JP2008290890A - Method of molding cemented carbide integrally with metallic material and integrally molded member - Google Patents

Method of molding cemented carbide integrally with metallic material and integrally molded member Download PDF

Info

Publication number
JP2008290890A
JP2008290890A JP2007135504A JP2007135504A JP2008290890A JP 2008290890 A JP2008290890 A JP 2008290890A JP 2007135504 A JP2007135504 A JP 2007135504A JP 2007135504 A JP2007135504 A JP 2007135504A JP 2008290890 A JP2008290890 A JP 2008290890A
Authority
JP
Japan
Prior art keywords
carbide
metal
base material
integrally
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007135504A
Other languages
Japanese (ja)
Inventor
Yutaka Shinoda
豊 篠田
Fumihiro Wakai
史博 若井
Takashi Akatsu
隆 赤津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2007135504A priority Critical patent/JP2008290890A/en
Publication of JP2008290890A publication Critical patent/JP2008290890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of molding a hard-to-work carbide base material represented by tungsten carbide (WC) and having high molting point and high hardness integrally with a metallic material and an integrally molded member thereby. <P>SOLUTION: Low sintering temperature, low pressurizing force and high densification speed in powder metallurgy are attained by micronizing crystal grains of the carbide base material. The densification of a compression-molded body comprising the hardly workable carbide-based material such as tungsten carbide (WC) which is compression-molded on the surface of the metallic base material is performed at a temperature lower than that of a conventional one by 500°C or more by using the superplasticity phenomenon caused by the micronization of the crystal grains. As a result, the metal carbide-metal integrated molded material having high accuracy is manufactured without causing the plastic deformation in the base material side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属材料に金属炭化物を一体成形する方法に関し、より詳細には、金属材料と高融点および高硬度を有する難加工性の炭化物系材料との超塑性現象を利用した低温焼結による一体成形技術に関する。   The present invention relates to a method for integrally forming a metal carbide on a metal material, and more particularly, by low-temperature sintering using a superplastic phenomenon between a metal material and a hard-working carbide material having a high melting point and high hardness. It relates to integral molding technology.

硬質の金属炭化物の粉末にコバルト、ニッケル等の結合材を添加し焼結して得られる金属炭化物である超硬合金は、その非常に硬い性質から、切削加工や金型成形など、耐摩耗性を要求される用途において専ら超硬工具として広く利用されており、特にタングステンカーバイド(WC)は、代表的な超硬合金として広く一般に利用されている。しかしながら、タングステン自体が希少金属であることから、工具全体をタングステンカーバイド(WC)で作ることは、コスト面および元素戦略の面から好ましくない。そこで、従来、工具全体をタングステンカーバイド(WC)で作るのではなく、実際に耐摩耗性を要求される部分にのみタングステンカーバイド(WC)を用いることが行われていた。この従来法においては、母材となる所望の金属部材に対し、該金属部材の接合面の形状に合わせて予め作製した超硬合金からなる部材を用意した上で、両者を事後的に接合することによって超硬合金と金属母材とが一体となった工具の製造が行われており、両者の接合は、ロウ付けによって、あるいは、拡散接合によって行われていた。特開2004−231476号公報(特許文献1)は、ガラスからなる光学素子をプレス成形する際に用いる金型において、タングステンカーバイド(WC)を主成分とする成型面部とニッケルクロムモリブデン鋼からなる母材部とをロウ材によって一体に接合する方法を開示する。
特開2004−231476号公報
Cemented carbide, which is a metal carbide obtained by adding a binder such as cobalt or nickel to a hard metal carbide powder and sintering it, is wear resistant due to its extremely hard properties such as cutting and mold forming. Is widely used as a cemented carbide tool, in particular, tungsten carbide (WC) is widely used as a typical cemented carbide. However, since tungsten itself is a rare metal, it is not preferable in terms of cost and element strategy to make the entire tool with tungsten carbide (WC). Therefore, conventionally, tungsten carbide (WC) has been used only for portions where wear resistance is actually required, rather than making the entire tool with tungsten carbide (WC). In this conventional method, a member made of cemented carbide prepared in advance according to the shape of the joining surface of the metal member is prepared for a desired metal member as a base material, and then both are joined afterwards. Thus, a tool in which a cemented carbide alloy and a metal base material are integrated is manufactured, and the joining of both is performed by brazing or diffusion bonding. Japanese Patent Application Laid-Open No. 2004-231476 (Patent Document 1) describes a mold used for press-molding an optical element made of glass in a mold surface portion mainly composed of tungsten carbide (WC) and a mother made of nickel chromium molybdenum steel. Disclosed is a method of integrally joining a material part with a brazing material.
JP 2004-231476 A

本発明は、上記従来技術に鑑みてなされたものであり、本発明は、タングステンカーバイド(WC)に代表される高融点および高硬度を有する難加工性の炭化物系材料と金属材料とを一体的に成形する方法を提供すること、及びその一体成形部材を提供することを目的とする。   The present invention has been made in view of the above prior art, and the present invention integrates a hard-working carbide-based material having a high melting point and high hardness represented by tungsten carbide (WC) with a metal material. An object of the present invention is to provide a method for molding the molded article and an integral molded member thereof.

本発明者らは、炭化物系材料と他の金属母材とを一体的に成形する方法につき鋭意検討した結果、接合面が整合するように予め成された金属炭化物と金属母材とを事後的に接合するという従来の発想から離れ、金属母材に対して直接的に金属炭化物を一体成形するという着想を得た。ここで、金属炭化物である超硬合金は、一般に粉末冶金技術によってバルク体を得るが、その焼結温度が高いため、他の金属材料に対して粉末冶金技術によって直に超硬合金を成形することは困難である。なぜならば、炭化物系材料の焼結温度が、母材となる金属の融点近傍となるような場合、母材側が焼結過程において変形し易くなってしてしまい、製品の成形精度において問題が生じるからである。この点につき、本発明者らは、粉末冶金に供される炭化物系材料の結晶粒を微細化することによって、炭化物系材料の加圧焼結時における焼結温度の低温度化、加圧力の低応力化、および緻密化速度の高速化を実現しうることを見出し、本発明に至ったのである。すなわち、本発明によれば、母材となる金属材料の耐用温度域でタングステンカーバイド(WC)などの炭化物系材料の焼結を行うことが可能となり、母材側に塑性変形を生じさせることなく精度の高い金属炭化物−金属の一体成形品を製造することが可能となる。   As a result of intensive studies on a method of integrally forming a carbide-based material and another metal base material, the inventors have made a subsequent analysis of a metal carbide and a metal base material that have been formed in advance so that the joint surfaces are aligned. Apart from the conventional idea of joining to a metal base, the idea of integrally forming metal carbide directly on the metal base material was obtained. Here, a cemented carbide, which is a metal carbide, generally obtains a bulk body by powder metallurgy technology, but because of its high sintering temperature, the cemented carbide is directly formed by powder metallurgy technology against other metal materials. It is difficult. This is because if the sintering temperature of the carbide-based material is close to the melting point of the metal that is the base material, the base material side is easily deformed during the sintering process, resulting in problems in the molding accuracy of the product. Because. In this regard, the present inventors have made it possible to reduce the sintering temperature and the applied pressure of the carbide-based material during pressure sintering by refining the crystal grains of the carbide-based material used for powder metallurgy. The present inventors have found that low stress and high densification rate can be realized, and have reached the present invention. That is, according to the present invention, it is possible to sinter carbide-based materials such as tungsten carbide (WC) in the service temperature range of the metal material that is the base material, and without causing plastic deformation on the base material side. It becomes possible to manufacture a metal carbide-metal integrally molded product with high accuracy.

また、本発明者らは、本発明の上述した新規な方法によって、あらかじめ別々に用意した炭化物系材料からなる部品と金属母材とを接合するという従来の方法では容易に実現しえなかった構造を有する金属炭化物−金属一体部材の製造を容易に実現しうることを見出し、本発明に至ったのである。   In addition, the inventors of the present invention have a structure that cannot be easily realized by the conventional method of joining a part made of a carbide-based material and a metal base material separately prepared in advance by the above-described novel method of the present invention. The present inventors have found that it is possible to easily produce a metal carbide-metal integrated member having the following, and have reached the present invention.

上述したように、本発明によれば、難加工性の炭化物系材料と金属材料とを一体的に成形する方法及びその一体成形部材が提供される。   As described above, according to the present invention, a method of integrally forming a hard-working carbide-based material and a metal material and an integrally formed member thereof are provided.

以下、本発明を実施の形態をもって説明するが、本発明は以下に示す実施の形態に限定されるものではない。まず、本発明の金属炭化物−金属一体成形部材の新規な製造方法について以下説明する。   Hereinafter, the present invention will be described with embodiments, but the present invention is not limited to the embodiments described below. First, the novel manufacturing method of the metal carbide-metal integral molded member of this invention is demonstrated below.

本発明の金属炭化物−金属一体成形部材の製造は、いわゆる粉末冶金技術を応用して行われる。図1に示すように、母材となる金属部材10に対して、金属炭化物層の所望の形状に応じて設計された金型12を配設し、金型12と金属部材10の間に形成される隙間に硬質の炭化物系材料の粉末14を充填し、粉末14に所定の応力Sを負荷して圧縮成形したのちに、放電プラズマ焼結あるいはホットプレッシングにより高温下で圧力を保持したまま焼結する。一般にタングステンカーバイド(WC)に代表される金属炭化物を焼結させるために必要な温度は、金属部材12に用いられる鉄などの汎用金属材料の融点近傍にまで達する場合があり、そのような高温で焼結すると応力Sの作用で金属部材10が変形する虞がある。この変形のリスクは、金属部材10と金属炭化物の接合面が複雑な形状をしているときにより過大となる。この点につき、本発明においては、粉末冶金に供する金属炭化物の粉末粒子を微細化することによって、金属部材10の耐用温度域内での焼結を実現する。   The metal carbide-metal integral molded member of the present invention is manufactured by applying so-called powder metallurgy technology. As shown in FIG. 1, a metal mold 12 designed according to a desired shape of a metal carbide layer is disposed on a metal member 10 serving as a base material, and is formed between the metal mold 12 and the metal member 10. After filling the gap 14 with a hard carbide-based material powder 14 and applying a predetermined stress S to the powder 14 for compression molding, the powder 14 is baked while maintaining the pressure at a high temperature by spark plasma sintering or hot pressing. Conclude. Generally, the temperature required to sinter metal carbide typified by tungsten carbide (WC) may reach the melting point of a general-purpose metal material such as iron used for the metal member 12, and at such a high temperature. When sintered, the metal member 10 may be deformed by the action of the stress S. The risk of this deformation becomes excessive when the joint surface between the metal member 10 and the metal carbide has a complicated shape. In this regard, in the present invention, the metal carbide powder used for powder metallurgy is refined to achieve sintering within the service temperature range of the metal member 10.

本発明者らは、炭化物系材料の粉末粒子を微細化することによって超塑性現象が起こり、この超塑性現象によってより低い温度での焼結とそれに伴う一体成形が可能になると考える。ここで、超塑性現象とは、微細結晶粒同士のすべりによって巨大な変形が得られるというものであり、この超塑性特性は、結晶粒の微細化或いは粒界特性を制御することによって向上させることができる。すなわち、本発明は、超塑性現象を利用することによって、炭化物系材料を従来よりも大幅に低い1000〜1400℃の焼結温度で緻密化させることを可能にし、もって、母材金属との精度の高い一体成形を実現するというものである。なお、本発明においては、粉末冶金に供する炭化物系材料の粉末粒子の平均粒径を100nm以下とすることが好ましく、20〜40nm程度とすることがより好ましい。また、本発明の金属炭化物−金属一体成形部材に用いられる炭化物系材料は、タングステンカーバイド(WC)に限定されるものではなく、チタンカーバイド(TiC)、バナジウムカーバイド(VC)に代表される遷移金属の炭化物を用いることができる。   The present inventors consider that a superplastic phenomenon occurs by refining the powder particles of the carbide-based material, and this superplastic phenomenon enables sintering at a lower temperature and accompanying integral molding. Here, the superplastic phenomenon is that a huge deformation is obtained by sliding between fine crystal grains, and this superplastic characteristic is improved by controlling the refinement of crystal grains or grain boundary characteristics. Can do. That is, the present invention makes it possible to densify a carbide-based material at a sintering temperature of 1000 to 1400 ° C., which is significantly lower than before, by utilizing the superplastic phenomenon. Highly integrated molding is realized. In the present invention, the average particle size of the powder particles of the carbide material used for powder metallurgy is preferably 100 nm or less, and more preferably about 20 to 40 nm. The carbide-based material used for the metal carbide-metal integral molded member of the present invention is not limited to tungsten carbide (WC), but is a transition metal typified by titanium carbide (TiC) and vanadium carbide (VC). Can be used.

本発明によれば、超塑性現象を利用して超硬合金の加圧焼結時における焼結温度の低温度化、加圧力の低応力化、緻密化速度の高速化を実現することができるため、母材となる金属部材を変形させることなく、一体成形することができる。さらに、焼結助剤としてコバルトなどの金属粒子を添加することにより、焼結温度の更なる低温度化ならびに靭性の向上を図ることができる。   According to the present invention, a superplastic phenomenon can be used to lower the sintering temperature, pressurize the stress, and increase the densification rate during pressure sintering of the cemented carbide. Therefore, it can be integrally formed without deforming the metal member as the base material. Further, by adding metal particles such as cobalt as a sintering aid, the sintering temperature can be further lowered and the toughness can be improved.

また、本発明によれば、従来の方法では容易に実現しえなかった構造を有する金属炭化物−金属一体部材を容易に製造することができる。例えば、上述した図1に示すような構造の金属炭化物−金属一体部材を、従来法、すなわち、あらかじめ別々に用意した超硬合金からなる部品と金属母材とを接合する方法によって製造する場合、両者の接合面が整合するように精密な制御が必要となるなど、本発明の方法に比べて製造工程が複雑になるものの、製造すること自体は可能である。しかしながら、たとえば、図2(a)に示すような円筒状の金属母材20の内壁Nの耐摩耗性を向上するために、内壁Nに金属炭化物の層を形成することを企図する場合、従来法によるその製造は困難を極める。この点につき図2(b)を参照して具体的に説明すると、従来法によって金属母材20の内壁Nに金属炭化物の層を形成する場合、円筒状の金属母材20とは別に、金属炭化物の薄肉円筒部材22を予め用意したうえで、金属母材20に対してこの薄肉円筒部材22を事後的に圧入する方法、あるいは、金属母材20と薄肉円筒部材22との熱膨張率の違いを利用して焼き填めする方法を想定することはできる。しかし、基本的に脆性にある炭化物系材料を薄肉円筒状に焼結形成すること自体が困難であり、さらにそれを用いて、圧入、あるいは焼き填めする工程がさらなる困難を要することは自明であって、上述したような方法は現実的ではない。これは、金属母材20の外壁に対して超硬合金の層を形成する場合についても同様のことが言える。この点、本発明の方法によれば、図2(a)に示されるような形状をはじめ、かなり複雑な形状であっても、型を作ることが可能であれば粉末冶金技術を応用して金属炭化物−金属一体成形部材を容易に製造することができ、その際の焼結温度が母材金属の耐用域内であることから、高精度な部品を大量に製造することができる。上述した点から、本発明の金属炭化物−金属一体成形部材の製造方法が、従来法に比較して生産性および製造コストの面において格段に有利であることが理解されよう。   In addition, according to the present invention, a metal carbide-metal integrated member having a structure that could not be easily realized by the conventional method can be easily manufactured. For example, when manufacturing the metal carbide-metal integrated member having the structure shown in FIG. 1 described above by a conventional method, that is, a method of joining a part made of a cemented carbide and a metal base material separately prepared in advance, Although the manufacturing process is complicated as compared with the method of the present invention, for example, precise control is required so that the joint surfaces of the two are matched, the manufacturing itself is possible. However, for example, when it is intended to form a metal carbide layer on the inner wall N in order to improve the wear resistance of the inner wall N of the cylindrical metal base material 20 as shown in FIG. Its production by law is extremely difficult. This point will be described in detail with reference to FIG. 2B. When a metal carbide layer is formed on the inner wall N of the metal base material 20 by a conventional method, a metal is separated from the cylindrical metal base material 20. After preparing the thin-walled cylindrical member 22 of carbide in advance, the method of subsequently press-fitting the thin-walled cylindrical member 22 into the metal base material 20 or the thermal expansion coefficient of the metal base material 20 and the thin-walled cylindrical member 22 It is possible to envisage a method of filling by using the difference. However, it is obvious that it is difficult to sinter and form a brittle carbide-based material into a thin-walled cylinder, and that it is necessary to further press-fit or heat-fill the process. Thus, the method as described above is not realistic. The same applies to the case of forming a cemented carbide layer on the outer wall of the metal base material 20. In this regard, according to the method of the present invention, it is possible to apply a powder metallurgy technique if it is possible to make a mold even if it is a fairly complicated shape such as the shape shown in FIG. Since the metal carbide-metal integral molded member can be easily manufactured and the sintering temperature at that time is within the service life range of the base metal, high-precision parts can be manufactured in large quantities. From the above-mentioned points, it will be understood that the method for producing a metal carbide-metal integral molded member of the present invention is much more advantageous in terms of productivity and production cost than the conventional method.

以下、本発明の金属炭化物−金属一体成形部材について、実施例を用いてより具体的に説明を行うが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, the metal carbide-metal integral molded member of the present invention will be described more specifically using examples, but the present invention is not limited to the examples described later.

(実施例1)
平均粒子径が数十nmのWC粉末と市販のWC粉末(平均粒径800nm)の焼結挙動を比較検証した。図3は、WC粉末に対し50MPaの圧力を付与し50℃/分で昇温させて放電プラズマ焼結を行ったときの焼結時間、焼結温度、および収縮による変位(mm)の関係を示す図であり、「X」は、市販のWC粉末(800nm)の焼結挙動を示し、「Y」は、市販のWC粉末を遊星ボールミル粉砕(450rpm、15時間)して得られたWCのナノ結晶粒粉末(平均粒径100nm以下)の焼結挙動を示す。図3に示されるように、ナノ結晶粒粉末(Y)の収縮による変位が1200℃に達した時点でほぼ横這いになっていることから、1200℃前後で緻密化が完了していることがわかる。これに対し、市販粉末(X)は1750℃付近においてようやく緻密化が完了している。この結果から、金属炭化物の微細化によって、粉末冶金における焼結温度を500℃以上低温度化しうることが示された。
Example 1
The sintering behavior of the WC powder having an average particle diameter of several tens of nm and the commercially available WC powder (average particle diameter of 800 nm) was compared and verified. FIG. 3 shows the relationship between the sintering time, sintering temperature, and displacement (mm) due to shrinkage when performing discharge plasma sintering by applying a pressure of 50 MPa to the WC powder and raising the temperature at 50 ° C./min. “X” indicates the sintering behavior of a commercially available WC powder (800 nm), and “Y” indicates the WC obtained by pulverizing a commercially available WC powder with a planetary ball mill (450 rpm, 15 hours). The sintering behavior of nanocrystal grain powder (average grain size of 100 nm or less) is shown. As shown in FIG. 3, since the displacement due to the shrinkage of the nanocrystalline powder (Y) reaches almost 1200 ° C., it can be seen that densification is completed at around 1200 ° C. . On the other hand, densification of the commercially available powder (X) is finally completed at around 1750 ° C. From this result, it was shown that the sintering temperature in powder metallurgy can be lowered by 500 ° C. or more by refining metal carbide.

さらに、図4は、上述したWCナノ結晶粒粉末(平均粒径100nm以下)を放電プラズマ焼結(1100℃、50MPa、3分)して得られた焼結体を示し、図4(a)および(b)は、それぞれ焼結体のSEM写真とTEM写真を示す。図4に示されるように、1100℃という低い焼結温度にもかかわらず、本実施例のWC焼結体は、100nm以下の微細結晶粒組織を有する緻密化した合金となっていることが示された。上述した結果から、本発明の超硬合金−金属の一体成形部材の製造方法の有効性が実証された。   Further, FIG. 4 shows a sintered body obtained by spark plasma sintering (1100 ° C., 50 MPa, 3 minutes) of the above-mentioned WC nanocrystal grain powder (average particle size of 100 nm or less), and FIG. And (b) shows the SEM photograph and TEM photograph of a sintered compact, respectively. As shown in FIG. 4, despite the low sintering temperature of 1100 ° C., the WC sintered body of this example is a densified alloy having a fine grain structure of 100 nm or less. It was done. From the results described above, the effectiveness of the method of manufacturing the cemented carbide-metal integrally formed member of the present invention was proved.

(実施例2)
市販のWC粉末(平均粒子径800nm)を遊星ボールミル粉砕(450rpm、50時間)し、平均粒径数十nmのナノ粒子からなるWC微粉末を得た。得られたWC微粉末を母材としてのステンレス製の円筒状の金型の内壁に円筒状に充填した。図5は、本実施例に用いた治具構成を示す図である。図5に示すように、内径20mmのステンレス製(SUS303)の円筒金型30内に外径16mmのグラファイト製の中軸32を配置し、中軸32と円筒金型30の隙間にWC微粉末34を充填した。充填したWC微粉末34をグラファイト製の円筒36で上下から押すことによってWC微粉末34に対して100MPaの応力を負荷した状態で、SPS装置を用いて放電プラズマ焼結を行った。なお、焼結温度は1100℃とし、焼結時間は5分とした。その結果、内径20mmの円筒金型内壁に対し厚さ2mmのWCの層を一体成形することに成功した。図6は、WCの層40が内壁に一体成形されたステンレス製の円筒状金型30を示す。
(Example 2)
Commercially available WC powder (average particle size 800 nm) was pulverized on a planetary ball mill (450 rpm, 50 hours) to obtain a WC fine powder composed of nanoparticles having an average particle size of several tens of nm. The obtained WC fine powder was filled in a cylindrical shape on the inner wall of a stainless steel cylindrical mold as a base material. FIG. 5 is a diagram showing a jig configuration used in this example. As shown in FIG. 5, an inner shaft 32 made of graphite having an outer diameter of 16 mm is disposed in a cylindrical mold 30 made of stainless steel (SUS303) having an inner diameter of 20 mm. Filled. The filled WC fine powder 34 was pressed from above and below with a graphite cylinder 36 to apply a stress of 100 MPa to the WC fine powder 34, and then discharge plasma sintering was performed using an SPS apparatus. The sintering temperature was 1100 ° C. and the sintering time was 5 minutes. As a result, the WC layer having a thickness of 2 mm was successfully formed integrally with the inner wall of the cylindrical mold having an inner diameter of 20 mm. FIG. 6 shows a stainless steel cylindrical mold 30 in which a WC layer 40 is integrally formed on the inner wall.

(実施例3)
市販のWC粉末(平均粒子径100nm)に対し、焼結助剤として10wt%のコバルト粉末を添加し、ボールミル混合により混合粉末を得た。この混合粉末を用いて、実施例2と同様の治具を用い、同様の焼結条件でSPS装置を用いて放電プラズマ焼結を行った。その結果、実施例2と同様に内径20mmの円筒金型内壁に対し厚さ2mmのWCの層を一体成形することに成功した。
(Example 3)
10 wt% cobalt powder was added as a sintering aid to commercially available WC powder (average particle size 100 nm), and a mixed powder was obtained by ball mill mixing. Using this mixed powder, discharge plasma sintering was performed using the same jig as in Example 2 and using the SPS apparatus under the same sintering conditions. As a result, as in Example 2, the WC layer having a thickness of 2 mm was successfully formed integrally with the inner wall of the cylindrical mold having an inner diameter of 20 mm.

以上、説明したように、本発明によれば、難加工性の炭化物系材料と金属材料とを一体的に成形する方法及びその一体成形部材が提供される。本発明の方法によって、炭化物系材料を使用した多様な種類の耐摩耗性の部材が高品質、低コストで製造されることが期待される。   As described above, according to the present invention, a method of integrally forming a hard-working carbide-based material and a metal material and an integrally formed member thereof are provided. By the method of the present invention, it is expected that various types of wear-resistant members using carbide materials are manufactured with high quality and low cost.

本発明の製造方法を説明する図。The figure explaining the manufacturing method of this invention. 従来法における問題点を説明する図。The figure explaining the problem in the conventional method. 通常のWC粉末と微細化したWC粉末の焼結挙動を比較した図。The figure which compared the sintering behavior of normal WC powder and refined WC powder. 本発明の製造方法によって得られたWCの焼結体を示す図。The figure which shows the sintered compact of WC obtained by the manufacturing method of this invention. 本実施例に用いた治具構成を示す図。The figure which shows the jig | tool structure used for the present Example. WCの層が内壁に一体成形されたステンレス製の円筒状金型を示す図。The figure which shows the cylindrical metal mold | die made from stainless steel by which the layer of WC was integrally molded by the inner wall.

符号の説明Explanation of symbols

10…金属部材、12…金型、14…金属炭化物の粉末、20…円筒状の金属母材、22…金属炭化物の薄肉円筒部材、30…ステンレス製の円筒金型、32…グラファイト製の中軸、34…WC微粉末、36…グラファイト製の円筒、40…WCの層 DESCRIPTION OF SYMBOLS 10 ... Metal member, 12 ... Mold, 14 ... Metal carbide powder, 20 ... Cylindrical metal base material, 22 ... Thin metal cylindrical member of metal carbide, 30 ... Stainless steel cylindrical die, 32 ... Graphite center axis 34 ... WC fine powder, 36 ... Cylindrical cylinder, 40 ... WC layer

Claims (8)

炭化物系材料の微細粉末を金属母材の表面に圧縮成型してなる圧縮成形体を焼結することによって金属炭化物を前記金属母材の表面に一体的に成形する方法であって、前記炭化物系材料の微細粉末の平均粒径が100nm以下であることを特徴とする方法。   A method of integrally molding a metal carbide on the surface of the metal base material by sintering a compression-molded body formed by compression-molding a fine powder of a carbide-based material on the surface of the metal base material, the carbide system The method is characterized in that the average particle size of the fine powder of the material is 100 nm or less. 炭化物系材料の微細粉末を円筒状の金属母材の内壁面に圧縮成型してなる円筒状の圧縮成形体を焼結することによって金属炭化物からなる耐摩耗層を前記金属母材の内壁面に一体的に成形する方法であって、前記炭化物系材料の微細粉末の平均粒径が100nm以下であることを特徴とする方法。   A wear-resistant layer made of metal carbide is formed on the inner wall surface of the metal base material by sintering a cylindrical compression molded body formed by compressing a fine powder of a carbide material on the inner wall surface of the cylindrical metal base material. A method of molding integrally, wherein an average particle size of the fine powder of the carbide material is 100 nm or less. 前記炭化物系材料が、遷移金属の炭化物である、請求項1または2のいずれか1項に記載の方法。   The method according to claim 1, wherein the carbide-based material is a transition metal carbide. 前記遷移金属の炭化物が、タングステンカーバイド(WC)、チタンカーバイド(TiC)、バナジウムカーバイド(VC)からなる群より選ばれる少なくとも1種の遷移金属の炭化物である、請求項3に記載の方法。   4. The method according to claim 3, wherein the transition metal carbide is at least one transition metal carbide selected from the group consisting of tungsten carbide (WC), titanium carbide (TiC), and vanadium carbide (VC). 前記圧縮成形体を焼結する焼結温度が、1000〜1400℃である、請求項1〜4のいずれか1項に記載の方法。   The method of any one of Claims 1-4 whose sintering temperature which sinters the said compression molding body is 1000-1400 degreeC. 円筒状の金属部材であって、該金属部材の内壁面に金属炭化物からなる円筒状の耐摩耗層を備える金属部材。   A metal member comprising a cylindrical wear-resistant layer made of a metal carbide on an inner wall surface of the metal member. 前記金属炭化物が、遷移金属の炭化物である、請求項6に記載の金属部材。   The metal member according to claim 6, wherein the metal carbide is a transition metal carbide. 前記遷移金属の炭化物が、タングステンカーバイド(WC)、チタンカーバイド(TiC)、バナジウムカーバイド(VC)からなる群より選ばれる少なくとも1種の遷移金属の炭化物である、請求項7に記載の方法。   8. The method according to claim 7, wherein the transition metal carbide is at least one transition metal carbide selected from the group consisting of tungsten carbide (WC), titanium carbide (TiC), and vanadium carbide (VC).
JP2007135504A 2007-05-22 2007-05-22 Method of molding cemented carbide integrally with metallic material and integrally molded member Pending JP2008290890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135504A JP2008290890A (en) 2007-05-22 2007-05-22 Method of molding cemented carbide integrally with metallic material and integrally molded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135504A JP2008290890A (en) 2007-05-22 2007-05-22 Method of molding cemented carbide integrally with metallic material and integrally molded member

Publications (1)

Publication Number Publication Date
JP2008290890A true JP2008290890A (en) 2008-12-04

Family

ID=40166019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135504A Pending JP2008290890A (en) 2007-05-22 2007-05-22 Method of molding cemented carbide integrally with metallic material and integrally molded member

Country Status (1)

Country Link
JP (1) JP2008290890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099395B1 (en) * 2009-07-03 2011-12-27 한국오에스지 주식회사 Cemented carbide cutting tool using Spark Plasma Sintering and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099395B1 (en) * 2009-07-03 2011-12-27 한국오에스지 주식회사 Cemented carbide cutting tool using Spark Plasma Sintering and method thereof

Similar Documents

Publication Publication Date Title
KR100886112B1 (en) Powder metal scrolls
AU2003245820B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
US10562101B2 (en) Methods of making metal matrix composite and alloy articles
US9101982B2 (en) Multilevel parts from agglomerated spherical metal powder
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
EP2376248B1 (en) Method for the manufacture of a metal part
EP1888275B1 (en) TITANIUM, TITANIUM ALLOY AND NiTi FOAMS WITH HIGH DUCTILITY
JP2006257467A (en) Hard metal material for tool and manufacturing method therefor
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JP2017008939A (en) Manufacturing method of valve seat ring
EP4035800A1 (en) Method for producing green compact and method for producing sintered body
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
JP2008290890A (en) Method of molding cemented carbide integrally with metallic material and integrally molded member
JPH08333647A (en) Cemented carbide and its production
JP2014001427A (en) Method of manufacturing sintered component
JP2012087045A (en) Method for producing binderless alloy
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JP4206476B2 (en) Method for producing aluminum sintered material
KR20120046488A (en) Process for composite materials of nanostructured metal carbides-intermetallic compounds
TW201542337A (en) Self-lubricating composite material and method for the production thereof
Greulich Rapid prototyping and fabrication of tools and metal parts by laser sintering of metal powders
JP4121694B2 (en) Sintered body Ni-based cermet and parts for plastic molding machine and die casting machine using the same
Shinoda et al. Integrated molding of nanocrystalline tungsten carbide powder with stainless steel
JP2001279303A (en) METHOD OF MANUFACTURING Ti-Al INTERMETALLIC COMPOUND MEMBER
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys