定の均一な直径を有する細線に成型してもよい。この
処理は単に太さを均一にするためだけではなく、細線2
6に新たに塑性を導入することによって、結晶粒を微細
化することができ、更に、塑性ひずみの導入によって細
線の強度を強化することができるという利点を有してい
る。 (板状または棒状ポーラス金属の作製方法)図12は、
円筒状ポーラス金属の作製装置の一例を示す模式断面図
である。図12を参照して、セラミックのるつぼ32
に、ステンレス鋼、タンタル、チタン、チタンとニッケ
ルの合金(ニチノール)等の出発原料31aを充填し
て、高周波加熱コイル33等の手段で周辺から熱を与え
て加熱溶融する。このるつぼ32は、熱絶縁体34、熱
遮蔽板35、および圧力容器36により囲まれている。
The final shape of the porous fine metal wire 26 after such a treatment is, for example, as shown in FIG.
The pores are exposed on the surface and grow with a slight inclination in the direction of the fine line bus. In order to smooth the surface of the fine wire 26, drawing plastic working may be performed as needed to form a fine wire having a uniform diameter. This process is not only for making the thickness uniform, but also for thin lines 2
6 has the advantage that crystal grains can be refined by introducing new plasticity, and the strength of the fine wire can be enhanced by introducing plastic strain. (Production method of plate-shaped or rod-shaped porous metal) FIG.
It is a schematic cross section which shows an example of the manufacturing apparatus of a cylindrical porous metal. Referring to FIG. 12, ceramic crucible 32
Is filled with a starting material 31a such as stainless steel, tantalum, titanium, or an alloy of titanium and nickel (Nitinol), and heat is applied from the periphery by means of a high-frequency heating coil 33 or the like to be heated and melted. The crucible 32 is surrounded by a heat insulator 34, a heat shield 35, and a pressure vessel 36.

【0046】上記した出発原料31aを加熱溶融する
際、雰囲気31cとして、水素、酸素、窒素またはそれ
らとアルゴンやヘリウム等の不活性ガスとの混合ガスを
用いて溶融金属(または合金)31bに水素、酸素、ま
たは窒素ガス原子を溶解させる。その後、装置を90度
だけ傾けて溶融金属31bを、注湯用ロート37を介し
て、鋳型38中に注入する。その鋳型38の底面部分に
は冷却部39が設置されているので、溶融金属の凝固は
底面(冷却部39側)から上方(注湯用ロート37側)
に向かって進行する。すなわち、このような装置を用い
ることにより、溶融金属の凝固として、上方に向かう
「一方向凝固」を起こさせることができる。このような
一方向凝固においては、凝固速度、雰囲気ガス圧力を制
御することによってポアのサイズ、長さ、ポロシティ等
を変えることが極めて容易である。
When the above-mentioned starting material 31a is heated and melted, hydrogen, oxygen, nitrogen or a mixed gas thereof and an inert gas such as argon or helium is used as the atmosphere 31c to convert the molten metal (or alloy) 31b into hydrogen. Dissolves oxygen, or nitrogen gas atoms. Thereafter, the apparatus is inclined by 90 degrees, and the molten metal 31b is poured into the mold 38 via the pouring funnel 37. Since the cooling part 39 is provided on the bottom part of the mold 38, solidification of the molten metal is performed from above the bottom part (the cooling part 39 side) (the pouring funnel 37 side).
Proceed toward. In other words, by using such an apparatus, upward "unidirectional solidification" can be caused as solidification of the molten metal. In such unidirectional solidification, it is extremely easy to change the pore size, length, porosity, and the like by controlling the solidification speed and the atmospheric gas pressure.

【0047】このようにして作製した上記の素材のバル
クポーラス金属を、例えば、板状または棒状に切り出し
切削および塑性加工する。この場合、必要に応じて、バ
ルクポーラス金属、または、板状または棒状に切り出し
た段階で圧延を施して塑性加工を加え結晶粒の微細化や
塑性ひずみによる母材の強化をさせることも可能であ
る。
The bulk porous metal of the above-prepared raw material prepared as described above is cut into a plate or a rod, for example, and cut and plastically processed. In this case, if necessary, bulk porous metal or, at the stage of cutting into a plate or rod shape, can be rolled and subjected to plastic working to refine the crystal grains and strengthen the base material by plastic strain. is there.

【0048】また、上述したように、上記のポーラス金
属の製造過程(金属−ガス法)においては、通常、酸素
または窒素等のガス原子が金属と反応しポーラス金属の
ポア内表面に固溶酸素または窒素の富化層を形成するた
め、ポア内表面硬度が向上し、全体として強度が高いポ
ーラス金属が容易に得られる。更に、上記の方法でポー
ラス金属を作製した後、必要に応じて、化学的気相堆積
法または物理的気相堆積法(イオンプランテーション法
等)を用いて該ポーラス金属のポアの内表面に優れた硬
度を有するチタンナイトライドまたはチタンカーバイド
等のセラミック層を形成させることにより、更に機械的
物性に優れたポーラス金属を得ることもできる。
As described above, in the above-described process for producing a porous metal (metal-gas method), gas atoms such as oxygen or nitrogen usually react with the metal to form solid solution oxygen on the inner surface of the pore of the porous metal. Alternatively, since a nitrogen-enriched layer is formed, the inner surface hardness of the pore is improved, and a porous metal having high strength as a whole can be easily obtained. Further, after the porous metal is produced by the above-described method, if necessary, the inner surface of the pore of the porous metal is excellently formed by using a chemical vapor deposition method or a physical vapor deposition method (such as an ion plantation method). By forming a ceramic layer such as titanium nitride or titanium carbide having a high hardness, a porous metal having more excellent mechanical properties can be obtained.

【0049】図13のグラフに示すように、上記金属−
ガス法を用いた場合には、ポーラス金属中のポアの育成
量および形態即ち、ポアの方向、サイズ、ポロシティ等
の形成は、溶融温度、溶融ガス圧力、凝固ガス圧力、冷
却温度、凝固冷却速度、不活性ガスとの混合体積比・圧
力等のパラメーターを自由に正確に制御して、決定する
ことができる。図13のグラフは、約1650℃に溶融
した鉄に窒素ガスをそれぞれ所定の窒素とアルゴンの混
合ガスの圧力下で凝固させて、一方方向の多芯状ポアを
作製したポーラス鉄のポロシティ(%)と窒素ガス分圧
(P−N2 )およびアルゴンガス分圧(P−Ar)との
関係で表している。
As shown in the graph of FIG.
When the gas method is used, the growth amount and morphology of the pores in the porous metal, that is, the formation of the pore direction, size, porosity, etc., are determined by melting temperature, molten gas pressure, solidification gas pressure, cooling temperature, solidification cooling rate. , Parameters such as the mixing volume ratio with an inert gas and the pressure can be freely and accurately controlled and determined. The graph of FIG. 13 shows the porosity (%) of porous iron in which a nitrogen gas was solidified in iron melted at about 1650 ° C. under a predetermined mixed gas pressure of nitrogen and argon to form a unidirectional multicore pore. ) And the partial pressures of nitrogen gas (P-N 2 ) and argon gas (P-Ar).

【0050】図14〜17は、図13のグラフに示した
窒素ガス分圧とアルゴンガス分圧の比によってそれぞれ
得られたポーラス鉄の横断面の光学顕微鏡写真(倍率:
2.6倍)である。これらの図を見れば、窒素ガス分圧
とアルゴンガス分圧の比によってポロシティが変化し、
窒素ガスの圧力がアルゴンガスの圧力に対して、相対的
に増大するとポロシティが増大することが理解できよ
う。 (非金属物質)上記したポーラス金属からなる本発明の
体内留置用具には、必要に応じて、種々の非金属物質を
充填することができる。このような非金属物質として、
種々の機能を発揮することが可能な機能性材料を用い、
ポア内に担持および/または徐放化させることにより、
体内留置用具に有用な機能を付与することができる。
FIGS. 14 to 17 are optical micrographs (magnification: magnification) of cross sections of porous iron obtained by the ratio of the partial pressures of nitrogen gas and argon gas shown in the graph of FIG.
2.6 times). According to these figures, the porosity changes depending on the ratio between the partial pressure of nitrogen gas and the partial pressure of argon gas.
It can be seen that the porosity increases as the pressure of the nitrogen gas increases relative to the pressure of the argon gas. (Non-metallic substance) The in-vivo indwelling device of the present invention comprising the above-described porous metal can be filled with various non-metallic substances as necessary. As such a non-metallic substance,
Using functional materials that can exhibit various functions,
By supporting and / or sustained release in the pore,
A useful function can be imparted to the indwelling device.

【0051】ポーラス金属からなる本発明の体内留置用
具の機能を実質的に阻害しない限り、ポーラス金属のポ
ア内に充填すべき非金属物質は特に制限されない。ポア
内への充填の容易性ないし機能性の付与が容易な点から
は、該非金属物質は有機物を含むことが好ましい。この
ような有機物としては、例えば、薬剤ないし生理活性物
質が挙げられる。該有機物をポーラス金属のポア内に充
填することにより、本発明の体内留置用具に薬剤ないし
生理活性物質を担持および/または徐放化させることが
できる。ポア内に充填すべき薬剤ないし生理活性物質は
特に制限されず、公知の薬剤ないし生理活性物質の一種
以上を適宜選択ないし組合せて使用可能である。
The nonmetallic substance to be filled in the pores of the porous metal is not particularly limited as long as the function of the indwelling device of the present invention comprising a porous metal is not substantially impaired. It is preferable that the non-metallic substance contains an organic substance from the viewpoint of easy filling into the pores and easy provision of functionality. Examples of such an organic substance include a drug or a physiologically active substance. By filling the pores of the porous metal with the organic substance, the indwelling device of the present invention can carry a drug or a physiologically active substance and / or sustained release. The drug or physiologically active substance to be filled in the pore is not particularly limited, and one or more known drugs or physiologically active substances can be appropriately selected or used in combination.

【0052】このような薬剤ないし生理活性物質として
は、例えば、血栓形成抑制、血栓溶解、血小板粘着・凝
集抑制、感染防止、抗癌性、繊維芽細胞/平滑筋細胞等
の増殖抑制能、血管内皮細胞等の増殖促進能等を有する
物質が挙げられる。 (細胞)骨折部固定用プレートまたは人工歯根等には、
必要に応じて患者自身の骨細胞等が好適に使用可能であ
る。また、動脈瘤内充填コイル等の場合には血管内皮化
を促進するために血管内皮細胞または血管内皮細胞に分
化可能な幹細胞等が好適に使用可能である。 (高分子材料)ポーラス金属からなる本発明の体内留置
用具中のポア内に上記した薬剤ないし生理活性物質を充
填する態様において、これらを所望の溶出速度で所定の
期間、放出させるためには、薬剤ないし生理活性物質
と、高分子材料とを組合せることが好ましい。充填すべ
き薬剤ないし生理活性物質の血中への溶解性、分子量、
生理活性濃度、放出期間等によって好適な高分子材料を
選択することが可能である。
Examples of such drugs or physiologically active substances include thrombus formation suppression, thrombolysis, platelet adhesion / aggregation suppression, infection prevention, anticancer properties, ability to suppress proliferation of fibroblasts / smooth muscle cells, blood vessels, and the like. Substances having the ability to promote the growth of endothelial cells and the like can be mentioned. (Cell) For fracture plate or artificial root,
If necessary, the patient's own bone cells and the like can be suitably used. In the case of an aneurysm-filled coil or the like, vascular endothelial cells or stem cells that can be differentiated into vascular endothelial cells can be suitably used to promote vascular endothelialization. (Polymer material) In the embodiment of filling the above-mentioned drug or physiologically active substance into the pores of the indwelling device of the present invention comprising a porous metal, in order to release these at a desired dissolution rate for a predetermined period, It is preferable to combine a drug or a physiologically active substance with a polymer material. The solubility of the drug or physiologically active substance to be filled in blood,
It is possible to select a suitable polymer material depending on the physiological activity concentration, release period and the like.

【0053】本発明において、このような目的に好適な
高分子材料の一つとして、生分解性を有する高分子材料
が挙げられる。該生分解性高分子材料としては、例えば
ポリグリコール酸、ポリ乳酸、各種ポリラクトン等に代
表される生分解性ポリエステルが挙げられる。また、高
分子材料内部に組み込まれた薬剤ないし生理活性物質が
材料表面から溶出するためには多孔性の高分子材料、特
にハイドロゲル(内部に保持されるべき含水液体を実質
的に失った、いわゆる「キセロゲル」の状態をも含む)
ないしハイドロゲル形成性の高分子が好適に使用可能で
ある。該ハイドロゲルとしては、例えば、コラーゲンゲ
ル、ゼラチンゲル、フィブリンゲル、マトリゲル、アル
ギン酸ゲル、キトサンゲル、ヒアルロン酸ゲル等の天然
高分子ゲルおよび各種合成高分子ハイドロゲルが挙げら
れる。
In the present invention, one of the polymer materials suitable for such purpose is a polymer material having biodegradability. Examples of the biodegradable polymer material include biodegradable polyesters represented by polyglycolic acid, polylactic acid, various polylactones, and the like. Also, in order for the drug or physiologically active substance incorporated in the polymer material to elute from the surface of the material, the porous polymer material, particularly the hydrogel (substantially loses the hydrated liquid to be held inside, (Including so-called "xerogel" state)
Alternatively, a hydrogel-forming polymer can be suitably used. Examples of the hydrogel include collagen gel, gelatin gel, fibrin gel, matrigel, alginate gel, chitosan gel, hyaluronic acid gel, and other natural polymer gels, and various synthetic polymer hydrogels.

【0054】一方、細胞(例えば、骨形成を促進するた
め骨細胞または血管内皮化を促進するための血管内皮細
胞等)の固定化高分子材料としては、高分子材料内部の
細胞の活性が維持されかつ分裂、増殖できるように栄養
の補給および老廃物の除去が容易なことが極めて好まし
い。この点からは、細胞の固定化用高分子材料としてハ
イドロゲルが特に好適に使用可能である。特に、上記し
た天然物ハイドロゲル、および低温で溶液状態で、高温
でゲル状態になる昇温時ゲル化型熱可逆性ハイドロゲル
(Yoshioka, H. et al, ”Preparation of poly (N-iso
propylacylacrylamide)-block-poly (ethylene glycol)
and calorimetric analysis of its aqueous solutio
n”, J. Macromol. Scis, A31, 109, 1994)が極めて
好適である。(ポーラス金属のポア内への非金属物質の
充填法)本発明のポーラス金属からなる体内留置用具の
ポア内に非金属物質(例えば、薬剤、生理活性物質また
は細胞)を、必要に応じて高分子材料と組み合わせて充
填する方法は特に制限されず、公知の方法から適宜選択
ないし組み合わせて用いることが可能である。例えば、
薬剤ないし生理活性物質を高分子材料と組み合わせる方
法としては、両者を水または有機溶媒中に溶解または分
散させた混合液を作製し、該混合液中に本発明のポーラ
ス金属からなる体内留置用具を浸漬する方法が最も一般
的に実施可能である。この場合、例えば、陰圧下に該体
内留置用具のポア内の空気と混合液の置換を行い、該体
内留置用具を取り出し乾燥し水または有機溶媒を除去す
ることにより、ポーラス金属からなる体内留置用具のポ
ア内に非金属物質を充填できる。
On the other hand, as a polymer material for immobilizing cells (eg, bone cells for promoting bone formation or vascular endothelial cells for promoting vascular endothelialization), the activity of cells inside the polymer material is maintained. It is highly preferred that nutrient replenishment and removal of waste products be easy so that they can be divided and propagated. From this point, hydrogel can be particularly preferably used as a polymer material for immobilizing cells. In particular, the above-mentioned natural product hydrogel and a gelling thermoreversible hydrogel at the time of heating, which becomes a solution state at a low temperature and a gel state at a high temperature (Yoshioka, H. et al, "Preparation of poly (N-iso-
propylacylacrylamide) -block-poly (ethylene glycol)
and calorimetric analysis of its aqueous solutio
n ”, J. Macromol. Scis, A31 , 109, 1994). (Method of filling non-metallic substance into porous metal pore) In the pore of the porous metal indwelling device made of the porous metal of the present invention. The method of filling a nonmetallic substance (for example, a drug, a physiologically active substance, or a cell) in combination with a polymer material as necessary is not particularly limited, and can be appropriately selected or combined from known methods. For example,
As a method of combining a drug or a physiologically active substance with a polymer material, a mixed solution in which both are dissolved or dispersed in water or an organic solvent is prepared, and the in-vivo indwelling device made of the porous metal of the present invention is prepared in the mixed solution. The dipping method is most generally feasible. In this case, for example, by replacing the air and the mixture in the pores of the in-vivo device under negative pressure, removing the in-vivo device and drying to remove water or an organic solvent, the in-vivo device made of porous metal Can be filled with a non-metallic substance.

【0055】一方、細胞等と上記したハイドロゲルと組
み合わせる方法としては、例えばコラーゲンの場合は、
ハイドロゲル形成性の高分子を含む溶液中に細胞を分散
させ、該分散液を体内留置用具のポア内に導入した後、
pHまたは温度を変化させることによって、ハイドロゲ
ル形成性の高分子をゲル化させ該細胞をゲル内に固定化
することができる。アルギン酸ゲルの場合にはアルギン
酸ソーダーの培地溶液に細胞を分散させ、該分散液を体
内留置用具のポア内に導入した後、例えば、濃厚塩化カ
ルシウム液と接触させることにより、アルギン酸ソーダ
ーをゲル化させ該細胞を該ポア内に固定化することがで
きる。
On the other hand, as a method of combining cells and the like with the above-mentioned hydrogel, for example, in the case of collagen,
After dispersing the cells in a solution containing a hydrogel-forming polymer and introducing the dispersion into the pore of the indwelling device,
By changing the pH or temperature, the hydrogel-forming polymer can be gelled and the cells can be immobilized in the gel. In the case of alginate gel, cells are dispersed in a medium solution of sodium alginate, and the dispersion is introduced into the pores of the indwelling device, and then, for example, by contacting with a concentrated calcium chloride solution, the sodium alginate is gelled. The cells can be immobilized within the pore.

【0056】また、上述した昇温時ゲル化型熱可逆性ハ
イドロゲルの場合には、低温時のハイドロゲル形成性高
分子の溶解した溶液状態で細胞を分散させ、該細胞分散
液を体内留置用具のポア内に充填した後、温度を高めて
該ハイドロゲル形成性高分子をゲル化させることによっ
て、細胞を固定化することが可能である。該昇温時ゲル
化型熱可逆性ハイドロゲルのゾルーゲル転移温度は細胞
の生理的温度範囲内であることが好ましい。
In the case of the above-mentioned thermogelling thermoreversible hydrogel at the time of heating, the cells are dispersed in a solution of the hydrogel-forming polymer dissolved at low temperature, and the cell dispersion is placed in the body. After filling the pores of the device, the temperature can be increased to gel the hydrogel-forming polymer, thereby immobilizing the cells. The sol-gel transition temperature of the gelling thermoreversible hydrogel at the time of temperature rise is preferably within the physiological temperature range of cells.

【0057】[0057]

【発明の効果】上述したように本発明の体内留置用具
は、これを構成するポーラス金属材料が多孔性であるた
め優れた強度と軽量性を有するのみならず、体内組織と
の接触面積が著しく増加するため充分な接合強度を容易
に得ることができる。更に、上記した異方性ポアの構造
を有するポーラス金属を用いる本発明の態様において
は、体内留置用具が優れた機械的強度を有するのみなら
ず、体内硬組織と同様の靭性を示すことが容易となる。
As described above, the indwelling device of the present invention not only has excellent strength and light weight because the porous metal material constituting the device is porous, but also has a remarkable contact area with the body tissue. Sufficient bonding strength can be easily obtained because of the increase. Further, in the embodiment of the present invention using the porous metal having the above-described anisotropic pore structure, not only the indwelling device has excellent mechanical strength, but also it is easy to exhibit the same toughness as hard tissue in the body. Becomes

【0058】更に上記構成を有する本発明の体内留置用
具は、これを構成する金属材料が多孔性であるため(特
に、上記異方性ポアの構造の場合には)内部に体内組織
が侵入し易く、更に金属材料と周囲の体内組織との結合
を強固することが容易である。この場合、体内組織が該
ポア内に侵入できるようにポアのサイズを制御すること
ができるため、該ポアの大きさによって体内組織の侵入
度合を制御することが可能である。このように留置用具
を強固に体内に保持させた場合には、接合部で発生する
可能性のある感染を有効に防止することができる。
Further, in the indwelling device of the present invention having the above structure, since the metal material constituting the device is porous (especially in the case of the above-described anisotropic pore structure), the body tissue invades inside. It is easy to strengthen the bond between the metal material and the surrounding body tissue. In this case, since the size of the pore can be controlled so that the body tissue can enter the pore, the degree of penetration of the body tissue can be controlled by the size of the pore. When the indwelling device is firmly held in the body in this way, infection that may occur at the joint can be effectively prevented.

【0059】また、本発明のポーラス金属のポア内に各
種の生理活性物質を担持させ徐放化することも容易であ
り、これによって本発明の体内留置用具に高い機能(例
えば治癒促進作用、抗菌作用、抗血栓作用、血栓形成作
用等)を付与することが可能になる。
It is also easy to carry various physiologically active substances in the porous metal pores of the present invention and release them gradually, which makes the in-dwelling device of the present invention highly functional (eg, healing promoting action, antibacterial action). Action, antithrombotic action, thrombus forming action, etc.).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の体内留置用具を人工関節の態様とした
例を示す模式斜視図である。
FIG. 1 is a schematic perspective view showing an example in which the indwelling device of the present invention is in the form of an artificial joint.

【図2】本発明の体内留置用具を骨折部固定用プレート
の態様とした例を示す模式平面図および模式断面図であ
る。
FIG. 2 is a schematic plan view and a schematic cross-sectional view showing an example in which the indwelling device of the present invention is in the form of a plate for fixing a fractured part.

【図3】本発明の体内留置用具を骨折部固定用ネジの態
様とした例を示す模式斜視である。
FIG. 3 is a schematic perspective view showing an example in which the indwelling device of the present invention is in the form of a screw for fixing a fractured part.

【図4】本発明の体内留置用具を人工歯根の態様とした
例を示す模式斜視である。
FIG. 4 is a schematic perspective view showing an example in which the indwelling device according to the present invention is in the form of an artificial tooth root.

【図5】ポーラス金属のポア方向性(Smax/Smin )
測定のための中空円筒状試料の作製方法の一例を示す模
式斜視図である。
FIG. 5 shows pore directionality of porous metal (Smax / Smin)
It is a schematic perspective view which shows an example of the manufacturing method of the hollow cylindrical sample for a measurement.

【図6】ポーラス金属のポア方向性測定のための板状試
料の作製方法の一例を示す模式斜視図である。
FIG. 6 is a schematic perspective view showing an example of a method for producing a plate-like sample for measuring the pore directionality of a porous metal.

【図7】ポーラス金属のポア方向性測定のための積層試
料の作製方法の一例を示す模式斜視図である。
FIG. 7 is a schematic perspective view showing an example of a method for producing a laminated sample for measuring the pore directionality of a porous metal.

【図8】ポーラス金属のポア方向性測定のための測定方
法の一例を示す模式断面図である。
FIG. 8 is a schematic cross-sectional view showing an example of a measurement method for measuring pore directionality of a porous metal.

【図9】金属−ガス法を用いて製造した「レンコン型」
ポーラス銅のσ/σ0 (相対的引張り強度)と、ポロシ
ティとの関係の一例を示すグラフである。
FIG. 9: “Rotkon type” manufactured using a metal-gas method
5 is a graph showing an example of the relationship between porosity and σ / σ 0 (relative tensile strength) of porous copper.

【図10】線状ポーラス金属を製造するための装置の一
例を示す模式断面図である。
FIG. 10 is a schematic cross-sectional view showing an example of an apparatus for producing a linear porous metal.

【図11】線状ポーラス金属の態様、およびポア方向、
冷却方向の関係の一例を示す模式斜視図および模式断面
図である。
FIG. 11 shows an embodiment of a linear porous metal, and a pore direction,
It is the typical perspective view and typical cross section which show an example of the relationship of a cooling direction.

【図12】線状ポーラス金属を製造するための装置の他
の例を示す模式断面図である。
FIG. 12 is a schematic cross-sectional view showing another example of an apparatus for producing a linear porous metal.

【図13】金属−ガス法によるポーラス金属製造法にお
ける混合ガスの窒素分圧とアルゴン分圧との関係の一例
を示すグラフである。
FIG. 13 is a graph showing an example of a relationship between a nitrogen partial pressure and an argon partial pressure of a mixed gas in a porous metal production method by a metal-gas method.

【図14】図13のグラフの一条件に対応して得られる
ポーラス金属断面の顕微鏡写真(倍率:2.6倍)であ
る。
14 is a micrograph (magnification: 2.6 times) of a cross section of a porous metal obtained corresponding to one condition of the graph in FIG.

【図15】図13のグラフの他の条件に対応して得られ
るポーラス金属断面の顕微鏡写真(倍率:2.6倍)で
ある。
15 is a micrograph (magnification: 2.6 times) of a cross section of a porous metal obtained corresponding to another condition of the graph in FIG.

【図16】図13のグラフの更に他の条件に対応して得
られるポーラス金属断面の顕微鏡写真(倍率:2.6
倍)である。
16 is a micrograph (magnification: 2.6) of a cross section of a porous metal obtained according to still another condition of the graph of FIG.
Times).

【図17】図13のグラフの更に他の条件に対応して得
られるポーラス金属断面の顕微鏡写真(倍率:2.6
倍)である。
FIG. 17 is a micrograph (magnification: 2.6) of a cross section of a porous metal obtained according to still another condition of the graph of FIG.
Times).

【符号の説明】[Explanation of symbols]

21…るつぼ 22…加熱部 23…混合ガス 24…溶融金属 25…冷却部 26…凝固ポーラス金属線 31a…出発原料 31b…溶融金属 31c…雰囲気 32…るつぼ 33…加熱コイル 34…熱絶縁体 35…熱遮蔽板 36…圧力容器 37…注湯用ロート 38…鋳型 39…冷却部 DESCRIPTION OF SYMBOLS 21 ... Crucible 22 ... Heating part 23 ... Mixed gas 24 ... Molten metal 25 ... Cooling part 26 ... Solidification porous metal wire 31a ... Starting material 31b ... Molten metal 31c ... Atmosphere 32 ... Crucible 33 ... Heating coil 34 ... Thermal insulator 35 ... Heat shield plate 36 ... Pressure vessel 37 ... Pouring funnel 38 ... Mold 39 ... Cooling unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中嶋 英雄 大阪府高槻市日吉台5−6−40 (72)発明者 野一色 泰晴 神奈川県横浜市金沢区並木2−6−11 (72)発明者 樋口 裕一 大阪府大阪市東住吉区駒川4−2−16 (72)発明者 本津 茂樹 大阪府枚方市村野本町12−25 Fターム(参考) 4C059 AA02 4C060 DD03 DD19 DD29 LL14 4C081 AB03 AC03 BA13 CG01 CG02 CG03 CG05 DA01 DA03 DB03 4C097 AA01 BB01 BB04 CC01 CC03 DD09 DD10 SC03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideo Nakajima 5-6-40 Hiyoshidai, Takatsuki-shi, Osaka (72) Inventor Yasuharu No Isshiki 2-6-11 Namiki, Kanazawa-ku, Yokohama-shi, Kanagawa-ken (72) Inventor Yuichi Higuchi 4-2-16 Komakawa, Higashisumiyoshi-ku, Osaka-shi, Osaka (72) Inventor Shigeki Honda 12-25, Muranomotocho, Hirakata-shi, Osaka F-term (reference) 4C059 AA02 4C060 DD03 DD19 DD29 LL14 4C081 AB03 AC03 BA13 CG01 CG02 CG03 CG05 DA01 DA03 DB03 4C097 AA01 BB01 BB04 CC01 CC03 DD09 DD10 SC03

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 その少なくとも一部に金属部分を含む体
内留置用具であって、該金属部分の少なくとも一部がポ
ーラス金属を含む体内留置用具。
1. An in-vivo indwelling device including a metal part at least in a part thereof, wherein at least a part of the metal part includes a porous metal.
【請求項2】 前記ポーラス金属が異方性のポア(細
孔)を有する請求項1に記載の体内留置用具。
2. The indwelling device according to claim 1, wherein the porous metal has anisotropic pores.
【請求項3】 前記ポーラス金属が、ポア方向性を示す
最大値/最小値の比(Smax/Smin )で2以上の異方
性ポアを有する請求項2に記載の体内留置用具。
3. The indwelling device according to claim 2, wherein the porous metal has an anisotropic pore having a maximum value / minimum value ratio (Smax / Smin) indicating pore directionality of 2 or more.
【請求項4】 前記ポーラス金属のポアが、主として開
放型ポアである請求項2または3に記載の体内留置用
具。
4. The indwelling device according to claim 2, wherein the pores of the porous metal are mainly open pores.
【請求項5】 前記ポーラス金属のポアの方向が一方向
に揃っている請求項2〜4のいずれかに記載の体内留置
用具。
5. The indwelling device according to claim 2, wherein pore directions of the porous metal are aligned in one direction.
【請求項6】 前記ポーラス金属の方向と直交するポア
断面の形状が、ほぼ円形である2〜5のいずれかに記載
の体内留置用具。
6. The indwelling device according to any one of 2 to 5, wherein a shape of a pore cross section orthogonal to a direction of the porous metal is substantially circular.
【請求項7】 前記ポーラス金属のポアの内表面が、固
溶強化層またはセラミック層からなる請求項1〜6のい
ずれかに記載の体内留置用具。
7. The indwelling device according to claim 1, wherein an inner surface of the porous metal pore is formed of a solid solution strengthening layer or a ceramic layer.
【請求項8】 前記ポーラス金属のポア内に非金属物質
が充填されている請求項1〜6のいずれかに記載の体内
留置用具。
8. The indwelling device according to claim 1, wherein a nonmetallic substance is filled in the pores of the porous metal.
【請求項9】 前記非金属物質が、薬剤、生理活性物
質、または細胞である請求項8に記載の体内留置用具。
9. The indwelling device according to claim 8, wherein the non-metallic substance is a drug, a physiologically active substance, or a cell.
【請求項10】 前記非金属物質が、高分子材料と組み
合わされた状態で充填されている請求項8または9に記
載の体内留置用具。
10. The indwelling device according to claim 8, wherein the non-metallic substance is filled in a state of being combined with a polymer material.
【請求項11】 前記ポーラス金属が、金属−ガス法を
用いて金属の溶融状態と凝固状態におけるガス原子の溶
解度の差を利用して製造される請求項1〜10のいずれ
かに記載の体内留置用医療用。
11. The body according to claim 1, wherein the porous metal is produced by utilizing a difference in solubility of gas atoms between a molten state and a solidified state of the metal using a metal-gas method. For indwelling medical use.
【請求項12】 前記ポーラス金属のポアの内表面が固
溶強化層であり、該固溶強化層が、ポーラス金属を製造
する工程で該金属原子とガス原子の反応によって形成さ
れる請求項11に記載の体内留置用具。
12. An inner surface of a pore of the porous metal is a solid solution strengthening layer, and the solid solution strengthening layer is formed by a reaction between the metal atom and a gas atom in a step of manufacturing the porous metal. 2. The indwelling device according to claim 1.
【請求項13】 前記ポーラス金属のポアの内表面がセ
ラミック層であり、該セラミック層が化学的気相堆積法
または物理的気相堆積法によって形成される請求項7に
記載の体内留置用具。
13. The indwelling device according to claim 7, wherein an inner surface of the porous metal pore is a ceramic layer, and the ceramic layer is formed by a chemical vapor deposition method or a physical vapor deposition method.
【請求項14】 前記ポーラス金属のポアの内表面がセ
ラミック層であり、該セラミック層がイオンプランテー
ション法によって形成される請求項7に記載の体内留置
用具。
14. The indwelling device according to claim 7, wherein an inner surface of the pore of the porous metal is a ceramic layer, and the ceramic layer is formed by an ion plantation method.
【請求項15】 前記体内留置用具が人工骨、骨折部固
定用プレート、骨折部固定用ネジ、骨折部固定用ワイヤ
ー及び人工歯根から選ばれる硬組織中への留置用具の形
態である請求項1〜14のいずれかに記載の体内留置用
具。
15. The indwelling device in the body is in the form of an indwelling device in hard tissue selected from an artificial bone, a fracture fixing plate, a fracture fixing screw, a fracture fixing wire and an artificial dental root. 15. The indwelling device according to any one of claims 14 to 14.
【請求項16】 前記体内留置用具が、脳動脈瘤結紮用
クリップ及び脳動脈瘤内充填用コイルから選ばれる脳動
脈内留置用具の形態である請求項1〜14のいずれかに
記載の体内留置用具。
16. The indwelling device according to any one of claims 1 to 14, wherein the indwelling device is in the form of a cerebral artery indwelling device selected from a cerebral aneurysm ligation clip and a cerebral aneurysm filling coil. Tools.
JP2000389309A 2000-12-21 2000-12-21 Indwelling implement Pending JP2002306518A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000389309A JP2002306518A (en) 2000-12-21 2000-12-21 Indwelling implement
AU2001225537A AU2001225537A1 (en) 2000-12-21 2001-01-15 Indwelling instrument
PCT/JP2001/000202 WO2002049548A1 (en) 2000-12-21 2001-01-15 Indwelling instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000389309A JP2002306518A (en) 2000-12-21 2000-12-21 Indwelling implement

Publications (1)

Publication Number Publication Date
JP2002306518A true JP2002306518A (en) 2002-10-22

Family

ID=18855890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000389309A Pending JP2002306518A (en) 2000-12-21 2000-12-21 Indwelling implement

Country Status (3)

Country Link
JP (1) JP2002306518A (en)
AU (1) AU2001225537A1 (en)
WO (1) WO2002049548A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069058A1 (en) * 2003-02-07 2004-08-19 Medgel Corporation Device for blocing blood vessel
JP2007020682A (en) * 2005-07-13 2007-02-01 Hitachi Medical Corp Cell semination method
JP2008531134A (en) * 2005-02-23 2008-08-14 スモール・ボーン・イノベーションズ・インコーポレーテッド Bone implant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424450B1 (en) * 2016-02-29 2021-02-17 Medtronic Sofamor Danek, Co., Ltd. Set screw for antibacterial device to be implanted in vivo
GB2560369B (en) 2017-03-10 2020-04-01 Vestlandets Innovasjonsselskap As Tissue engineering scaffolds

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148943A (en) * 1981-02-25 1982-09-14 Shiyutsutsu Unto Gurundei Gmbh Substitute implant for sponge bone and production thereof
JPH01265954A (en) * 1988-04-15 1989-10-24 Kobe Steel Ltd Substitute bone
JPH04141163A (en) * 1990-10-01 1992-05-14 Kawasaki Steel Corp Porous metal material with excellent bone affinity and preparation thereof
JPH05269156A (en) * 1992-02-07 1993-10-19 Smith & Nephew Richards Inc Surface hardened biocompatible metallic medical implant
JPH07184987A (en) * 1993-12-27 1995-07-25 Kyocera Corp Artificial prosthetic member
US5843172A (en) * 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
JPH1147171A (en) * 1997-07-31 1999-02-23 Kyocera Corp Artificial prosthetic member
WO2000064504A2 (en) * 1999-04-28 2000-11-02 Bruce Medical Ab Body for providing ingrowth and growth of bone tissue and/or connective tissue and method of making such a body

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA962806A (en) * 1970-06-04 1975-02-18 Ontario Research Foundation Surgical prosthetic device
US3707006A (en) * 1970-08-26 1972-12-26 Gulf Oil Corp Orthopedic device for repair or replacement of bone
JPS5337505Y2 (en) * 1976-08-17 1978-09-11
US4542539A (en) * 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
DE3445711A1 (en) * 1984-12-14 1986-06-19 Klaus Dr.med. Dr.med.habil. 8000 München Draenert BONE REPLACEMENT MATERIAL AND ITS USE
CH665348A5 (en) * 1985-01-09 1988-05-13 Sulzer Ag IMPLANTS.
FI83729C (en) * 1987-11-26 1991-08-26 Biocon Oy SURGICAL IMPLANTS.
US4990163A (en) * 1989-02-06 1991-02-05 Trustees Of The University Of Pennsylvania Method of depositing calcium phosphate cermamics for bone tissue calcification enhancement
DE3936568C2 (en) * 1989-11-03 1997-06-19 Karlheinz Prof Dr Dr Schmidt Active ingredient complex for the production of biological parts in the form of organs for living things; Method of making the same and its use
US5681572A (en) * 1991-10-18 1997-10-28 Seare, Jr.; William J. Porous material product and process
US5702446A (en) * 1992-11-09 1997-12-30 Board Of Regents, The University Of Texas System Bone prosthesis
US5449832A (en) * 1994-10-05 1995-09-12 Air Products And Chemicals, Inc. Process for storage and transport of toluenediamine
US6007573A (en) * 1996-09-18 1999-12-28 Microtherapeutics, Inc. Intracranial stent and method of use
US5954724A (en) * 1997-03-27 1999-09-21 Davidson; James A. Titanium molybdenum hafnium alloys for medical implants and devices
JP4083241B2 (en) * 1997-04-23 2008-04-30 アーテミス・メディカル・インコーポレイテッド Bifurcated stent and distal protection system
US6296667B1 (en) * 1997-10-01 2001-10-02 Phillips-Origen Ceramic Technology, Llc Bone substitutes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148943A (en) * 1981-02-25 1982-09-14 Shiyutsutsu Unto Gurundei Gmbh Substitute implant for sponge bone and production thereof
JPH01265954A (en) * 1988-04-15 1989-10-24 Kobe Steel Ltd Substitute bone
JPH04141163A (en) * 1990-10-01 1992-05-14 Kawasaki Steel Corp Porous metal material with excellent bone affinity and preparation thereof
JPH05269156A (en) * 1992-02-07 1993-10-19 Smith & Nephew Richards Inc Surface hardened biocompatible metallic medical implant
JPH07184987A (en) * 1993-12-27 1995-07-25 Kyocera Corp Artificial prosthetic member
US5843172A (en) * 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
JPH1147171A (en) * 1997-07-31 1999-02-23 Kyocera Corp Artificial prosthetic member
WO2000064504A2 (en) * 1999-04-28 2000-11-02 Bruce Medical Ab Body for providing ingrowth and growth of bone tissue and/or connective tissue and method of making such a body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069058A1 (en) * 2003-02-07 2004-08-19 Medgel Corporation Device for blocing blood vessel
JP2008531134A (en) * 2005-02-23 2008-08-14 スモール・ボーン・イノベーションズ・インコーポレーテッド Bone implant
JP2007020682A (en) * 2005-07-13 2007-02-01 Hitachi Medical Corp Cell semination method
JP4723937B2 (en) * 2005-07-13 2011-07-13 株式会社カネカ Cell seeding method

Also Published As

Publication number Publication date
WO2002049548A1 (en) 2002-06-27
AU2001225537A1 (en) 2002-07-01

Similar Documents

Publication Publication Date Title
JP6431957B2 (en) Biodegradable metal alloy
Ibrahim et al. Resorbable bone fixation alloys, forming, and post-fabrication treatments
CN103357063B (en) The metallic composite of a kind of bootable osteogenesis and application thereof
Seal et al. Biodegradable surgical implants based on magnesium alloys–A review of current research
EP2229189B1 (en) Implant for tissue engineering
KR102081363B1 (en) Magnesium-zinc-calcium alloy, method for production thereof, and use thereof
JP3445301B2 (en) Open-cell tantalum structures for cancellous bone grafts and cell and tissue receptors
US20230381382A1 (en) Degradable magnesium-based implant devices for bone fixation
Wang et al. Research progress of biodegradable magnesium-based biomedical materials: A review
US10604827B2 (en) Biodegradable metal alloys
CN103599561A (en) Preparation method of magnesium alloy/hydroxyapatite composite
CN104818414A (en) Metal bone graft material with porous structure, and preparation and application thereof
JP2002533165A (en) Implant with modified surface with increased biocompatibility and method of producing the same
US20130150227A1 (en) Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof
CN106854724B (en) medical magnesium alloy material containing rare earth elements and preparation method thereof
CN107456601A (en) A kind of Zn-Cu systems kirsite and preparation method and application
CN102258806B (en) Degradable magnesium-base biomedical material for implantation in orthopaedics, and preparation method thereof
CN105536048B (en) A kind of novel degradable bone implant and preparation method thereof
EP3229852A1 (en) ULTRAHIGH DUCTILITY, NOVEL Mg-Li BASED ALLOYS FOR BIOMEDICAL APPLICATIONS
CN114086011B (en) Preparation method of component gradient magnesium-based implant material with controllable degradation
JP2002306518A (en) Indwelling implement
CN111676390B (en) Zn-Ga alloy, preparation method and application thereof
CN115414526B (en) Biodegradable zinc alloy bearing bone bracket with bionic structure and processing method
WO2017063425A1 (en) Porous tantalum metal bone connector and application thereof
CN109735752B (en) Magnesium alloy with autogenous gradient structure and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208