JPH0653623B2 - Method of joining ceramic body and metal body - Google Patents

Method of joining ceramic body and metal body

Info

Publication number
JPH0653623B2
JPH0653623B2 JP61286141A JP28614186A JPH0653623B2 JP H0653623 B2 JPH0653623 B2 JP H0653623B2 JP 61286141 A JP61286141 A JP 61286141A JP 28614186 A JP28614186 A JP 28614186A JP H0653623 B2 JPH0653623 B2 JP H0653623B2
Authority
JP
Japan
Prior art keywords
shaft portion
joining
ceramic body
ceramic
turbine impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61286141A
Other languages
Japanese (ja)
Other versions
JPS63139076A (en
Inventor
光雄 桑原
泰 伊勢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61286141A priority Critical patent/JPH0653623B2/en
Publication of JPS63139076A publication Critical patent/JPS63139076A/en
Publication of JPH0653623B2 publication Critical patent/JPH0653623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1)産業上の利用分野 本発明は金属体と、成形および焼結工程を経て得られる
セラミック体との接合方法に関する。
Detailed Description of the Invention A. Object of the Invention (1) Field of Industrial Application The present invention relates to a method for joining a metal body and a ceramic body obtained through a forming and sintering process.

(2)従来の技術 従来、この種接合方法として金属体とセラミック体とを
ろう接により接合することが知られている(特公昭61
−91073号公報参照)。
(2) Conventional Technology Conventionally, as this kind of joining method, it has been known to join a metal body and a ceramic body by brazing (Japanese Patent Publication No. S61-61).
-91073).

(3)発明が解決しようとする問題点 しかしながら、ろう接手段は、単にセラミック体と金属
体との両表面に対するろう材の濡れ性を狙ったものであ
るから、高温下等、苛酷な状況下においては接合強度が
不十分であるといった問題がある。また金属体とセラミ
ック体との熱膨脹係数の差に起因して、ろう接部分が破
断するおそれもある。
(3) Problems to be Solved by the Invention However, since the brazing means is simply aimed at the wettability of the brazing material with respect to both the surfaces of the ceramic body and the metal body, it can be used under severe conditions such as high temperature. However, there is a problem that the bonding strength is insufficient. Further, there is a possibility that the brazed portion may break due to the difference in thermal expansion coefficient between the metal body and the ceramic body.

本発明は前記に鑑み、金属体とセラミック体との接合強
度を大幅に向上させると共に安定化させることのできる
前記接合方法を提供することを目的とする。
In view of the above, it is an object of the present invention to provide the above-mentioned joining method capable of greatly improving and stabilizing the joining strength between the metal body and the ceramic body.

B.発明の構成 (1)問題点を解決するための手段 本発明は、金属体と、成形および焼結工程を経て得られ
るセラミック体とを接合するに当り、前記セラミック体
より、それの成形に先立って配合された、酸により溶出
し得る溶出可能粒子を前記酸を流通させると共にその酸
に超音波振動を付与しながら溶出して、該セラミック体
に、それの接合面に開口する多数の連続気孔を形成する
工程と;前記金属体の溶融状態にある表層部を前記セラ
ミック体の前記接合面に接触させた後それら金属体およ
びセラミック体を加圧して、前記表層部を前記セラミッ
ク体の前記連続気孔に加圧含浸させる工程と;を用いる
ことを特徴とする。
B. Structure of the Invention (1) Means for Solving the Problems The present invention relates to joining a metal body and a ceramic body obtained through a forming and sintering process, and forming the ceramic body from the ceramic body prior to forming the same. A large number of continuous pores opened on the joint surface of the ceramic body are dissolved by allowing the acid to flow and applying ultrasonic vibration to the acid. And a step of contacting the surface layer portion in the molten state of the metal body with the joint surface of the ceramic body, and then pressing the metal body and the ceramic body to make the surface layer portion continuous with the ceramic body. And a step of impregnating the pores under pressure.

(2)作用 溶出可能粒子の溶出に際し、酸を流通させると共にその
酸に超音波振動を付与するので、溶出可能粒子より生じ
た可溶性塩類の連続気孔内における沈積を回避し、また
溶出反応を促進して、連続気孔の形成を迅速、且つ確実
に行うことができる。
(2) Action During the elution of elutable particles, the acid is circulated and ultrasonic vibration is applied to the acid, so that the soluble salts generated from the elutable particles are prevented from depositing in the continuous pores and the elution reaction is promoted. As a result, continuous pores can be formed quickly and reliably.

溶融した金属体表層部をセラミック体の連続気孔に加圧
含浸させるので、その表層部によるアンカ効果を確実に
発生させ、これにより両者の接合強度を大幅に向上させ
ることができる。
Since the continuous pores of the ceramic body are pressure-impregnated with the molten metal surface layer portion, the anchor effect by the surface layer portion can be reliably generated, and thereby the bonding strength between the two can be significantly improved.

また予め配合しておいた溶出可能粒子を溶出させるの
で、その粒子の配合量によってセラミック体の気孔率、
したがって表層部の加圧含浸によるアンカ効果を定常化
することは容易であり、これにより前記両者の接合強度
を安定化させることができる。
In addition, since the eluable particles that have been mixed in advance are eluted, the porosity of the ceramic body depends on the amount of the particles mixed,
Therefore, it is easy to stabilize the anchor effect by the pressure impregnation of the surface layer portion, and thereby the bonding strength between the both can be stabilized.

さらにセラミック体の連続気孔形成部は、その構成材料
と金属体の構成材料とよりなる複合部に変換され、その
複合部の熱膨脹係数はセラミック体および金属体の両熱
膨脹係数の中間値を呈するので、その複合部により両者
の熱膨脹率の差を緩和して、両者間の接合部分における
前記差に起因した破断を防止することができる。
Further, the continuous pore forming part of the ceramic body is converted into a composite part composed of the constituent material of the ceramic body and the constituent material of the metal body, and the coefficient of thermal expansion of the composite part exhibits an intermediate value between the coefficients of thermal expansion of the ceramic body and the metal body. By the composite portion, the difference in the coefficient of thermal expansion between the two can be relaxed, and breakage due to the difference in the joint portion between the two can be prevented.

さらにまた、ろう材等の金属性接合材は不要であるか
ら、その接合材に要するコストおよびその設置に伴う工
数を削減して、接合コストを下げることができる。
Furthermore, since a metallic joining material such as a brazing material is unnecessary, the cost required for the joining material and the man-hours required for the installation can be reduced, and the joining cost can be reduced.

