JPH065349B2 - 光スイッチ - Google Patents

光スイッチ

Info

Publication number
JPH065349B2
JPH065349B2 JP28341587A JP28341587A JPH065349B2 JP H065349 B2 JPH065349 B2 JP H065349B2 JP 28341587 A JP28341587 A JP 28341587A JP 28341587 A JP28341587 A JP 28341587A JP H065349 B2 JPH065349 B2 JP H065349B2
Authority
JP
Japan
Prior art keywords
quantum well
refractive index
well structure
layer
mqw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28341587A
Other languages
English (en)
Other versions
JPH01124833A (ja
Inventor
昭 味澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP28341587A priority Critical patent/JPH065349B2/ja
Publication of JPH01124833A publication Critical patent/JPH01124833A/ja
Publication of JPH065349B2 publication Critical patent/JPH065349B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光交換、光情報処理等の分野において、光信
号、特にファイバからの出射光やLED光の様に偏光状
態の一定でない光信号の光路の切換えを行なう半導体光
スイッチに関するものである。
〔従来の技術〕 近年の光システムの高度化、高性能化に併い、小型の光
スイッチへの要求が高まっている。小型の光スイッチを
実現するための一つの構造として雑誌「アイ・イー・イ
ー・イー・ジャーナル・オブ・カンタム・エレクトロニ
クス」(IEEE Journal of Quantum Electronics)第Q
E−14巻1978年513〜517頁に報告されているような全
反射型光スイッチが知られている。これは2本の交叉し
た光導波路の交叉部の屈折率を電気光学効果を利用して
低下させ、全反射により光の切換を、交叉した導波路間
で行なうものである。この全反射型光スイッチは原理的
には小型化が可能であるが、前述の論文では電気光学効
果により屈折率を変化させることを考えているため得ら
れる屈折率変化が小さい。そのため2本の光導波路の交
叉角を大きくとることができず、小型化、低クロトーク
化が難しかった。
一方この問題を解決するため、電気通信学会論文誌(英
文)第E68巻,1985年,737〜739頁に掲載された論文
では多重量子井戸構造に電界を印加した際の吸収端近傍
での屈折率変化を利用することが提案されている。
第2図は提案されている光スイッチの上面図を示すもの
である。2本の半導体材料による光導波路21a,21bが交
差角θで交わるように配置され、その交差部に多量子井
戸構造を持つ部分22(図の斜線を施した部分)が形成
されている。この交差部の交差角の小さい方の2等分線
A−A′に沿って多重量子井戸構造の半分には電極23
を介して電界を印加する手段が形成されている。この状
態で光導波路21bの左側から入射した光は通常は直進
してそのまま出射する。しかし電極23により多重量子
井戸構造の半分に電界を印加すると、その部分の屈折率
が低下し、全反射が生じ光導波路21aへ光は出射され
る。電界による多重量子井戸構造の屈折率変化は1%程
度と見つもられるので交差角を10゜以上にとることが可
能となり非常に小型な光スイッチが期待できる。
〔発明が解決しようとする問題点〕
このような多重量子井戸構造の電界による屈折率変化は
後に詳しく説明するように吸収端あるいはエキシトンピ
ークのシフトに伴なうものである。多重量子井戸構造は
積層方向に対して平行な偏光(以下TEと呼ぶ)と垂直
な偏光(以下TMと呼ぶ)の光を入射した場合、各々に
関与するエキシトンのーピーク波長が異なるため、TE
に対する屈折率変化とTMに対する屈折率変化では、そ
れらが得られる波長域が異なる。1例としてGaAs/A
As多重量子井戸構造で量子井戸層厚が100Åのウエハを
用いた場合のその測定結果を第3図に示す。この様に電
界による屈折率減少が得られる波長域はTMの方がTE
に比べて約10nm短波長側にあり、多重量子井戸構造の屈
折率減少には、ある波長で注目した場合、大きな偏光依
存性があることがわかる。従って前述の様な多重量子井
戸構造を用いた導波型の光スイッチでは良好なスイッチ
ング特性を得るためには入射光の偏光状態を一定に保っ
ておく必要があり、そのためには偏波保存ファイバや偏
光補償器が必要となり、システムによっては非常に使い
にくいというのが問題となっている。
本発明の目的はこのような問題を解決し、TEに対して
もTMに対しても良好なスイッチング特性を得ることが
でき、システム側からも使い易い、偏光に依存しない光
スイッチを提供することにある。
〔問題点を解決するための手段〕
本発明による光スイッチは半導体基板上の互いに交差す
る光導波路を前記光導波路の交差部の中心線上に配され
た反射部分より構成される光の全反射を用いた交差型光
スイッチにおいて、前記反射部分が、異なる2つの量子
井戸層厚をもつ多重量子井戸構造から構成され、前記多
重量子井戸構造の積層面に対して垂直に電界を印加する
手段をもつことを特徴とするものである。
〔作用〕
本発明は多重量子井戸構造に電界を印加した際に生ずる
屈折率減少の得られる波長域が、多重量子井戸構造の量
子井戸層の層厚に依存することを利用したものである。
まずこの電界による屈折率変化について説明する。
多重量子井戸構造構造の吸収スペクトルにはその量子サ
イズ効果により鋭いユキシトンの吸収ピークが観測され
る。この多重量子井戸構造に積層面に対して垂直な電界
Eを印加すると多重量子井戸構造のポテンシャル構造が
傾き量子準位が低エネルギー側へ移動するのに伴ってエ
キシトンの吸収ピークは長波長側へ移動する。それによ
りエキシトンの吸収ピーク近傍の波長域では非常に大き
な吸収係数変化Δαが得られる。吸収係数と屈折率の間
にはクラマース・クローニッヒの関係があるため、この
吸収係数変化Δαは屈折率の変化Δnをもたらす。また
多重量子井戸構造は入射光にTEを入射した場合をTM
を入射した場合とではその吸収特性は異なる。これはT
Eに関するエキシトンは電子と重い正孔(e-hh)間と電子
と軽い正孔(e-lh)間の2つ存在するが、TMではe-lh間
のエキシトンのみが関与しているからである。また吸収
スペクトルやフォトカレント測定などによって現われる
これらのエキシトンピークはe−hh間のものはe-lh間
のものに比べて約10nm長波長側にある。多重量子井戸構
造の電界による屈折率変化は主にこれらのエキシトンピ
ークの電界による長波長側へのシフトによって生じるた
め、TEに対する屈折率変化とTMに対する屈折率変化
とTMに対する屈折率変化では当然それらが得られる波
長域は異なる。先にも述べたがGaAs/AAs多重量子井
戸構造の場合でのその測定結果が第3図に示されてい
る。
また多重量子井戸構造の電子準位又はバンドギャップエ
ネルギーは多重量子井戸構造を構成する量子井戸層の厚
さ(ウェル厚)LZと障壁の高さによって決定され、L
を厚くするとバンドギャップエネルギーは低くなりその
結果エキシトンピーク波長はより長波長側に存在する様
になる。従ってウェル厚を変えることにより、電界印加
によってTEにおける屈折率減少が得られる波長域とT
Mにおける屈折率減少が得られる波長域とを一致させる
ことが可能である。
本発明はこれを利用し、交差型スイッチの反射部分に2
種類のウェル厚の量子井戸層を持つ多重量子井戸構造を
用いることによりどんな偏光に対しても電界による屈折
率減少が得られスイッチング動作が可能の光スイッチで
ある。
次に本発明の素子の基本的な動作について簡単に説明す
る。交差型光導波路のひとつの入力端からある一定の波
長のTE,TMの両方の成分をもった入射光が交差部中
心の反射部(以下MQW反射部と呼ぶ)にある角度で入
射されたとする。このMQW反射部は第1及び第2の各
々ウェル厚の異なる量子井戸層を積層した多重量子井戸
構造で構成され、第1の量子井戸層では入射光波長のT
E成分に対して、第2の量子井戸層では第1の量子井戸
層よりもウェル厚を厚くしTM成分に対して電界による
屈折率減少が得られるウェル厚に設定しておく。またM
QW反射部での屈折率減少がない時には入射光がMQW
反射部をそのまま通過する様にMQW反射部の多重量子
井戸構造の屈折率及び光導波路の屈折率を設定してお
く。また光導波路とMQW反射部とは多重量子井戸構造
の屈折率減少が生じた時に入射光が全反射を起こす角度
に設定しておく。MQW反射部に電界が印加されてない
時には多重量子井戸構造の屈折率変化はなく入射光は、
TE,TM成分ともそのまま通過する。
MQW反射部に電界が印加されると上述した様に入射光
のTE成分は第1の量子井戸層で屈折率減少を感じ、ま
たTM成分が第2の量子井戸層で屈折率減少を感じる。
第1,第2の量子井戸層がMQW反射部に対してそれぞ
れ占める割合は、量子井戸層が1種類の場合に比べ半分
程度であり、従って得られる屈折率減少もTE,TM単
独で考えると半分程度に小さくなるが、一般に得られて
いる多重量子井戸構造の屈折率減少は1%と大きいた
め、全反射条件に対してはほとんど影響されず、TE成
分、TM成分ともMQW反射部で全反射される。この様
にMQW反射部をウェル厚を変えた2種類の量子井戸層
で構成された多重量子井戸構造とすることによりTEに
対してもスイッチングが可能な光の全反射を用いた交差
型の光スイッチが実現できる。
また、多重量子井戸構造ではバンドギャップは多重量子
井戸構造を構成する量子井戸層、障壁層の組成及び厚
さ、平均的な屈折率は量子井戸層、障壁層の組成及び厚
みの比により決まるためこれらはある程度独立に制御で
きる。従ってMQW反射部とその周囲では組成が異なっ
ていても実効的に屈折率差を十分に小さくする設計が可
能である。
〔実施例〕
第1図は本発明による光スイッチの一実施例を示す図で
あり、(a)はその斜視図であり(b)はMQW反射部の層構
造を説明するための図である。ここではGaAs/AGaAs系
材料を用いた場合について示した。まず本実施例の製作
について説明する。n+-GaAs基板1上にn+-AGaAs(A
のモル比x=0.4)クラッド層2を1.0μm,i-GaAs/A
As多重量子井戸構造3を0.7μm,p+-AGaAs(Aのモ
ル比x=0.4)クラッド層4を0.5μmMBE法により連
続成長する。この時i-GaAs/AAs多重量子井戸構造3は
第1図(b)に示す様に第1のGaAs量子井戸層(ウェル厚L
Z1=90Å)11,AAs障壁層(バリア厚LB=100Å)
12,第2のGaAs量子井戸層(ウェル厚LZ2=110Å)1
3,AAs障壁層(バリア厚LB=100Å)12の4層を
繰り返し積層した構造とする。次にこのウェハに幅0.5
μmでストライプ状のMQW反射部を形成するためにそ
のまわりを反応性イオンビームエッチング(RIBE)により
n+-GaAs基板1に達する迄垂直にエッチングする。この
様にしてまず2種類のウェル厚の量子井戸で構成された
MQW反射部を形成する。この後MOVPE法(あるいはM
BE法、LPE等の方法でも良い)によりこのMQW反
射部をi-AGaAs(x=0.4)クラッド層5、i-AGaAs(x=
0.3)ガイド層6、i-AGaAs(x=0.4)クラッド層7によ
り埋め込む。この再MQW反射部の上部にはSiO2の保護
膜をつけ成長が進まない様にしておく。またMOVPEによ
り埋め込み成長した各々の層厚はi-AGaAsクラッド層
5を1.0μm、i-AGaAsガイド層6を0.7μm,i-AGa
Asグラッド層7を0.5μmとしMBEにより成長した各
層厚とほぼ等しくした。次にMQW反射部が中心線とな
る様に交差型光導波路10を反応性イオンエッチングに
より形成する。エッチングの深さはi-AGaAsガイド層
6に達する程度とし装荷型の光導波路パターンを形成す
る。この時交差型光導波路10の交差角は10゜とする。
最後にMQW反射部に多重量子井戸構造の積層方向に対
して垂直に電界を印加させるためのP側電極8とn側電
極9を蒸着する。このMQW反射部中の2つの量子井戸
層11,13のエキシトン吸収ピーク波長はそれぞれ84
0nm,850nmであるので入射光としてこの程度の波長を考
えると電界が印加されてない時のi−多重量子井戸構造
3及びi-AGaAsガイド層7の屈折率は3.43,n+-AGaAs
クラッド層2,p+-AGaAsクラッド層4,i-AGaAsク
ラッド層5,7の屈折率は3.38であり、導波路構造とし
ては多重量子井戸構造部分とその他の部分ではほぼ同等
となる様に設定した。また埋込み部分のi-AGaAsガイ
ド層6のハンドギャップ波長は700μmであり入射光に
対しては十分吸収損失の小さな値となっている。
次に本実施例によるスイッチの動作について第1図,第
4図を用いて説明する。第4図のウェル厚が90Åと11
0Åの場合の多重量子井戸構造電界による屈折率変化Δn
/nを横軸を波長としてそれぞれTE,TMについて示したも
のである。ウェル厚90ÅのMQWのエキシトンピーク
波長はウェル厚110Åの多重量子井戸構造のエキシトン
ピーク波長に比べ約10nm短波長側にある。従って電界印
加による屈折率変化が得られる波長域もTE,TMそれぞれ
のウェル厚90Åの多重量子井戸構造の方が短波長側に
ある。
ここで波長845nmのTE,TM両方の成分をもった光が第1図
(a)の交差導波路10の手前右側から入射された場合を
考える。MQW反射部に電界が印加されていない時は先
にも述べたが、光導波路部分とMQW反射部との屈折率
が整合しているために入射光はMQW反射部をTE,TM成
分とも直進し、そのまま出射される。MQW反射部に電
界が印加されると第4図に示した様に波長845nmの光
においてはウェル厚90Åの第1の量子井戸層ではTE
成分が、ウェル厚110Åの第2の量子井戸層ではTM成
分が屈折率の減少を得ることになる。単一の厚さの多重
量子井戸構造ではその屈折率減少はΔn/n〜1%と非常
に大きい。本発明の2種類のウェル厚をもつ多重量子井
戸構造では各量子井戸層に効いてくる屈折率減少はその
量子井戸層の割合が少ない分だけ全体のMQW反射部と
してみると小さくなると考えられるが、それでもTE,TM
に対してそれぞれΔn/n〜0.5%程度有り、全反射条件を
満たすには十分な屈折率減少である。従ってこのMQW
反射部に入射した光はTE成分、TM成分の両方ともこ
こで全反射され、反射側の光導波路から出射され、TE,T
Mに依らないスイッチングが可能となる。
この様にMQW反射部を2種類のウェル厚を変えた多重
量子井戸構造で構成することにより偏光に依存しない全
反射を用いた交差型スイッチが実現できる。またここで
は2種類の量子井戸層のウェル厚を90Åと110Åに設
定したが、入射光の波長において、一方がTEに対して
他方がTMに対して、全反射が得られる屈折率減少を生
じるウェル厚であればこれに限るものではない。
実施例(第1図(b))ではウェル厚の異なる量子井戸層
は障壁層を挾んで交互に積層したが、必ずしも交互に積
層する必要はない。ランダムに配置してもよい。また光
を入射する光導波路の位置も任意であり、2×2のスイ
ッチ動作も同様に可能であることは言うまでもない。
本実施例では材料としてGaAs/AGaAs系材料について説
明したが、InGaAsP/InP,InGaAs/InAAs系などの材料系
にも適用可能である。また光導波路としては装荷型を用
いたが、埋込み等の他の3次元光導波路も使用可能であ
る。
〔発明の効果〕
以上詳細に説明した様に、本発明によれば偏光依存性の
ない交差型光スイッチが実現できる。更にこのスイッチ
は多重量子井戸構造電界効果による屈折率変化を利用し
ているために小型でまた集積化にも適し、将来の光交換
システム、光情報処理等の分野での利用価値が非常に大
きい。
【図面の簡単な説明】
第1図は本発明による光スイッチの一実施例の構造を示
す図で(a)はその斜視図、(b)は多重量子井戸構造の各
層、及び各々の層の関係を説明するための図である。第
2図は従来の多重量子井戸構造の電界による屈折率変化
を用いた光スイッチを説明するための図、第3図は従来
のスイッチのMQW反射部での電界による屈折率変化を
説明するための図、第4図は本発明の光スイッチの動作
を説明するために、ウェル厚の異なる多重量子井戸構造
の電界による屈折率変化のそれぞれの偏光特性を示した
図である。 図に於いて、1……n+GaAs基板、2,4,5,7……ク
ラッド層、3,22……多重量子井戸構造、6……ガイ
ド層、8,9,23……電極、10,21a,21b…
…光導波路、11……第1のGaAs量子井戸層、12……
AAs障壁層、13……第2のGaAs量子井戸層である。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】半導体基板上の互いに交差する光導波路
    と、前記光導波路の交差部の中心線上に配された反射部
    分より構成される光の全反射を用いた交差型光スイッチ
    において、前記反射部分が層厚の異なる2つの量子井戸
    層をもつ多重量子井戸構造から構成され、前記多重量子
    井戸構造の積層面に対して垂直に電界を印加する手段を
    もつことを特徴とする光スイッチ。
JP28341587A 1987-11-09 1987-11-09 光スイッチ Expired - Lifetime JPH065349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28341587A JPH065349B2 (ja) 1987-11-09 1987-11-09 光スイッチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28341587A JPH065349B2 (ja) 1987-11-09 1987-11-09 光スイッチ

Publications (2)

Publication Number Publication Date
JPH01124833A JPH01124833A (ja) 1989-05-17
JPH065349B2 true JPH065349B2 (ja) 1994-01-19

Family

ID=17665233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28341587A Expired - Lifetime JPH065349B2 (ja) 1987-11-09 1987-11-09 光スイッチ

Country Status (1)

Country Link
JP (1) JPH065349B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101638973B1 (ko) * 2010-01-22 2016-07-12 삼성전자주식회사 광변조기 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.47(11),1December1985p.1148〜p.1150

Also Published As

Publication number Publication date
JPH01124833A (ja) 1989-05-17

Similar Documents

Publication Publication Date Title
US5416866A (en) Optical waveguide/grating device for filtering optical wavelengths
JPS60134219A (ja) 光スイツチ
US5617436A (en) Strain-compensated multiple quantum well laser structures
EP0378098B1 (en) Semiconductor optical device
WO2002088834A2 (en) Optoelectronic device
US5444802A (en) Optical switch
Vinchant et al. InP digital optical switch: key element for guided-wave photonic switching
US5153687A (en) Semiconductor optical functional device with parabolic wells
JPH0786624B2 (ja) 方向性結合器型光スイッチ
US5608566A (en) Multi-directional electro-optic switch
JP2503558B2 (ja) 光スイッチ
JPH065349B2 (ja) 光スイッチ
JPH065348B2 (ja) 光スイッチ
JP4244671B2 (ja) 光送信装置
JPH06177473A (ja) 半導体光制御デバイス
JP2860666B2 (ja) 光機能素子
JP3445226B2 (ja) 方向性結合器、光変調器、及び波長選択器
JPS63280224A (ja) 導波型光制御素子
JP2907890B2 (ja) 光変調器
JPH10163568A (ja) 変調器集積半導体レーザ
JP2897371B2 (ja) 半導体導波路型偏光制御素子
JPH05129728A (ja) 金属偏光子及び半導体レーザ装置
JP2626208B2 (ja) 半導体導波路型偏光制御素子
JPH08307014A (ja) 光半導体装置
JP3076251B2 (ja) 光機能素子及びそれを用いた光スイッチ

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term