JP4572286B2 - Method for producing high strength porous body and high strength porous body - Google Patents

Method for producing high strength porous body and high strength porous body Download PDF

Info

Publication number
JP4572286B2
JP4572286B2 JP2001085060A JP2001085060A JP4572286B2 JP 4572286 B2 JP4572286 B2 JP 4572286B2 JP 2001085060 A JP2001085060 A JP 2001085060A JP 2001085060 A JP2001085060 A JP 2001085060A JP 4572286 B2 JP4572286 B2 JP 4572286B2
Authority
JP
Japan
Prior art keywords
powder
metal
porous body
spacer material
biomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001085060A
Other languages
Japanese (ja)
Other versions
JP2002285203A (en
Inventor
正 朝比奈
章 渡津
保母  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001085060A priority Critical patent/JP4572286B2/en
Publication of JP2002285203A publication Critical patent/JP2002285203A/en
Application granted granted Critical
Publication of JP4572286B2 publication Critical patent/JP4572286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は生体用材料としての金属の高強度多孔質体、特に空隙率の高い多孔質体を製造する際に適用して好適な高強度多孔質体の製造方法及び高強度多孔質体に関する。
【0002】
【従来の技術】
従来生体用材料として、例えば歯科材料として金,銀,パラジウム或いはニッケルクロム合金等が使用されており、最近ではチタン材料(チタン若しくはその合金)も耐食性に優れ、また生体との馴染みが良いことから人工股関節,人工膝関節等の人工骨材料として、或いは人工歯根,人工歯床等のインプラント用歯科材料その他の生体用材料として注目されている。
【0003】
この種生体用材料としては生体とよく馴染むこと、刺激性或いは毒性がないこと、腐食したり崩壊したりしないこと、少々の力を加えても破損しないこと等の特性が要求されるが、チタン材料の場合比較的これらの要求特性を満たし得るものである。
【0004】
ところでチタン材料或いはその他の金属材料をそのまま生体用材料として用いた場合、これら金属材料は弾性率が人工骨等に比べて桁違いに高いために、曲げ力等が働いたときに人工骨と生体骨等との界面で大きな応力が発生し、これに基づいて人工骨等の生体材料と生体骨との間で剥離が生じたり、割れが生じたりする恐れがある。
【0005】
そこでこの種生体材料を多孔質体とすることが考えられる。
このように生体材料を多孔質体として構成した場合、例えばこれを人工骨として用いたとき、生体の骨組織が多孔質体の空隙内に入り込んで生体用材料(人工骨)と生体骨とが一体化し、そこに本来の生体骨と極めて近似した骨組織を形成することが可能となる。
また生体用材料をこのような多孔質体とすることで、金属材料を用いながらこれを極めて軽量化することができる。
【0006】
ところで生体用材料以外の分野において、金属多孔質体の製造方法として、従来以下のような方法が知られている。
第1の方法は鋳造法と呼ばれるもので、発泡ポリウレタンのような多孔質高分子材料の空隙内に石膏等を流し込むようにして型どりし、その後加熱により高分子材料を焼失させると同時に鋳型を焼成し、そしてその鋳型の空隙内に溶融金属を注入・凝固させた後、鋳型を破砕除去する方法である。
【0007】
第2の方法はメッキ法と呼ばれるもので、樹脂製等の微小粒子の集合体の空隙に無電解メッキ、例えばニッケルのどぶ漬けメッキ等の手法で金属を充填し、その後加熱により微小粒子を焼失・除去するもので、その微小粒子の焼失によって空隙形成、即ち多孔質構造体を得ることができる。
【0008】
第3の方法は溶湯発泡法と呼ばれるもので、溶融した金属中に発泡材を混合し、その発泡材の発泡により生じたガスを多量に含んだ状態で溶融金属を凝固させ、多孔質化するものである。
【0009】
第4の方法はスペースホルダー法と呼ばれるもので、金属粉末と加熱により焼失するスペーサ材料粉末とを混合して所定形状に成形し、その後加熱によりスペーサ材料を焼失させた後、残った金属粉末を焼結温度で焼結させ、多孔質構造体を得るといったものである。
【0010】
【発明が解決しようとする課題】
しかしながら上記第1の方法、即ち鋳造法と呼ばれる方法の場合、溶融金属を注入・凝固させた状態で、その金属凝固体の空隙内に石膏等の鋳型材料が詰った状態にあり、従ってその鋳型材料の破砕除去が必要となるが、このプロセスは困難なプロセスであって、金属多孔質体の空隙内に残った鋳型材料を容易に除去することができず、このため本方法は生産性が著しく悪く、従来板状の材料しか作製できないのが実情である。
【0011】
一方第2の方法、即ちメッキ法と呼ばれる方法では、作製できる金属多孔質体がニッケル等に限定されてしまう上、生産性が低く第1の方法と同様に従来板状の材料しか作製できないのが実情である。
【0012】
また第3の方法、即ち溶湯発泡法と呼ばれる方法では、発泡と凝固に時間のずれが生じるため、一様な多孔質体を製造し難く、高空隙率部分が凝固開始部分に偏ったり、凝固終了部分では多孔性が著しく低下する等、プロセス制御に著しく困難を伴う問題がある。
【0013】
他方最後の第4の方法、即ちスペースホルダー法と呼ばれる方法では、従来金属粉末,スペーサ材料粉末何れも球状の粉末を用いているが、粉末混合の特性上スペーサ材料粉末が一様に分散せず、特に空隙率を大きく取った場合、空隙と空隙とを遮断すべき金属材料が切離して空隙同士が繋がった状態となり易く、またこれに伴って材料強度のばらつきが著しく大きくなり、全体の強度も低くなる問題を生ずる。
【0014】
また空隙と空隙との間の金属材料が切離することによって尖った部分が多く発生し、従ってこのような多孔質構造体を生体用材料として用いたとき、随所に生じている尖った部分が生体に対する刺激拠点となってしまうといった不都合が生じる。
【0015】
図1(イ),(ロ)はその様子を模式的に表したものである。
(イ)は球状の金属粉末とスペーサ材料粉末とが理想的に混合した状態を示しており、この場合には金属材料が良好に網目構造を成していて、空隙Pと空隙Pとは金属材料Mにより良好に遮断された状態にあり、従ってまた金属材料Mは空隙PとPとの間の部分において良好に繋がった状態にある。
【0016】
しかしながら実際には、特に空隙率が高くなった場合にはこのように理想的には金属粉末とスペーサ材料粉末とが分散混合せず、或いはまた空隙と空隙との間の部分の金属材料の層Maの厚みが極めて薄いために、図1(ロ)に示しているように同部分が比較的容易に切れたり離脱してしまい、これにより多くの尖った部分が発生してしまうのである。
そしてこの結果、その尖った部分が生体に対する刺激拠点となり、更にまたこの現象によって材料強度に大きなばらつきが生じるとともに全体の強度も小さなものとなってしまうのである。
【0017】
【課題を解決するための手段】
本発明の生体用材料としての高強度多孔質体の製造方法及び高強度多孔質体はこのような課題を解決するために案出されたものである。
而して請求項1は生体用材料としての高強度金属多孔質体の製造方法に関するもので、金属粉末と加熱により焼失する空隙形成材料としての無機又は有機のスペーサ材料粉末とを混合してプレス成形し、次いで該スペーサ材料粉末の焼失温度に加熱して該スペーサ材料を焼失させた後、これより高温の焼結温度で焼結処理して前記金属粉末を焼結し、空隙率が70〜90%の生体用材料としての金属の高強度多孔質体を製造するに際し、前記スペーサ材料粉末として、平均直径が200〜2000μmの範囲にあり、該粉末の最小径に対する最大径の比の平均値であるアスペクト比が2以上の範囲にある柱状ないし繊維状の細長形状の異形粉末を用いることを特徴とする。
【0018】
請求項2のものは、請求項1において、前記スペーサ材料粉末が炭酸水素アンモニウム,尿素,ポリオキシメチレン樹脂,尿素樹脂,発泡ポリスチレン樹脂,発泡ポリウレタン樹脂の何れかを主成分としたものであることを特徴とする。
【0019】
請求項3のものは、請求項1,2の何れかにおいて、常温における前記金属粉末とスペーサ材料粉末との体積混合比率を1対1〜1対10の範囲とすることを特徴とする。
【0020】
請求項4のものは、請求項1〜3の何れかにおいて、前記金属粉末の平均粒径が10〜200μmの範囲であることを特徴とする
【0021】
求項は生体用材料としての金属の高強度多孔質体に関するもので、金属粉末を焼結して成る空隙率が70〜90%の金属多孔質体であって、空隙の形状が平均径で200〜800μmの範囲にあり、該空隙の最小径に対する最大径の比の平均値であるアスペクト比が2以上の範囲にあることを特徴とする。
【0022】
【作用及び発明の効果】
上記のように本発明の製造方法は、上記の第4の方法、即ちスペースホルダー法にて生体用材料を製造するもので、スペーサ材料粉末として柱状ないし繊維状の細長形状の異形粉末を用いることを特徴とするものである。
スペーサ材料粉末としてこのような細長形状の異形粉末を用いた場合、従来の球状のスペーサ粉末を用いた場合と同様の空隙率で多孔質構造体を製造した場合、図1(ハ)に模式図を示しているように、金属材料から成る網目構造が良好に繋がった状態となる。
即ち空隙Pと空隙Pとの間に存在している金属材料が良好に繋がった状態にあり、また空隙Pと空隙Pとは金属材料によって良好に遮断され、独立した空隙を形造るようになる。
【0023】
この結果、空隙と空隙との間の部分で金属材料が切離することによって生ずる尖った部分の発生頻度が著しく少なくなり、従ってこれを生体用材料として用いたとき、その尖った部分によって生体を刺激するといった不都合を回避することができる。
更にまた金属材料が部分的に切離することが少ないため、強度的なばらつきも小さく、また多孔質構造体自体の強度も高強度となる。
【0024】
図1(イ),(ロ)に示す多孔質構造体は、従来の緻密構造の金属材料から成る生体用材料に比べて、それ自身多孔質構造に由来して有利な効果を奏するものであるが、特に本発明の製造方法にて得られた金属多孔質体は、上記のように尖った部分が少なく且つ強度も高強度であるため、生体用材料として特に好適なものである。
【0025】
尚空隙率が70%未満の多孔質体の場合、従来のようにスペーサ材料粉末として球状粉末を用いた場合であっても、網目組織を繋がった状態とすることは比較的容易である。
従って本発明は空隙率が70%以上の多孔質体、より望ましくは空隙率が80%以上の多孔質体の製造に適用して特に効果が大である。但し空隙率が90%を超えると多孔質体を良好に製造することが難しくなる。従って本発明の製造方法は空隙率が90%以下の多孔質体に好適に適用可能である。
また本発明において、スペーサ材料粉末としては平均直径が200〜2000μmの範囲にあり且つアスペクト比が2以上のものを用いるのが良い。より望ましいのはアスペクト比が3以上のものである。
但しアスペクト比が過大になると、一つ一つの空隙が相対的に大きくなって同じ空隙率の多孔質体を製造しようとしたとき、空隙の数が少なくなり、網目組織が粗大化する。従ってアスペクト比は連続した空隙を積極的に利用しない限り、10以下としておくことが望ましい。
【0026】
本発明においては、上記金属粉末としてチタニウムの単体粉末若しくは合金粉末を好適に用いることができる。
【0027】
また上記スペーサ材料粉末としては炭酸水素アンモニウム,尿素,ポリオキシメチレン樹脂,尿素樹脂,発泡ポリスチレン樹脂,発泡ポリウレタン樹脂の何れかを主成分としたものを好適に使用可能である(請求項2)。
【0028】
また常温における金属粉末とスペーサ材料粉末との混合比率は、体積混合比率で1対1〜1対10の範囲とすることができる(請求項3)。
混合比率が1対1よりも小さいと、即ちスペーサ材料粉末の混合比率が少ないと空隙率を大きくすることができず、また逆に1対10よりもスペーサ材料粉末の混合比率が大きくなると、空隙の量が多くなり過ぎて良好に多孔質構造体を製造することが難しくなる。
【0029】
本発明においてはまた、金属粉末として平均粒径が10〜200μmの範囲にあるものを好適に用いることができる(請求項4)
【0030】
求項は生体用材料としての金属の多孔質体に係るもので、空隙の形状が平均径で200〜800μm,アスペクト比が2以上の範囲にあるものであり、このものは金属材料から成る網目構造が良好に繋がった状態にあり、従って高強度であり、また金属材料が部分的に離脱することによって発生する尖った部分も少なく、生体用材料として好適である。
【0031】
【実施の形態】
図2に本発明の実施の形態の一例を示している。
ここでは原料金属粉末とスペーサ材料粉末とを撹拌・混合装置12にて撹拌・混合し、得られた混合体を次にプレス成形装置14で所定形状にプレス成形する。
このプレス成形加工で得られた成形体をスペーサ材除去装置16にセットし、同装置によって成形体に対する加熱を行ってスペーサ材料を焼失させる。
【0032】
この例においてスペーサ材除去装置16は真空排気口18を有しており、そこから真空排気しながら加熱装置20により成形体に対する加熱を行ってスペーサ材料を焼失させる。
尚、図中10aはそのようにしてスペーサ材料を除去した中間製品を表している。
【0033】
次にスペーサ材料を除去処理した中間製品10aを焼結装置22にセットし、そこで再びスペーサ材除去装置における昇温加熱よりも高い焼結温度でこれを焼結処理する。
尚、図の焼結装置22においても真空排気口18を有しており、そこから真空排気を行いながら加熱装置20により中間製品10aを加熱しこれを焼結させる。
ここにおいてスペーサ材料の除去された後が空隙として残った多孔質構造体10が得られる。
【0034】
【実施例】
次に本発明の実施例を以下に詳しく説明する。
ガスアトマイズ法ないし水素化脱水素化法でTi粉末を作製後、50μm以下に分級した。
このTi粉末に、直径300μm,長さ1.5mm(アスペクト比:5)のポリオキシメチレン樹脂製の柱状のスペーサ材料粉末を室温で約5倍の分量で加えて十分撹拌・混合し、その後プレス型にて成形加工した。
【0035】
その後、真空炉内において300℃まで5時間かけて昇温させ、この過程でスペーサ材料を焼失させ、その後更に1200℃に加熱して2時間の焼結処理を行った。
得られた多孔質体の引張強度を測定したところ10MPaであった。尚空隙率は80%であった。
【0036】
ここで引張強度の測定はJIS Z 2550に準拠した試験片において、JIS Z 2241に準拠した方法で行っている。
【0037】
尚、得られた多孔質体10を調べたところ、空隙の形態は添加したスペーサ材料粉末とほぼ相似形状であった。
即ちスペーサ材料とTi粉末とを混合して成る混合粉末をプレス成形する際、加えた圧力によって金属粉末同士が隙間を埋めるように挙動し、この結果スペーサ材料はほぼ相似形状を保持し、そのまま焼結が進んだものと見られる。
また上記と同様の直径を有し且つアスペクト比が3のスペーサ材料を用いて同様の手順に従い多孔質体を製造し(混合比率は上記と同じ)、その引張強度を測定したところ、8MPaであった(空隙率は80%)。
【0038】
次にスペーサ材料粉末として直径が上記とほぼ同等でアスペクト比が30のものを用い、これを上記Ti粉末に混合して(混合比率は上記と同じ)更に上記手順に従い多孔質体を製造したところ、多孔質体の引張強度は7MPaであった。尚空隙率は80%であった。
【0039】
このようにTi粉末に対して添加混合するスペーサ材料粉末のアスペクト比を大きくすると引張強度が高くなるが、その引張強度はアスペクト比が略3〜5程度のところで飽和し、これよりも更にアスペクト比を大にすると、試験片寸法が固定されているため、引張強度は順次低下することが確認された。
【0040】
一方従来の方法に従って上記のTi粉末に対し直径が300μmの球状の上記スペーサ材料粉末を体積比率で5倍量加えて混合し、上記と同様の処理を行って多孔質体を製造し、その強度を測定したところ5MPaであった。尚空隙率は上記と同様の80%であった。
【0041】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその主旨を逸脱しない範囲において種々変更を加えた態様形態で実施構成可能である。
【図面の簡単な説明】
【図1】 本発明の方法により得られる多孔質体の構造を比較例とともに模式的に示す図である。
【図2】 本発明の実施の形態の一例を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength porous body suitable for use in producing a high-strength porous body of metal as a biomaterial, particularly a porous body having a high porosity.
[0002]
[Prior art]
Conventionally, gold, silver, palladium, nickel chrome alloy, etc. have been used as biomaterials, for example, as dental materials. Recently, titanium materials (titanium or alloys thereof) are also excellent in corrosion resistance and are familiar with living organisms. It has been attracting attention as an artificial bone material such as an artificial hip joint and an artificial knee joint, or as an implant dental material such as an artificial tooth root and an artificial tooth base and other biological materials.
[0003]
This kind of biomaterial is required to have characteristics such as being well adapted to the living body, non-irritating or toxic, not corroding or collapsing, and not being damaged even if a little force is applied. In the case of materials, these required characteristics can be relatively satisfied.
[0004]
By the way, when titanium materials or other metal materials are used as biomaterials as they are, the elastic modulus of these metal materials is orders of magnitude higher than that of artificial bones. A large stress is generated at the interface with the bone or the like, and based on this, there is a possibility that separation or cracking may occur between the biological material such as artificial bone and the biological bone.
[0005]
Therefore, it is conceivable to use this kind of biomaterial as a porous body.
When the biomaterial is configured as a porous body as described above, for example, when this is used as an artificial bone, the living bone tissue enters the void of the porous body, and the biomaterial (artificial bone) and the living bone are It is possible to form a bone tissue that is integrated and very close to the original living bone.
Moreover, by using such a porous material as the biomaterial, it is possible to reduce the weight significantly while using a metal material.
[0006]
By the way, in fields other than biomaterials, the following methods are conventionally known as a method for producing a metal porous body.
The first method is called a casting method. The mold is cast by pouring gypsum into a void of a porous polymer material such as foamed polyurethane, and then the polymer material is burned off by heating and the mold is fired at the same time. In this method, the molten metal is injected into the void of the mold and solidified, and then the mold is crushed and removed.
[0007]
The second method is called a plating method, in which voids in an assembly of fine particles made of resin, etc. are filled with metal by a method such as electroless plating, for example, nickel plating, and then the fine particles are burned off by heating. -What is to be removed, void formation, that is, a porous structure can be obtained by burning off the fine particles.
[0008]
The third method is called a molten metal foaming method, in which a foamed material is mixed in molten metal, and the molten metal is solidified in a state containing a large amount of gas generated by foaming of the foamed material to make it porous. Is.
[0009]
The fourth method is called the space holder method, in which metal powder and spacer material powder that is burned off by heating are mixed and formed into a predetermined shape, and then the spacer material is burned off by heating, and the remaining metal powder is Sintering is performed at a sintering temperature to obtain a porous structure.
[0010]
[Problems to be solved by the invention]
However, in the case of the first method, that is, the method called casting, the mold material such as gypsum is clogged in the void of the metal solidified body after the molten metal is injected and solidified. Although it is necessary to crush and remove the material, this process is difficult, and the mold material remaining in the voids of the porous metal body cannot be easily removed. The actual situation is that only a plate-like material can be produced.
[0011]
On the other hand, in the second method, that is, a method called a plating method, the metal porous body that can be produced is limited to nickel or the like, and the productivity is low so that only the conventional plate-like material can be produced as in the first method. Is the actual situation.
[0012]
Further, in the third method, that is, a method called a molten metal foaming method, a time lag occurs between foaming and solidification, so that it is difficult to produce a uniform porous body, and the high porosity portion is biased toward the solidification start portion. At the end, there is a problem that the process control is extremely difficult, for example, the porosity is remarkably lowered.
[0013]
On the other hand, in the fourth method, that is, the method called the space holder method, both the metal powder and the spacer material powder are conventionally spherical powders, but the spacer material powder is not uniformly dispersed due to the characteristics of the powder mixing. In particular, when the porosity is large, the metal material that should block the gap is likely to be separated and the gaps are connected to each other, and accordingly, the variation in material strength is remarkably increased, and the overall strength is also increased. This creates a problem of lowering.
[0014]
In addition, many sharp points are generated by the separation of the metal material between the gaps. Therefore, when such a porous structure is used as a biomaterial, the sharp parts that occur everywhere are formed. The inconvenience of becoming a stimulation base for a living body arises.
[0015]
FIGS. 1 (a) and 1 (b) schematically show the situation.
(A) shows a state in which spherical metal powder and spacer material powder are ideally mixed. In this case, the metal material has a good network structure. It is in a state of being well blocked by the material M, and therefore the metal material M is also well connected in the portion between the voids P and P.
[0016]
In practice, however, especially when the porosity is high, the metal powder and the spacer material powder are ideally not dispersed and mixed, or the layer of the metal material in the portion between the voids. Since the thickness of Ma is extremely thin, as shown in FIG. 1 (b), the same part is cut or detached relatively easily, and many sharp parts are generated.
As a result, the pointed portion becomes a stimulation base for the living body, and this phenomenon also causes a large variation in material strength and a decrease in the overall strength.
[0017]
[Means for Solving the Problems]
The manufacturing method of a high-strength porous body as a biomaterial of the present invention and the high-strength porous body have been devised to solve such problems.
Thus, claim 1 relates to a method for producing a high-strength porous metal body as a biomaterial. The metal powder is mixed with an inorganic or organic spacer material powder as a void forming material that is burned off by heating. After forming, and then heating to the burning temperature of the spacer material powder to burn off the spacer material, the metal powder is sintered by sintering at a higher sintering temperature than this, and the porosity is 70- When producing a high-strength porous metal body as a 90% biomaterial, the spacer material powder has an average diameter in the range of 200 to 2000 μm, and an average value of the ratio of the maximum diameter to the minimum diameter of the powder A columnar or fibrous elongated shaped irregular powder having an aspect ratio of 2 or more is used.
[0018]
According to a second aspect of the present invention, in the first aspect, the spacer material powder is mainly composed of any one of ammonium hydrogen carbonate, urea, polyoxymethylene resin, urea resin, expanded polystyrene resin, and expanded polyurethane resin. It is characterized by.
[0019]
According to a third aspect of the present invention, in any one of the first and second aspects, a volume mixing ratio of the metal powder and the spacer material powder at room temperature is in a range of 1: 1 to 1:10.
[0020]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the average particle size of the metal powder is in the range of 10 to 200 μm .
[0021]
Motomeko 5 relates strength porous body of metal as biomaterials, the metal powder a porosity formed by sintering 70 to 90% of the metal porous body, the shape of the gap is the average The diameter is in the range of 200 to 800 μm, and the aspect ratio that is the average value of the ratio of the maximum diameter to the minimum diameter of the voids is in the range of 2 or more.
[0022]
[Operation and effect of the invention]
As described above, the manufacturing method of the present invention is to manufacture a biomaterial by the fourth method, that is, the space holder method, and a columnar or fibrous elongated shaped powder is used as the spacer material powder. It is characterized by.
When such a long and narrow shaped irregular shaped powder is used as the spacer material powder, a porous structure is produced with the same porosity as when a conventional spherical spacer powder is used. As shown, the network structure made of the metal material is well connected.
In other words, the metal material existing between the gap P and the gap P is in a well-connected state, and the gap P and the gap P are well blocked by the metal material to form an independent gap. .
[0023]
As a result, the frequency of occurrence of pointed parts caused by the separation of the metal material at the part between the gaps is remarkably reduced. Therefore, when this is used as a biomaterial, the pointed part causes the living body to be Inconveniences such as irritation can be avoided.
Furthermore, since the metal material is rarely partly separated, the strength variation is small, and the strength of the porous structure itself is high.
[0024]
The porous structure shown in FIGS. 1 (a) and 1 (b) has an advantageous effect derived from the porous structure itself as compared with the biomaterial made of a metal material having a dense structure. However, the metal porous body obtained by the production method of the present invention is particularly suitable as a biomaterial since it has few sharp parts and has high strength as described above.
[0025]
In the case of a porous body having a porosity of less than 70%, it is relatively easy to connect the network structure even when a spherical powder is used as the spacer material powder as in the prior art.
Therefore, the present invention is particularly effective when applied to the production of a porous body having a porosity of 70% or more, more desirably a porous body having a porosity of 80% or more. However, when the porosity exceeds 90%, it becomes difficult to produce a porous body satisfactorily. Therefore, the production method of the present invention can be suitably applied to a porous body having a porosity of 90% or less.
In the present invention, it is preferable to use a spacer material powder having an average diameter in the range of 200 to 2000 μm and an aspect ratio of 2 or more. More desirable is an aspect ratio of 3 or more.
However, if the aspect ratio is excessively large, each void becomes relatively large, and when trying to produce a porous body having the same porosity, the number of voids decreases and the network structure becomes coarse. Therefore, it is desirable that the aspect ratio is 10 or less unless a continuous void is actively used.
[0026]
In the present invention, a single titanium powder or an alloy powder can be suitably used as the metal powder.
[0027]
In addition, as the spacer material powder, a powder mainly composed of any of ammonium hydrogen carbonate, urea, polyoxymethylene resin, urea resin, foamed polystyrene resin, and foamed polyurethane resin can be suitably used.
[0028]
Moreover, the mixing ratio of the metal powder and the spacer material powder at normal temperature can be in the range of 1: 1 to 1:10 in terms of volume mixing ratio.
If the mixing ratio is smaller than 1: 1, that is, if the mixing ratio of the spacer material powder is small, the porosity cannot be increased. Conversely, if the mixing ratio of the spacer material powder is larger than 1:10, the void ratio is increased. It becomes difficult to manufacture a porous structure satisfactorily because the amount of is too large.
[0029]
In the present invention, a metal powder having an average particle size in the range of 10 to 200 μm can be preferably used .
[0030]
Motomeko 5 relates to a porous body of metal as biomaterials, 200~800Myuemu shape of the gap is the average diameter, which aspect ratio is in the 2 or more ranges, from the ones metal material The network structure is in a well-connected state, and therefore has high strength, and there are few sharp portions generated by partial separation of the metal material, which is suitable as a biomaterial.
[0031]
Embodiment
FIG. 2 shows an example of an embodiment of the present invention.
Here, the raw metal powder and the spacer material powder are stirred and mixed by the stirring and mixing device 12, and the obtained mixture is then press-molded into a predetermined shape by the press molding device 14.
The molded body obtained by this press molding is set in the spacer material removing device 16, and the molded body is heated by the same device to burn off the spacer material.
[0032]
In this example, the spacer material removing device 16 has an evacuation port 18, and the molded material is heated by the heating device 20 while evacuating from the evacuation port 18 to burn out the spacer material.
In the figure, 10a represents an intermediate product from which the spacer material has been removed.
[0033]
Next, the intermediate product 10a from which the spacer material has been removed is set in the sintering device 22, where it is again sintered at a sintering temperature higher than the temperature rising heating in the spacer material removing device.
In addition, the sintering apparatus 22 shown in the figure also has a vacuum exhaust port 18, and the intermediate product 10a is heated by the heating apparatus 20 while being evacuated therefrom, and is sintered.
Here, the porous structure 10 is obtained in which the space after the removal of the spacer material remains as a void.
[0034]
【Example】
Next, examples of the present invention will be described in detail below.
After producing Ti powder by gas atomization method or hydrodehydrogenation method, it was classified to 50 μm or less.
To this Ti powder, a columnar spacer material powder made of polyoxymethylene resin having a diameter of 300 μm and a length of 1.5 mm (aspect ratio: 5) is added in an amount of about 5 times at room temperature, and sufficiently stirred and mixed, and then pressed. Molded with a mold.
[0035]
Thereafter, the temperature was raised to 300 ° C. in a vacuum furnace over 5 hours. In this process, the spacer material was burned out, and then heated to 1200 ° C. to perform a sintering process for 2 hours.
The tensile strength of the obtained porous body was measured and found to be 10 MPa. The porosity was 80%.
[0036]
Here, measurement of tensile strength is performed by a method based on JIS Z 2241 in a test piece based on JIS Z 2550.
[0037]
When the obtained porous body 10 was examined, the shape of the voids was almost similar to the added spacer material powder.
In other words, when press-molding a mixed powder composed of a spacer material and Ti powder, the metal powder behaves so as to fill the gaps by the applied pressure. As a result, the spacer material retains a similar shape and is sintered as it is. The result seems to have advanced.
In addition, a porous material was manufactured according to the same procedure using a spacer material having the same diameter as described above and an aspect ratio of 3 (mixing ratio is the same as above), and the tensile strength was measured. (The porosity is 80%).
[0038]
Next, a spacer material powder having a diameter substantially the same as the above and an aspect ratio of 30 was mixed with the Ti powder (the mixing ratio was the same as above), and a porous body was manufactured according to the above procedure. The tensile strength of the porous body was 7 MPa. The porosity was 80%.
[0039]
Thus, when the aspect ratio of the spacer material powder added to and mixed with the Ti powder is increased, the tensile strength is increased. When is increased, it was confirmed that the tensile strength gradually decreases because the size of the test piece is fixed.
[0040]
On the other hand, according to a conventional method, the spherical spacer material powder having a diameter of 300 μm is added to the Ti powder in a volume ratio of 5 times and mixed, and the same treatment as above is performed to produce a porous body. Was 5 MPa. The porosity was 80% as described above.
[0041]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented and configured in various forms without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the structure of a porous body obtained by the method of the present invention together with a comparative example.
FIG. 2 is a diagram showing an example of an embodiment of the present invention.

Claims (5)

金属粉末と加熱により焼失する空隙形成材料としての無機又は有機のスペーサ材料粉末とを混合してプレス成形し、次いで該スペーサ材料粉末の焼失温度に加熱して該スペーサ材料を焼失させた後、これより高温の焼結温度で焼結処理して前記金属粉末を焼結し、空隙率が70〜90%の生体用材料としての金属の高強度多孔質体を製造するに際し、
前記スペーサ材料粉末として、平均直径が200〜2000μmの範囲にあり、該粉末の最小径に対する最大径の比の平均値であるアスペクト比が2以上の範囲にある柱状ないし繊維状の細長形状の異形粉末を用いることを特徴とする生体用材料としての高強度多孔質体の製造方法。
After mixing the metal powder and the inorganic or organic spacer material powder as a void forming material to be burned down by heating, press forming, and then heating to the burning temperature of the spacer material powder to burn off the spacer material. When the metal powder is sintered by sintering at a higher sintering temperature to produce a high-strength porous body of metal as a biomaterial having a porosity of 70 to 90% ,
The spacer material powder has a columnar or fibrous elongated shape with an average diameter in the range of 200 to 2000 μm and an aspect ratio that is an average value of the ratio of the maximum diameter to the minimum diameter of the powder in the range of 2 or more. A method for producing a high-strength porous body as a biomaterial, characterized by using a powder.
請求項1において、前記スペーサ材料粉末が炭酸水素アンモニウム,尿素,ポリオキシメチレン樹脂,尿素樹脂,発泡ポリスチレン樹脂,発泡ポリウレタン樹脂の何れかを主成分としたものであることを特徴とする生体用材料としての高強度多孔質体の製造方法。  2. The biomaterial according to claim 1, wherein the spacer material powder is mainly composed of any of ammonium hydrogen carbonate, urea, polyoxymethylene resin, urea resin, expanded polystyrene resin, and expanded polyurethane resin. As a method for producing a high-strength porous body. 請求項1,2の何れかにおいて、常温における前記金属粉末とスペーサ材料粉末との体積混合比率を1対1〜1対10の範囲とすることを特徴とする生体用材料としての高強度多孔質体の製造方法。  The high-strength porous material as a biomaterial according to any one of claims 1 and 2, wherein a volume mixing ratio of the metal powder and the spacer material powder at room temperature is in a range of 1: 1 to 1:10. Body manufacturing method. 請求項1〜3の何れかにおいて、前記金属粉末の平均粒径が10〜200μmの範囲であることを特徴とする生体用材料としての高強度多孔質体の製造方法。  The method for producing a high-strength porous body as a biomaterial according to any one of claims 1 to 3, wherein an average particle diameter of the metal powder is in a range of 10 to 200 µm. 金属粉末を焼結して成る空隙率が70〜90%の金属多孔質体であって、空隙の形状が平均径で200〜800μmの範囲にあり、該空隙の最小径に対する最大径の比の平均値であるアスペクト比が2以上の範囲にあることを特徴とする生体用材料としての金属の高強度多孔質体。A porous metal body having a porosity of 70 to 90% formed by sintering metal powder, wherein the void shape has an average diameter in the range of 200 to 800 μm, and the ratio of the maximum diameter to the minimum diameter of the void A metal high-strength porous body as a biomaterial characterized by having an average aspect ratio in a range of 2 or more.
JP2001085060A 2001-03-23 2001-03-23 Method for producing high strength porous body and high strength porous body Expired - Lifetime JP4572286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001085060A JP4572286B2 (en) 2001-03-23 2001-03-23 Method for producing high strength porous body and high strength porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001085060A JP4572286B2 (en) 2001-03-23 2001-03-23 Method for producing high strength porous body and high strength porous body

Publications (2)

Publication Number Publication Date
JP2002285203A JP2002285203A (en) 2002-10-03
JP4572286B2 true JP4572286B2 (en) 2010-11-04

Family

ID=18940639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001085060A Expired - Lifetime JP4572286B2 (en) 2001-03-23 2001-03-23 Method for producing high strength porous body and high strength porous body

Country Status (1)

Country Link
JP (1) JP4572286B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731247A1 (en) * 2005-06-07 2006-12-13 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Titanium, titanium alloy and NiTi foams with high ductility
EP2014315A4 (en) 2006-04-13 2012-06-20 Sagawa Printing Co Ltd Method of constructing artificial bone
US20090317278A1 (en) 2006-08-31 2009-12-24 Japan Science And Technology Agency Composite artificial bone
DE102006053018B4 (en) * 2006-11-10 2010-04-08 Ks Aluminium-Technologie Gmbh Cylinder crankcase for a motor vehicle
JP2012036470A (en) * 2010-08-10 2012-02-23 Neive:Kk Porous sintered material and manufacturing method therefor
CN103447533B (en) * 2013-09-28 2015-04-01 重庆大学 Method for preparing open-cell foam titanium
CN113231636A (en) * 2021-05-07 2021-08-10 潍柴动力股份有限公司 Preparation method of cylinder liner and cylinder liner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196008A (en) * 1984-10-17 1986-05-14 Shintou Kogyo Kk Production of porous forming mold
JPH0474805A (en) * 1990-07-13 1992-03-10 Kawasaki Steel Corp Manufacture of metallic porous material
JPH0831700A (en) * 1994-07-12 1996-02-02 Marcon Electron Co Ltd Sintered compact for solid-state electrolytic capacitor and manufacture of it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196008A (en) * 1984-10-17 1986-05-14 Shintou Kogyo Kk Production of porous forming mold
JPH0474805A (en) * 1990-07-13 1992-03-10 Kawasaki Steel Corp Manufacture of metallic porous material
JPH0831700A (en) * 1994-07-12 1996-02-02 Marcon Electron Co Ltd Sintered compact for solid-state electrolytic capacitor and manufacture of it

Also Published As

Publication number Publication date
JP2002285203A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
CA2611373C (en) Titanium, titanium alloy and niti foams with high ductility
AU2011244998B2 (en) Method for the manufacture of a shaped body as well as green compact
JP4572287B2 (en) Method for producing high strength porous body and high strength porous body
EP1755809A2 (en) Porous metallic materials and method of production thereof
JP2002509191A (en) High-density components made by uniaxial compression of agglomerated spherical metal powder
RU2006125430A (en) CARBON INSTRUMENTS FOR MINING AND CONSTRUCTION APPLICATION AND METHOD FOR THEIR MANUFACTURE
JP4572286B2 (en) Method for producing high strength porous body and high strength porous body
KR100556144B1 (en) Clay composition for shaping noble metal and method for production of sinter of noble metal
JP3837502B2 (en) Biological porous composite, method for producing the same, and use thereof
WO2014058901A1 (en) System and method for fabrication of 3-d parts
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
JP2995661B2 (en) Manufacturing method of porous cemented carbide
Wahab et al. Processing of porous 316L stainless steel by replacing metal powder with saccharose
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
JP3834283B2 (en) Composite material and manufacturing method thereof
Weil et al. Use of a naphthalene-based binder in injection molding net-shape titanium components of controlled porosity
JP2003171704A (en) Porous body for impact absorption, and its manufacturing method
Zainudin et al. Microstructural Properties of Yttria Stabilized Zirconia (YSZ) Prepared by Ceramic Injection Moulding (CIM)
JPH0151521B2 (en)
JP3602290B2 (en) Gypsum-based investment for high-temperature dental casting
Fayyaz et al. Investigation on Feedstock Preparation for Micro-Cemented Carbide Injection Molding
JPH0734154A (en) Manufacure of sintered hard alloy by injection molding
JPH1030136A (en) Manufacture of sintered titanium alloy
JP3479718B2 (en) Method for producing shaped article made of metal or ceramic
JP2008290890A (en) Method of molding cemented carbide integrally with metallic material and integrally molded member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4572286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term