(3)実施例 第1図(a)はセラミック体としてのタービン羽根車1を
示し、また同図(b)はタービン羽根車1に接合される金
属体としての超耐熱・耐食合金製回転軸2を示す。この
種合金としては、Ni−Cr合金(例えば、インコネル
713C)、Ni−Cr−Mo鋼(例えば、JIS S
NCM447)等が用いられている。
(3) Example FIG. 1 (a) shows a turbine impeller 1 as a ceramic body, and FIG. 1 (b) shows a superheat-resistant / corrosion-resistant alloy rotating shaft as a metal body joined to the turbine impeller 1. 2 is shown. As this seed alloy, Ni-Cr alloy (for example, Inconel 713C), Ni-Cr-Mo steel (for example, JIS S
NCM447) or the like is used.

タービン羽根車1は、羽根車本体3と、それと一体の接
合軸部4とよりなり、羽根車本体3は複数の羽根5を有
する支持部6、その支持部6に連設される大径軸部7お
よび大径軸部7端面に突設された小径軸部8を備えてい
る。接合軸部4は、小径軸部8の嵌入を許容し、また端
面が大径軸部7端面に衝合するような状態で羽根車本体
3と一体化されている。
The turbine impeller 1 includes an impeller body 3 and a joint shaft portion 4 integrated with the impeller body 3. The impeller body 3 includes a support portion 6 having a plurality of blades 5 and a large-diameter shaft continuous with the support portion 6. The small diameter shaft portion 8 is provided so as to project from the end portion 7 and the large diameter shaft portion 7. The joining shaft portion 4 is integrated with the impeller main body 3 in a state where the small diameter shaft portion 8 is allowed to fit therein and the end face abuts against the end face of the large diameter shaft portion 7.

タービン羽根車1は、原料の調製、成形および焼結の各
工程を経て製造される。
The turbine impeller 1 is manufactured through the steps of raw material preparation, molding and sintering.

原料は羽根車本体3と接合軸部4とでは異なり、羽根車
本体3の原料としてはセラミック粉末、その粉末の焼結
温度で焼結作用を発揮する焼結助剤等が用いられ、また
接合軸部4の原料には、前記の外に接合軸部4を、その
接合面としての外面に開口する多数の連続気孔を持つ三
次元網目構造にするため、酸により溶出し得る溶出可能
粒子が用いられる。
The raw material is different between the impeller main body 3 and the joining shaft portion 4, and as the raw material of the impeller main body 3, ceramic powder, a sintering aid that exhibits a sintering action at the sintering temperature of the powder, or the like is used. In the raw material of the shaft portion 4, in addition to the above, the joint shaft portion 4 has a three-dimensional network structure having a large number of continuous pores opening to the outer surface as the joint surface, and therefore, elutable particles that can be eluted by an acid are included. Used.

セラミック粉末としては、Si、SiC、ZrO
、TiC、TiN等の単独粉末およびこれらから選択
されたものの混合粉末が該当する。
As the ceramic powder, Si 3 N 4 , SiC, ZrO is used.
2 , single powders of TiC, TiN, and the like, and mixed powders selected from these powders are applicable.

焼結助剤としては、Al、Y、MgO、S
iO等の単独粉末およびこれらから選択されたものの
混合粉末が該当する。
As a sintering aid, Al 2 O 3 , Y 2 O 3 , MgO, S
Single powders such as iO 2 and mixed powders selected from these are applicable.

溶出可能粒子としては、Al、NaO、SiO
、MgO、KO、B、CaOおよび必要に応
じてCaClを混合、溶融、冷却固化および微粉砕の
各工程を経て製造されたものが該当する。
Examples of particles that can be eluted include Al 2 O 3 , Na 2 O, and SiO.
Those produced through the steps of mixing, melting, cooling and solidifying, and finely pulverizing 2 , MgO, K 2 O, B 2 O 3 , CaO and, if necessary, CaCl 2 are applicable.

原料の調製に当たっては、前記各種構成物質をボールミ
ル等の混合機を用いて所定時間混合し、それらを均一に
分散させる。
In preparing the raw materials, the various constituent substances are mixed for a predetermined time using a mixer such as a ball mill to uniformly disperse them.

前記原料を用いて成形体を得る場合には、加圧成形法、
射出成形法、水を分散媒としたスリップキャスティング
法等が用いられる。
When a molded body is obtained using the raw material, a pressure molding method,
An injection molding method, a slip casting method using water as a dispersion medium, or the like is used.

前記成形体に焼結処理を施す場合の条件は、Nガス等
の不活性ガス雰囲気中にて1600〜2000℃、0.5
〜12時間である。
The conditions for subjecting the molded body to the sintering treatment are 1600 to 2000 ° C. and 0.5 ° C. in an inert gas atmosphere such as N 2 gas.
~ 12 hours.

前記焼結処理によって緻密な組織を有するタービン羽根
車1が得られる。このタービン羽根車1の緻密化の程度
は、主として焼結助剤の配合量ならびに焼結処理におけ
る温度および時間によって制御される。また溶出可能粒
子も焼結助剤的な機能をするので、接合軸部4において
は前記粒子の配合量も緻密化に関与する因子となる。
By the sintering process, the turbine impeller 1 having a dense structure can be obtained. The degree of densification of the turbine impeller 1 is mainly controlled by the compounding amount of the sintering aid and the temperature and time in the sintering process. Further, since the elutable particles also function as a sintering aid, the compounding amount of the particles in the joining shaft portion 4 is also a factor involved in the densification.

接合軸部4から溶出可能粒子を溶出するために用いられ
る酸としては、硝酸、塩酸等の単一酸、これらの混酸、
前記単一酸または前記混酸に少量のフッ化水素酸を添加
したもの等が用いられる。
As the acid used for eluting the elutable particles from the joining shaft portion 4, single acids such as nitric acid and hydrochloric acid, mixed acids thereof,
The single acid or the mixed acid to which a small amount of hydrofluoric acid is added is used.

各酸により溶出可能粒子を可溶性塩類に変えて接合軸部
4より溶出し、接合軸部4を多数の連続気孔を持つ三次
元網目構造にする。その際、酸を流通させると共にそれ
に超音波振動を付与し、これにより連続気孔内における
可溶性塩類の沈積を回避し、また溶出反応を促進して、
連続気孔の形成を迅速、且つ確実に行うことができる。
The particles that can be eluted by each acid are changed to soluble salts and eluted from the joint shaft portion 4 to form the joint shaft portion 4 into a three-dimensional network structure having a large number of continuous pores. At that time, the acid is circulated and ultrasonic vibration is applied thereto, thereby avoiding the deposition of soluble salts in the continuous pores, and promoting the elution reaction,
The continuous pores can be formed quickly and reliably.

この場合接合軸部4の強度は、主としてその気孔の大き
さ(直径)および気孔率により左右される。
In this case, the strength of the joining shaft portion 4 mainly depends on the size (diameter) of the pores and the porosity.

第2図は接合軸部4の気孔率と曲げ強さとの関係を示
し、前記回転軸2との加圧下における接合を考慮する
と、気孔率は10〜30%が適当である。また連続気孔
の大きさは1〜10μmが適当である。このように連続
気孔の大きさおよび気孔率を設定することにより、前記
焼結処理における緻密化に伴うセラミック粉末の結晶成
長もあって、接合軸部4に、必要強度を持たせることが
できる。
FIG. 2 shows the relationship between the porosity of the joining shaft portion 4 and the bending strength. Considering joining with the rotating shaft 2 under pressure, the porosity is preferably 10 to 30%. Further, the size of the continuous pores is appropriately 1 to 10 μm. By setting the size and porosity of the continuous pores in this manner, the bonding shaft portion 4 can be provided with the required strength due to the crystal growth of the ceramic powder accompanying the densification in the sintering process.

前記連続気孔の大きさおよび気孔率は溶出可能粒子の粒
径および配合量によって左右されるものであるから、前
記適当範囲を得ることができるように前記粒径および配
合量が決定される。
Since the size and porosity of the continuous pores depend on the particle size and blending amount of the elutable particles, the particle size and blending amount are determined so that the appropriate range can be obtained.

前記合金製回転軸2は、羽根車本体3における大径軸部
7の直径よりも大きな一辺を有する横断面四角形の各軸
部9と、それに連設される小径軸部10とよりなり、角
軸部9にはタービン羽根車1の接合軸部4と嵌合する孔
部11が形成される。
The alloy rotating shaft 2 is composed of each shaft portion 9 having a quadrangular cross section having one side larger than the diameter of the large diameter shaft portion 7 in the impeller body 3, and a small diameter shaft portion 10 connected to the shaft portion 9. The shaft portion 9 is formed with a hole portion 11 which is fitted with the joining shaft portion 4 of the turbine impeller 1.

タービン羽根車1と回転軸2とを一体化する場合は、溶
出処理後の接合軸部4に、大気下または真空下における
加熱処理により表層部を溶融状態にした角軸部9の孔部
11を嵌合し、次いで、大気下または真空下において角
軸部9をその外周から加圧することによって、孔部11
の表層部を接合軸部4の連続気孔に加圧含浸させるもの
である。
When the turbine impeller 1 and the rotating shaft 2 are integrated with each other, the joint shaft portion 4 after the elution treatment has the hole portion 11 of the angular shaft portion 9 in which the surface layer portion is melted by the heat treatment in the atmosphere or under vacuum. And then press the square shaft portion 9 from the outer periphery thereof in the atmosphere or under vacuum to form the hole portion 11
The continuous pores of the joining shaft part 4 are pressure-impregnated with the surface layer part.

この場合、角軸部9の加熱処理および加圧工程を真空下
で行う方が、その角軸部9の酸化を防止し得るので、接
合強度を増す上に有効である。
In this case, it is more effective to increase the bonding strength by performing the heat treatment and the pressurizing process of the square shaft portion 9 under vacuum because the square shaft portion 9 can be prevented from being oxidized.

前記表層部の加圧含浸によりアンカ効果が発生し、これ
により接合軸部4と角軸部9、したがってタービン羽根
車1と回転軸2との接合強度を大幅に向上させることが
できる。この場合、接合軸部4の外面および連続気孔内
面に蒸着等の手段により金属薄膜を形成しておくと、連
続気孔内面等に対する表層部の濡れ性が良好になる。
An anchor effect occurs due to the pressure impregnation of the surface layer portion, whereby the joint strength between the joint shaft portion 4 and the angular shaft portion 9, and thus between the turbine impeller 1 and the rotary shaft 2 can be greatly improved. In this case, if a metal thin film is formed on the outer surface of the bonding shaft portion 4 and the inner surface of the continuous pores by a method such as vapor deposition, the wettability of the surface layer portion with respect to the inner surface of the continuous pores becomes good.

また予め配向しておいた溶出可能粒子を溶出させるの
で、その粒子の配合量によって接合軸部4の気孔率、し
たがって表層部の含浸によるアンカ効果を定常化するこ
とは容易であり、これによりタービン羽根車1と回転軸
2との接合強度を安定化させることができる。
Further, since the eluable particles that have been oriented in advance are eluted, it is easy to stabilize the porosity of the joining shaft portion 4, and hence the anchor effect due to the impregnation of the surface layer portion, by the blending amount of the particles. The joint strength between the impeller 1 and the rotary shaft 2 can be stabilized.

さらに接合軸部4は、そのセラミック材料と角軸部9の
金属材料とよりなる複合部に変換され、その複合部の熱
膨脹係数はタービン羽根車1および回転軸2の両熱膨脹
係数の中間値を呈するので、その複合部によりタービン
羽根車1と回転軸2との熱膨脹率の差を緩和して、両者
1,2間の接合部分における前記差に起因した破断を防
止することができる。
Further, the joint shaft portion 4 is converted into a composite portion composed of the ceramic material and the metal material of the angular shaft portion 9, and the thermal expansion coefficient of the composite portion is an intermediate value between the thermal expansion coefficients of the turbine impeller 1 and the rotating shaft 2. Since it is present, the difference in the coefficient of thermal expansion between the turbine impeller 1 and the rotary shaft 2 can be alleviated by the combined portion, and breakage due to the difference in the joint portion between the two can be prevented.

〔実施例I〕[Example I]

(a)羽根車本体用原料の調製 セラミック粉末 平均粒径0.5μm、最大粒径5μmの Si 90重量% 焼結助剤粉末 Y 6重量% Al 4重量% をボールミルにて24時間混合する。(a) Preparation of raw material for impeller body Ceramic powder 90% by weight of Si 3 N 4 having an average particle size of 0.5 μm and maximum particle size of 5 μm Sintering aid powder Y 2 O 3 6% by weight Al 2 O 3 4% by weight Mix in a ball mill for 24 hours.

(b)接合軸部用原料の調製 先ず、溶出可能粒子を下記の手法を用いて製造する。(b) Preparation of Bonding Shaft Raw Material First, elutable particles are manufactured using the following method.

Al5.9重量%、NaO11.4重量%、SiO2
5.2重量%、MgO13.0重量%、KO4.0重量%、B
38.0重量%、CaO2.5重量%よりなる配合物をボ
ールミルにて十分に混合し、その混合物を1400℃ま
で昇温して溶融し、その後溶融物を冷却固化する。この
固化物に微粉砕処理を施して平均粒径0.5μm、最大粒
径5μmの溶出可能粒子を得る。この溶出可能粒子の粒
度分布はセラミック粉末のそれに合せてある。
Al 2 O 3 5.9 wt%, Na 2 O11.4 wt%, SiO 2 2
5.2 wt%, MgO 13.0 wt%, K 2 O 4.0 wt%, B 2
A mixture consisting of 38.0 wt% O 3 and 2.5 wt% CaO is thoroughly mixed in a ball mill, the mixture is heated to 1400 ° C. to be melted, and then the melt is cooled and solidified. The solidified material is subjected to fine pulverization treatment to obtain elutable particles having an average particle size of 0.5 μm and a maximum particle size of 5 μm. The particle size distribution of the elutable particles is matched to that of the ceramic powder.

セラミック粉末 平均粒径0.5μm、最大粒径5μmの Si 81重量% 焼結助剤粉末 Y 2重量% Al 3重量% 溶出可能粒子 14重量% をボールミルにて24時間混合する。Ceramic powder having an average particle size of 0.5 μm and a maximum particle size of 5 μm Si 3 N 4 81% by weight Sintering aid powder Y 2 O 3 2% by weight Al 2 O 3 3% by weight Elutable particles 14% by weight in a ball mill 24 Mix for hours.

前記(a)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して羽根車本体3に対応する成
形体を得る。
Using the raw material (a) and water as the dispersion medium, the slip casting method is applied to obtain a molded body corresponding to the impeller body 3.

前記(b)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して接合軸部4に対応する成形
体を得ると同時にその成形体と前記成形体とを一体化し
てタービン羽根車1に対応する最終成形体を作製する。
Using the raw material (b) and water as a dispersion medium, a slip casting method is applied to obtain a molded body corresponding to the joint shaft portion 4, and at the same time, the molded body and the molded body are integrated to form a turbine impeller 1 The final molded body corresponding to is manufactured.

前記最終成形体を焼結炉内に設置し、炉内にNガスを
流通させながら炉内温度を1600℃まで昇温し、この
温度を2時間維持する。
The final molded body is placed in a sintering furnace, the temperature inside the furnace is raised to 1600 ° C. while N 2 gas is passed through the furnace, and this temperature is maintained for 2 hours.

この焼結処理によってタービン羽根車1を得る。The turbine impeller 1 is obtained by this sintering process.

このタービン羽根車1における密度は、理論密度の95
%以上であって非常に緻密であり、また室温での曲げ強
さは3点曲げ試験において85〜90kgf/mm2である。
また破断面を走査型電子顕微鏡を用いて観察したとこ
ろ、結晶の成長に伴いセラミック粉末は粒径3〜4μm
の六角柱状晶となっており、結晶の異常成長は認められ
ていない。
The density of the turbine impeller 1 is 95 which is the theoretical density.
% Or more and is very dense, and the bending strength at room temperature is 85 to 90 kgf / mm 2 in a three-point bending test.
Further, when the fracture surface was observed using a scanning electron microscope, the grain size of the ceramic powder was 3 to 4 μm as the crystal grew.
It is a hexagonal columnar crystal, and no abnormal crystal growth is observed.

前記タービン羽根車1の接合軸部4に、以下に述べる溶
出処理を施す。
The joining shaft portion 4 of the turbine impeller 1 is subjected to the elution treatment described below.

25%の硝酸および0.1%のフッ化水素酸よりなる混酸
を50℃に加熱し、その混酸を流通させると共にそれに
超音波振動を付与し、この状況下にある混酸に接合軸部
4を30分間浸漬して溶出可能粒子を溶出する。
A mixed acid composed of 25% nitric acid and 0.1% hydrofluoric acid is heated to 50 ° C., the mixed acid is circulated and ultrasonic vibration is applied to the mixed acid. Immerse to elute the elutable particles.

接合軸部4の重量減少率は15.0%であり、溶出可能粒子
の略全量が溶出されたことになる。
The weight reduction rate of the joining shaft part 4 was 15.0%, which means that almost all the elutable particles were eluted.

接合軸部4の破断面観察により、接合軸部4における連
続気孔の大きさは約2μm、また気孔率は16%であ
り、大部分の気孔が連続していることが確認されてい
る。焼結後の気孔率は見掛上0%であったから、約1%
の閉鎖された気孔が存在することになる。
By observing the fracture surface of the joining shaft portion 4, it has been confirmed that the size of the continuous pores in the joining shaft portion 4 is about 2 μm and the porosity is 16%, and most of the pores are continuous. Since the porosity after sintering was apparently 0%, it was about 1%.
There will be closed pores in the.

第3図に示すように、Ni−Cr合金(インコネル71
3C)よりなる回転軸2の角軸部9を約1200℃に加
熱し、その孔部11に、予熱されたタービン羽根車1の
接合軸部4を嵌合し、両者1,2をプレス機12に設置
する。そして真空下において上、下部パンチ13,14
により角軸部9を圧力200kgf/mm2を以て加圧し、孔
部11において溶融状態にある表層部を接合軸部4の連
続気孔に含浸させる。
As shown in FIG. 3, a Ni-Cr alloy (Inconel 71
3C) of the rotary shaft 2 is heated to about 1200 ° C., the pre-heated joining shaft part 4 of the turbine impeller 1 is fitted into the hole 11 thereof, and both 1 and 2 are pressed. Install in 12. Then, under vacuum, the upper and lower punches 13, 14
Thus, the angular shaft portion 9 is pressurized with a pressure of 200 kgf / mm 2 , and the surface layer portion in the molten state at the hole portion 11 is impregnated into the continuous pores of the joining shaft portion 4.

前記接合作業後、回転軸2の角軸部9に仕上げ加工を施
して、第4図に示すタービン羽根車1および回転軸2の
接合体を得る。
After the joining work, the angular shaft portion 9 of the rotary shaft 2 is subjected to finish processing to obtain a joined body of the turbine impeller 1 and the rotary shaft 2 shown in FIG.

この接合体において、連続気孔形成部である接合軸部4
は、第5図に示すようにSiを主体とするセラミ
ック材料C間の連続気孔Pを前記合金Aが埋めた構造、
したがって両者C,Aよりなる複合部に変換される。
In this joined body, the joining shaft portion 4 which is a continuous pore forming portion
Is a structure in which the alloy A fills the continuous pores P between the ceramic materials C mainly composed of Si 3 N 4 , as shown in FIG.
Therefore, it is converted into a composite part composed of both C and A.

この場合、タービン羽根車1および回転軸2の熱膨脹係
数はそれぞれ3.0×10-6/℃および1.67×10-6
℃、また複合部のそれは10.5×10-6/℃であり、した
がって複合部の熱膨脹係数は両者1,2の略中間値を呈
する。
In this case, the thermal expansion coefficients of the turbine impeller 1 and the rotating shaft 2 are 3.0 × 10 -6 / ° C and 1.67 × 10 -6 / ° C, respectively.
C., and that of the composite part is 10.5.times.10.sup.- 6 / .degree. C., so that the coefficient of thermal expansion of the composite part takes an approximately intermediate value between both 1 and 2.

第6図はセラミック材料単体部、複合部および合金単体
部のクリープ特性を示す。測定条件は温度1000℃、
荷重7.7kg/mm2である。線xがセラミック材料単体部
に、線xが複合部に、線xが合金単体部にそれぞれ
該当する。
FIG. 6 shows the creep characteristics of the ceramic material single part, the composite part and the alloy single part. Measurement conditions are temperature 1000 ℃,
The load is 7.7 kg / mm 2 . The line x 1 corresponds to the ceramic material single part, the line x 2 corresponds to the composite part, and the line x 3 corresponds to the alloy single part.

第6図から明らかなように、複合部(線x)の歪率は
セラミック材料単体部(線x)のそれに近く、したが
って複合部は大きな強度を有する。
As is apparent from FIG. 6, the strain rate of the composite portion (line x 2 ) is close to that of the single ceramic material portion (line x 1 ), and thus the composite portion has high strength.

〔実施例II〕Example II

実施例Iの溶出可能粒子の粒度分布を平均粒径0.8μ
m、最大粒径10μmに変更して実施例Iと同様のター
ビン羽根車1を得る。
The particle size distribution of the leachable particles of Example I was determined to be 0.8 μm average particle size.
m, and the maximum particle size was changed to 10 μm, and the same turbine impeller 1 as in Example I was obtained.

そのタービン羽根車1の接合軸部4に実施例Iと同様の
溶出処理を施して、大きさが約10μmの連続気孔を形
成する。
The joint shaft portion 4 of the turbine impeller 1 is subjected to the same elution treatment as in Example I to form continuous pores having a size of about 10 μm.

接合軸部4の外周面および連続気孔内面に、Cu−Ni
合金を蒸着法により付着させて薄膜を形成する。この場
合、連続気孔の大きさが約10μmと大きいので、その
目詰まりが回避される。
Cu-Ni is formed on the outer peripheral surface of the joint shaft portion 4 and the inner surface of the continuous pores.
The alloy is deposited by vapor deposition to form a thin film. In this case, since the size of the continuous pores is as large as about 10 μm, the clogging can be avoided.

実施例Iと同様の作業によって、接合軸部4と角軸部9
とを一体化する。
By the same operation as in Example I, the joining shaft portion 4 and the square shaft portion 9
Integrate with.

このようにして得られた複合部の破断面を観察したとこ
ろ、前記薄膜を介して前記Ni−Cr合金が接合軸部4
の外面および連続気孔内面に十分に接合していることが
確認されている。
When the fracture surface of the composite portion thus obtained was observed, it was found that the Ni—Cr alloy was bonded to the joint shaft portion 4 through the thin film.
It has been confirmed that they are sufficiently bonded to the outer surface and the inner surface of the open pores.

第7図は複合部におけるNi−Cr合金含浸量と室温で
の曲げ強さとの関係を示し、また第8図はNi−Cr合
金含浸量が30体積%の複合部(線y)およびNi−
Cr合金含浸量が15体積%の複合部(線y)におけ
る温度と曲げ強さとの関係を示す。
FIG. 7 shows the relationship between the Ni—Cr alloy impregnated amount in the composite part and the bending strength at room temperature, and FIG. 8 shows the composite part (line y 1 ) and the Ni—Cr alloy impregnated amount of 30 volume% and Ni. −
The relationship between temperature and bending strength in the composite part (line y 2 ) having a Cr alloy impregnation amount of 15% by volume is shown.

第7,第8図から室温および高温下における複合部の強
度は、Ni−Cr合金の含浸量によって大幅には変化し
ないことが分かる。
It can be seen from FIGS. 7 and 8 that the strength of the composite portion at room temperature and high temperature does not change significantly depending on the impregnated amount of the Ni—Cr alloy.

〔実施例III〕Example III

(a)羽根車本体用原料の調製 セラミック粉末 平均粒径0.4μm、最大粒径5μmの Si 90重量% 焼結助剤粉末 Y 5重量% Al 5重量% をボールミルにて24時間混合する。(a) Preparation of raw material for impeller body Ceramic powder Si 3 N 4 90 wt% with an average particle size of 0.4 μm and maximum particle size of 5 μm Sintering aid powder Y 2 O 3 5 wt% Al 2 O 3 5 wt% Mix in a ball mill for 24 hours.

(b)接合軸部用原料の調製 溶出可能粒子において、そのAl、MgO成分等はセ
ラミック粉末であるSiと固溶する等の報告もあ
るため、実施例Iの場合と配合量を変え、また異常な結
晶成長を抑制するため新たな成分としてハロゲン化物、
実施例ではCaClを用い、溶出可能粒子を下記の手
法を用いて製造する。
(b) Preparation of Bonding Shaft Raw Material It has been reported that Al 2 O 3 , MgO components, etc. of the elutable particles form a solid solution with Si 3 N 4 which is a ceramic powder. Halide as a new component to change the compounding amount and suppress abnormal crystal growth,
In the examples, CaCl 2 is used, and elutable particles are manufactured using the following method.

Al8.6重量%、NaO10.3重量%、SiO2
4.2重量%、MgO15.0重量%、KO2.1重量%、B
39.16重量%、CaO0.6重量%、CaCl0.05重
量%よりなる配合物をボールミルにて十分に混合し、そ
の混合物を1200℃まで昇温して溶融し、その後溶融
物を冷却固化する。この固化物に微粉砕処理を施して平
均粒径1.2μm、最大粒径3μmの溶出可能粒子を得
る。
Al 2 O 3 8.6 wt%, Na 2 O10.3 wt%, SiO 2 2
4.2 wt%, MgO 15.0 wt%, K 2 O 2.1 wt%, B 2
A mixture consisting of 39.16% by weight of O 3, 0.6% by weight of CaO, and 0.05% by weight of CaCl 2 is thoroughly mixed in a ball mill, the mixture is heated to 1200 ° C. to be melted, and then the melt is cooled and solidified. . The solidified product is subjected to fine pulverization treatment to obtain elutable particles having an average particle size of 1.2 μm and a maximum particle size of 3 μm.

また溶出可能粒子と焼結助剤とが反応したり、焼結助剤
のうち前記溶出処理により溶出されるものもあることが
懸念されるため焼結助剤を除き、 セラミック粉末 平均粒径0.4μm、最大粒径5μmの Si 93重量% 溶出可能粒子 7重量% をボールミルにて24時間混合する。
Also, since it is feared that the particles that can be dissolved out will react with the sintering aid and that some of the sintering aids will be eluted by the above-mentioned elution treatment, the sintering aid is excluded and the average particle size of the ceramic powder is 0.4 93% by weight of Si 3 N 4 having a maximum particle size of 5 μm and 7% by weight of elutable particles are mixed in a ball mill for 24 hours.

前記(a)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して羽根車本体3に対応する成
形体を得る。
Using the raw material (a) and water as the dispersion medium, the slip casting method is applied to obtain a molded body corresponding to the impeller body 3.

前記(b)の原料および分散媒として水を用い、スリップ
キャスティング法を適用して接合軸部4に対応する成形
体を得ると同時にその成形体と前記成形体とを一体化し
てタービン羽根車1に対応する最終成形体を作製する。
Using the raw material (b) and water as a dispersion medium, a slip casting method is applied to obtain a molded body corresponding to the joint shaft portion 4, and at the same time, the molded body and the molded body are integrated to form a turbine impeller 1 The final molded body corresponding to is manufactured.

前記最終成形体を焼結炉内に設置し、炉内にNガスを
流通させながら炉内温度を1600℃まで昇温し、この
温度を2時間維持する。
The final molded body is placed in a sintering furnace, the temperature inside the furnace is raised to 1600 ° C. while N 2 gas is passed through the furnace, and this temperature is maintained for 2 hours.

この焼結処理によってタービン羽根車1を得る。The turbine impeller 1 is obtained by this sintering process.

このタービン羽根車1における密度は、理論密度の95
〜97%であって非常に緻密であり、また室温での曲げ
強さは3点曲げ試験において約80kgf/mm2である。ま
た破断面を走査型電子顕微鏡を用いて観察したところ、
結晶成長に伴いセラミック粉末は粒径3〜4μmの六角
柱状晶となっており、結晶の異常成長は認められていな
い。
The density of the turbine impeller 1 is 95 which is the theoretical density.
It is ˜97% and is very dense, and the bending strength at room temperature is about 80 kgf / mm 2 in the three-point bending test. When the fracture surface was observed using a scanning electron microscope,
Along with the crystal growth, the ceramic powder became hexagonal columnar crystals with a grain size of 3 to 4 μm, and no abnormal crystal growth was observed.

前記タービン羽根車1の接合軸部4に、以下に述べる溶
出処理を施す。
The joining shaft portion 4 of the turbine impeller 1 is subjected to the elution treatment described below.

25%の硝酸および0.1%のフッ化水素酸よりなる混酸
を50℃に加熱し、その混酸を流通させると共にそれに
超音波振動を付与し、この状況下にある混酸に接合軸部
4を30分間浸漬して溶出可能粒子を溶出する。
A mixed acid composed of 25% nitric acid and 0.1% hydrofluoric acid is heated to 50 ° C., the mixed acid is circulated and ultrasonic vibration is applied to the mixed acid. Immerse to elute the elutable particles.

接合軸部4の重量減少率は5.8%であり、溶出可能粒子
の配合量よりも少ないが、これは溶出可能粒子の成分の
うちAl、MgO等がSiと固溶し、また
SiOが窒化されたことに起因するものと思われる。
The weight reduction rate of the joint shaft portion 4 was 5.8%, which was smaller than the blending amount of the elutable particles, but this was because Al 2 O 3 , MgO, etc., among the components of the elutable particles, formed a solid solution with Si 3 N 4. It is considered that this is due to the fact that SiO 2 is nitrided.

接合軸部4の破断面観察により、接合軸部4における連
続気孔の大きさは最大約3μm、また気孔率は25%で
あり、閉鎖気孔はなく全ての気孔が連続していることが
確認された。
By observing the fracture surface of the joining shaft portion 4, it was confirmed that the maximum size of continuous pores in the joining shaft portion 4 was about 3 μm and the porosity was 25%, and there were no closed pores and all pores were continuous. It was

第3図に示すように、Ni−Cr−Mo鋼(JIS S
NCM447)よりなる回転軸2の角軸部9を約120
0℃に加熱し、その孔部11に、予熱されたタービン羽
根車1の接合軸部4を嵌合し、両者1,2をプレス機1
2に設置する。そして、大気下において上、下部パンチ
13,14により角軸部9を圧力200kgf/mm2を以て
加圧し、孔部11において溶融状態にある表層部を接合
軸部4の連続気孔に含浸させる。
As shown in FIG. 3, Ni-Cr-Mo steel (JIS S
The angular shaft portion 9 of the rotary shaft 2 made of NCM447) is about 120
After heating to 0 ° C., the joint shaft portion 4 of the preheated turbine impeller 1 is fitted into the hole 11 thereof, and the both 1 and 2 are pressed.
Install in 2. Then, in the atmosphere, the upper and lower punches 13 and 14 press the square shaft portion 9 at a pressure of 200 kgf / mm 2 , and the surface layer portion in the molten state in the hole portion 11 is impregnated into the continuous pores of the joining shaft portion 4.

前記接合作業後、回転軸2の角軸部9に仕上げ加工を施
して、第4図に示すタービン羽根車1および回転軸2の
接合体を得る。
After the joining work, the angular shaft portion 9 of the rotary shaft 2 is subjected to finish processing to obtain a joined body of the turbine impeller 1 and the rotary shaft 2 shown in FIG.

この接合体において、連続気孔形成部である接合軸部4
は、第5図に示すようにSiを主体とするセラミ
ック材料C間の連続気孔Pを前記鋼Aが埋めた構造、し
たがって両者C,Aよりなる複合部に変換される。
In this joined body, the joining shaft portion 4 which is a continuous pore forming portion
As shown in FIG. 5, the structure is such that the continuous pores P between the ceramic materials C mainly composed of Si 3 N 4 are filled with the steel A, so that they are converted into a composite portion composed of both C and A.

この場合、タービン羽根車1および回転軸2の熱膨脹係
数はそれぞれ3.0×10-6/℃、23.6×10-6/℃、ま
た複合部のそれは11.8×10-6/℃であり、したがって
複合部の熱膨脹係数は両者1,2の略中間値を呈する。
In this case, each thermal expansion coefficient of the turbine impeller 1 and the rotating shaft 2 is 3.0 × 10 -6 /℃,23.6×10 -6 / ℃ , also that of the composite portion is 11.8 × 10 -6 / ℃, thus the composite section The coefficient of thermal expansion of is approximately the intermediate value of both 1 and 2.

複合部の室温での強度は50kgf/mm2、0〜100℃に
おける強度は45〜55kgf/mm2である。
Strength at room temperature of the composite portion is 50 kgf / mm 2, the strength at 0 to 100 ° C. is 45~55kgf / mm 2.

また、前記接合体を300℃の炉内に5分間保持し、次
いで直ちに水冷し、この操作を1000回繰返す熱サイ
クルテストを行い、その後接合軸部4と角軸部9との接
合部分についてX線による応力回折を行い、また走査型
電子顕微鏡により構造変化を調べたところ、接合軸部4
と角軸部9との間に緩みやクラックの発生のないことが
確認されている。
Further, the joined body was held in a furnace at 300 ° C. for 5 minutes, then immediately water-cooled, and a heat cycle test in which this operation was repeated 1000 times was performed. Thereafter, the joint portion between the joint shaft portion 4 and the square shaft portion 9 was X-treated. When the structural change was examined with a scanning electron microscope by performing stress diffraction with a line, the bonding shaft 4
It has been confirmed that there is no loosening or cracking between the and the shaft portion 9.

〔実施例IV〕Example IV

実施例IIIの溶出可能粒子の粒度分布を平均粒径0.5μ
m、最大粒径5μmに変更して実施例IIIと同様のター
ビン羽根車1を得る。
The particle size distribution of the elutable particles of Example III is 0.5 μm in average particle size.
m, and the maximum particle size was changed to 5 μm, and the same turbine impeller 1 as in Example III was obtained.

そのタービン羽根車1の接合軸部4に実施例IIIと同様
の溶出処理を施して、大きさが約10μmの連続気孔を
形成する。
The joint shaft portion 4 of the turbine impeller 1 is subjected to the same elution treatment as in Example III to form continuous pores having a size of about 10 μm.

接合軸部4の外面および連続気孔内面に、CuNi合
金を蒸着法により付着させて薄膜を形成する。この場
合、連続気孔の大きさが約10μmと大きいので、その
目詰まりが回避される。
A Cu - Ni alloy is attached to the outer surface of the bonding shaft portion 4 and the inner surface of the continuous pores by a vapor deposition method to form a thin film. In this case, since the size of the continuous pores is as large as about 10 μm, the clogging can be avoided.

実施例III同様の作業によって、接合軸部4と角軸部9
とを一体化する。このようにして得られた複合部の破断
面を観察したところ、前記薄膜を介して前記鋼が接合軸
部4の外面および連続気孔内面に十分に接合しているこ
とが確認されている。
By the same operation as in Example III, the joining shaft portion 4 and the square shaft portion 9
Integrate with. Observation of the fracture surface of the composite part thus obtained confirmed that the steel was sufficiently bonded to the outer surface of the bonding shaft part 4 and the inner surface of the continuous pores through the thin film.

第9図は前記複合部におけるNi−Cr−Mo鋼含浸量
と室温での曲げ強さとの関係を示す。第9図より、複合
部の強度はNi−Cr−Mo鋼の含浸量によって大幅に
は変化しないことが分かる。
FIG. 9 shows the relationship between the Ni—Cr—Mo steel impregnation amount in the composite part and the bending strength at room temperature. From FIG. 9, it can be seen that the strength of the composite part does not change significantly with the impregnation amount of Ni-Cr-Mo steel.

なお、本発明はタービン羽根車と回転軸との接合に限ら
ず、各種セラミック体と金属体との接合、例えば板状セ
ラミック体と板状金属体の接合等にも適用される。また
セラミック体に連続気孔を形成する場合、そのセラミッ
ク体全体を連続気孔質にする、または表層部のみを連続
気孔質にする等適宜である。
The present invention is not limited to joining the turbine impeller and the rotating shaft, but is also applicable to joining various ceramic bodies and metal bodies, for example, joining plate-shaped ceramic bodies and plate-shaped metal bodies. When forming continuous pores in the ceramic body, the whole ceramic body may be made to have continuous porosity, or only the surface layer portion may be made to have continuous porosity.

C.発明の効果 本発明によれば、セラミック体への連続気孔の形成を、
溶出可能粒子の配合、その粒子の酸による溶出およびそ
の酸の流通と共にそれに対する超音波振動の付与といっ
た手段を採用することによって迅速、且つ確実に行うこ
とができる。またセラミック体は既に焼結処理を施され
ているので、連続気孔形成後においても十分な強度を有
し、取扱い性が良く、その上溶融した金属体表層部の加
圧含浸作業時破壊することもない。
C. According to the present invention, the formation of continuous pores in the ceramic body,
It can be carried out quickly and reliably by adopting a means of blending elutable particles, elution of the particles with an acid, and circulation of the acid and application of ultrasonic vibration thereto. Also, since the ceramic body has already been sintered, it has sufficient strength even after the formation of continuous pores, has good handleability, and should be destroyed during the pressure impregnation of the molten metal surface layer. Nor.

さらにセラミック体への金属体表層部の加圧含浸により
アンカ効果を発生させると共にそのアンカ効果の定常化
を実現し、これによりセラミック体と金属体との接合強
度を大幅に向上させ、またその安定化を図ることができ
る。
Furthermore, the anchor effect is generated by pressure impregnation of the surface layer of the metal body into the ceramic body, and the anchor effect is stabilized, which significantly improves the bonding strength between the ceramic body and the metal body and stabilizes the stability. Can be realized.

その上、前記加圧含浸によりセラミック体の連続気孔形
成部は、その構成材料と金属体の構成材料とよりなる複
合部に変換され、その複合部の熱膨脹係数はセラミック
体と金属体の両熱膨脹係数の中間値を呈するので、その
複合部により両者の熱膨脹率の差を緩和して、両者間の
接合部分における前記差に起因した破断を回避すること
ができる。
In addition, the pressure impregnation converts the continuous pore forming part of the ceramic body into a composite part composed of the constituent material of the ceramic body and the constituent material of the metal body, and the coefficient of thermal expansion of the composite part has a thermal expansion coefficient of both the ceramic body and the metal body. Since the intermediate value of the coefficient is exhibited, it is possible to alleviate the difference in the coefficient of thermal expansion between the two due to the composite portion, and to avoid breakage due to the difference in the joint portion between the two.

またろう材等の金属性接合材は不要であるから、それに
応じて接合コストを低減することができる。
Further, since a metallic joining material such as a brazing material is unnecessary, it is possible to reduce the joining cost accordingly.

したがって、本発明に係る接合方法によって、苛酷な状
況下において十分な耐久性を有する、セラミック体およ
び金属体の接合体を安価に提供することができる。
Therefore, by the joining method according to the present invention, it is possible to inexpensively provide a joined body of a ceramic body and a metal body that has sufficient durability under severe conditions.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)はセラミック体としてのタービン羽根車の縦
断正面図、第1図(b)は金属体としての回転軸の要部縦
断正面図、第2図はタービン羽根車における接合軸部の
気孔率と曲げ強さとの関係を示すグラフ、第3図は加圧
下における回転軸表層部の含浸作業を示す縦断正面図、
第4図は接合体の要部縦断正面図、第5図は第4図V矢
示部の拡大図、第6図はクリープ特性を示すグラフ、第
7図は複合部におけるNi−Cr合金含浸量と曲げ強さ
との関係を示すグラフ、第8図は複合部における温度と
曲げ強さとの関係を示すグラフ、第9図は複合部におけ
るNi−Cr−Mo鋼含浸量と曲げ強さとの関係を示す
グラフである。 1…セラミック体としてのタービン羽根車、2…金属体
としての回転軸、 A…Ni−Cr合金、Ni−Cr−Mo鋼、C…セラミ
ック材料、P…連続気孔
1 (a) is a vertical sectional front view of a turbine impeller as a ceramic body, FIG. 1 (b) is a longitudinal sectional front view of a main portion of a rotating shaft as a metal body, and FIG. 2 is a joining shaft portion of a turbine impeller. Is a graph showing the relationship between the porosity and bending strength of Fig. 3, Fig. 3 is a vertical sectional front view showing the impregnation work of the surface layer of the rotating shaft under pressure,
FIG. 4 is a longitudinal sectional front view of a main part of the joined body, FIG. 5 is an enlarged view of a portion indicated by an arrow V in FIG. 4, FIG. 6 is a graph showing creep characteristics, and FIG. 7 is a Ni—Cr alloy impregnation in a composite portion. 8 is a graph showing the relationship between the amount and bending strength, FIG. 8 is a graph showing the relationship between temperature and bending strength in the composite part, and FIG. 9 is a relationship between the Ni—Cr—Mo steel impregnation amount and bending strength in the composite part. It is a graph which shows. DESCRIPTION OF SYMBOLS 1 ... Turbine impeller as a ceramic body, 2 ... Rotating shaft as a metal body, A ... Ni-Cr alloy, Ni-Cr-Mo steel, C ... Ceramic material, P ... Continuous pores

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属体(2)と、成形および焼結工程を経
て得られるセラミック体(1)とを接合するに当り、前
記セラミック体(1)より、それの成形に先立って配合
された、酸により溶出し得る溶出可能粒子を前記酸を流
通させると共にその酸に超音波振動を付与しながら溶出
して、該セラミック体(1)に、それの接合面に開口す
る多数の連続気孔(P)を形成する工程と;前記金属体
(2)の溶融状態にある表層部を前記セラミック体
(1)の前記接合面に接触させた後それら金属体(2)
およびセラミック体(1)を加圧して、前記表層部を前
記セラミック体(1)の前記連続気孔(P)に加圧含浸
させる工程と;を用いることを特徴とするセラミック体
と金属体との接合方法。
1. When joining a metal body (2) and a ceramic body (1) obtained through a molding and sintering process, the ceramic body (1) was blended prior to its molding. , The eluable particles that can be eluted by an acid are eluted while the acid is being circulated and the ultrasonic vibration is applied to the acid, and the ceramic body (1) has a large number of continuous pores ( P) is formed; and after the molten surface layer portion of the metal body (2) is brought into contact with the bonding surface of the ceramic body (1), the metal body (2)
And a step of pressurizing the ceramic body (1) to impregnate the surface layer portion into the continuous pores (P) of the ceramic body (1) under pressure; Joining method.
JP61286141A 1986-12-01 1986-12-01 Method of joining ceramic body and metal body Expired - Fee Related JPH0653623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286141A JPH0653623B2 (en) 1986-12-01 1986-12-01 Method of joining ceramic body and metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286141A JPH0653623B2 (en) 1986-12-01 1986-12-01 Method of joining ceramic body and metal body

Publications (2)

Publication Number Publication Date
JPS63139076A JPS63139076A (en) 1988-06-10
JPH0653623B2 true JPH0653623B2 (en) 1994-07-20

Family

ID=17700466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286141A Expired - Fee Related JPH0653623B2 (en) 1986-12-01 1986-12-01 Method of joining ceramic body and metal body

Country Status (1)

Country Link
JP (1) JPH0653623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126687A (en) * 1989-10-11 1991-05-29 Eagle Ind Co Ltd Method for metallizing ceramics
JP5764506B2 (en) * 2012-02-08 2015-08-19 美濃窯業株式会社 Ceramic porous body-metal heat insulating material and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141466A (en) * 1983-01-31 1984-08-14 三井造船株式会社 Ceramic member bonding method

Also Published As

Publication number Publication date
JPS63139076A (en) 1988-06-10

Similar Documents

Publication Publication Date Title
JP2617752B2 (en) Abrasive material and method for producing the same
EP0834594B1 (en) Process for producing sputtering target
EP0339894B1 (en) Method for making composite articles that include complex internal geometry
DE69623020T2 (en) METHOD FOR COATING, METHOD FOR PRODUCING CERAMIC-METAL STRUCTURES, METHOD FOR CONNECTING AND STRUCTURES SO MADE.
US20110293461A1 (en) High-strength discontinuosly-reinforced titanium matrix composites and method for manufacturing the same
JPH10511071A (en) Manufacture of aluminide-containing ceramic compacts
JP2003027105A (en) Binder composition
JPH0512402B2 (en)
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
JP3380892B2 (en) Ti-Al alloy, method for producing the same, and method for joining the same
CN116516196B (en) High-strength wear-resistant titanium-based bionic composite material and preparation method thereof
JPH0653623B2 (en) Method of joining ceramic body and metal body
EP1390321B1 (en) Metal-ceramic composite material and method for production thereof
US6193928B1 (en) Process for manufacturing ceramic metal composite bodies, the ceramic metal composite bodies and their use
JPH0653621B2 (en) How to join ceramics
JPH0273944A (en) Corrosion-resisting material
EP0754659A1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
EP1525330A1 (en) Method for producing a component, component and use thereof
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
JP3104244B2 (en) Particle-dispersed composite material and method for producing the same
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JP3010714B2 (en) Method for producing particle-dispersed composite material
JPH09287038A (en) Production of composite product of titanium-aluminum alloy and metal fiber
JPS6310114B2 (en)
JPH1150171A (en) Production of titanium-aluminum matrix composite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees