JPH0649900B2 - Method for manufacturing unidirectional silicon steel sheet - Google Patents
Method for manufacturing unidirectional silicon steel sheetInfo
- Publication number
- JPH0649900B2 JPH0649900B2 JP60109230A JP10923085A JPH0649900B2 JP H0649900 B2 JPH0649900 B2 JP H0649900B2 JP 60109230 A JP60109230 A JP 60109230A JP 10923085 A JP10923085 A JP 10923085A JP H0649900 B2 JPH0649900 B2 JP H0649900B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- hot
- annealing
- steel sheet
- silicon steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 一方向性けい素鋼板の製造方法に関して、この明細書で
述べる技術内容は、とくに熱間圧延工程に工夫を加える
ことによつて、熱延板表面層のゴス方位集積度を高め、
もつて製品板の磁気特性の向上を図るところにある。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) With regard to a method for producing a unidirectional silicon steel sheet, the technical content described in this specification is that hot rolling can be performed by devising a hot rolling process. Increasing the Goss orientation integration of the plate surface layer,
The purpose is to improve the magnetic properties of the product plate.
周知のように一方向性けい素鋼板は、2次再結晶焼鈍に
よつて2次粒の方位を理想方位であるゴス方位に近付け
ることにより、圧延方向に優れた磁気特性を付与するも
のである。そのためには2次再結晶の核となるべきゴス
方位すなわち(110)〔001〕方位の1次再結晶粒
の強い集積を、2次再結晶処理前の鋼板表面層に存在さ
せると同時に、この方位の2次粒の成長を助勢する結晶
組織集合組織を鋼板中心層に形成させておくことが肝要
である。As is well known, a unidirectional silicon steel sheet imparts excellent magnetic properties to the rolling direction by bringing the orientation of secondary grains close to the ideal Goss orientation by secondary recrystallization annealing. . To this end, a strong accumulation of primary recrystallized grains in the Goss orientation, that is, the (110) [001] orientation, which should be the nucleus of secondary recrystallization, is allowed to exist in the steel sheet surface layer before the secondary recrystallization treatment, and at the same time It is important to form in the center layer of the steel sheet a crystallographic texture that promotes the growth of secondary grains in the orientation.
かかる1次再結晶集合組織の良否は、冷延工程における
圧延および焼鈍条件に依存することはいうまでもない
が、その起源は熱間圧延にあり、熱延後の鋼板の表面層
におけるゴス方位集積度を高めておくことがゴス方位の
2次再結晶核を増すことにつながり、ひいては2次粒径
が微細でかつ磁気特性の良好な方向性けい素鋼板の製造
を可能にするものである。Needless to say, the quality of the primary recrystallization texture depends on the rolling and annealing conditions in the cold rolling process, but its origin is hot rolling, and the Goss orientation in the surface layer of the steel sheet after hot rolling is Increasing the degree of integration leads to an increase in the number of secondary recrystallization nuclei in the Goss orientation, which in turn enables the production of grain-oriented silicon steel sheets with a fine secondary grain size and good magnetic properties. .
(従来の技術) これまでにも熱延集合組織の改善を目的とした熱延方法
に関する報告は数多くあるが、その多くは方向性けい素
鋼板に特有の高温スラブ加熱に起因する粗大伸長粒を減
少し、ゴス方位が成長し易いマトリツクス集合組織をつ
くるためのもので、たとえば特開昭54−120214
号公報や特開昭59−93828号公報では、熱間圧延
中の特定温度域における圧下率や歪速度を規制すること
によつて、また特公昭58−5970号公報では熱延中
に上下非対称の塑性フローを与える異速圧延を行うこと
によつて、上記の目的を達成する方法が提案されてい
る。(Prior Art) There have been many reports on hot rolling methods for improving the hot rolled texture, but most of them report the coarse elongated grains caused by high temperature slab heating peculiar to grain-oriented silicon steel sheets. It is intended to form a matrix texture which is reduced and the Goss orientation is easy to grow. For example, JP-A-54-120214
Japanese Patent Publication No. 59-93828 and Japanese Unexamined Patent Publication No. 59-93828 restrict the reduction ratio and strain rate in a specific temperature range during hot rolling, and Japanese Patent Publication No. 58-5970 discloses asymmetrical vertical rolling during hot rolling. There has been proposed a method for achieving the above-mentioned object by carrying out different speed rolling which gives a plastic flow.
これに対し、熱延板表面層のゴス方位集積度の向上を目
的とした熱延方法についての報告は少なく、特公昭59
−32526号公報において、γ相の析出のない状態で
少なくとも50%の圧下率で熱延を行う必要があるとし
てSi,C量に応じた熱延仕上げ温度の上限を規制したも
のがあるにすぎない。On the other hand, there are few reports on the hot rolling method for improving the Goss orientation integration degree of the surface layer of the hot rolled sheet.
In JP-A-32526, there is only one in which the upper limit of the hot rolling finish temperature according to the amounts of Si and C is regulated as it is necessary to carry out hot rolling at a rolling reduction of at least 50% in the state where γ phase is not precipitated. Absent.
(発明が解決しようとする問題点) 熱間圧延工程に工夫を加えることによつて、熱延板表面
層におけるゴス方位集積度を高め、もつて磁気特性に優
れた一方向性けい素鋼板を得る新規な製造方法を与える
ことが、この発明の目的である。(Problems to be solved by the invention) By improving the hot rolling process, it is possible to improve the integration degree of the Goss orientation in the surface layer of the hot-rolled sheet and to obtain a unidirectional silicon steel sheet excellent in magnetic properties. It is an object of this invention to provide a novel method of manufacture that is obtained.
(問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく、熱延条件と
熱延板表面層におけるゴス方位の強度(以下単にゴス強
度という)との関係について数多くの実験と検討を行つ
た結果、熱延中の鋼片と圧延ロールとの摩擦力を高める
ことがゴス強度の向上に極めて有効であることの知見を
得た。(Means for Solving Problems) In order to achieve the above object, the inventors have many relations between the hot rolling conditions and the strength of the Goss orientation in the surface layer of the hot rolled sheet (hereinafter simply referred to as Goss strength). As a result of the experiments and studies, it was found that increasing the frictional force between the steel slab and the rolling roll during hot rolling is extremely effective in improving the Goss strength.
この発明は、上記の知見に立脚するものである。The present invention is based on the above findings.
すなわちこの発明は、C:0.02〜0.08wt%(以下単に%
で示す)、Si:2.0〜4.5%、Mn:0.01〜0.10%ならびに
SおよびSeのうち少なくともいずれか一種:0.005〜0.1
0%を含有する組成になるけい素鋼用スラブを、熱間圧
延し、ついで1回または中間焼鈍を挟む2回の冷間圧延
を施して最終板厚としたのち、湿水素中で脱炭・1次再
結晶焼鈍を施し、その後MgOを主成分とする焼鈍分離剤
を塗布してから、2次再結晶焼鈍ついで純化焼鈍を施す
一連の工程によって一方向性けい素鋼板を製造するに当
り、 上記熱間圧延を、圧延中における鋼片温度が1000℃以下
の範囲について、圧延ロールと鋼片との摩擦係数:0.27
以上および圧下率:30%以上の条件下に行うことから
なる一方向性けい素鋼板の製造方法である。That is, the present invention is C: 0.02 to 0.08 wt% (hereinafter simply referred to as%
, Si: 2.0 to 4.5%, Mn: 0.01 to 0.10% and at least one of S and Se: 0.005 to 0.1
A slab for silicon steel with a composition containing 0% is hot-rolled and then cold-rolled once or twice with intermediate annealing to obtain a final plate thickness, and then decarburized in wet hydrogen. When manufacturing a unidirectional silicon steel sheet by a series of steps in which primary recrystallization annealing is performed, then an annealing separator containing MgO as a main component is applied, and then secondary recrystallization annealing and then purification annealing are performed. In the above hot rolling, the billet temperature during rolling is within a range of 1000 ° C or less, and the friction coefficient between the rolling roll and the billet is 0.27.
This is a method for producing a unidirectional silicon steel sheet, which is performed under the above conditions and a reduction ratio of 30% or more.
この発明において、熱間圧延をとくにタンデム式圧延に
よつて行う場合には、圧延ロールと鋼片との摩擦係数を
0.27以上、また圧下率を30%以上とすることのほか、
900℃以下の温度で仕上げることが望ましい。In the present invention, when hot rolling is performed by tandem rolling, the coefficient of friction between the rolling roll and the billet is
In addition to 0.27 or more and a reduction rate of 30% or more,
It is desirable to finish at a temperature of 900 ° C or lower.
なお、この発明における鋼片温度とは、鋼片表面温度を
意味する。The billet temperature in the present invention means a billet surface temperature.
以下この発明を具体的に説明する。The present invention will be specifically described below.
まずこの発明の基礎となつた実験結果から説明する。First, the experimental results, which are the basis of the present invention, will be described.
第1図に、C:0.035%、Si:3.30%を含有するけい素
鋼用スラブを、圧下率:60%で熱延したときの、圧延
ロールと鋼片との摩擦係数と熱延板表面層の(110)
面強度との関係を示す。ここに(110)面強度はゴス
強度の一指標であつて、(110)面強度が大きいほど
ゴス強度は高いといえる。Fig. 1 shows the friction coefficient between the rolling roll and the steel slab and the surface of the hot-rolled sheet when a slab for silicon steel containing C: 0.035% and Si: 3.30% was hot-rolled at a rolling reduction of 60%. Layer of (110)
The relationship with the surface strength is shown. Here, the (110) plane strength is an index of Goss strength, and it can be said that the larger the (110) plane strength, the higher the Goss strength.
なお圧延ロールと鋼片との摩擦係数μは、次式によつて
求めたものである。The coefficient of friction μ between the rolling roll and the steel slab is obtained by the following equation.
ここでα:かみ込み角度 γ:圧下率 :先進率〔=(V2−Vr)/Vr〕 Vr:ロール周速度 V2:鋼片の出側速度 同図より明らかなように、圧延ロールと鋼片との摩擦係
数が大きくなるに従つて(110)面強度は高まり、と
くに摩擦係数が0.27以上において(110)面強度は2.
0以上の高い値を呈した。 Where α is the biting angle γ is the rolling reduction rate: the advanced rate [= (V 2 −V r ) / V r ] V r is the roll peripheral velocity V 2 is the delivery speed of the billet. The (110) surface strength increases as the friction coefficient between the rolling roll and the steel slab increases, and especially when the friction coefficient is 0.27 or more, the (110) surface strength is 2.
A high value of 0 or more was exhibited.
次に、上記の各熱延板に、H2中1000℃、3分間の中
間焼鈍を挟む1次冷延圧下率:75%、2次冷延圧下
率:70%の2回冷延を施して最終板厚としたのち、湿
H2中800℃、5分間の脱炭・1次再結晶焼鈍、ついで
乾H2中1200℃、10時間の最終仕上げ焼鈍を施して
得た製品における、磁束密度B10と熱延板表面層の(1
10)面強度との関係を、第2図に示す。Next, each of the above hot-rolled sheets was subjected to double cold rolling at a primary cold rolling reduction of 75% and a secondary cold rolling reduction of 70% with intermediate annealing in H 2 at 1000 ° C. for 3 minutes. To the final plate thickness, then wet
In H 2 800 ° C., decarburization and primary recrystallization annealing of the 5 minutes, then in dry H 2 1200 ° C., in a product obtained by applying the final finish annealing of 10 hours, the magnetic flux density B 10 and the hot rolled sheet surface layer Of (1
10) The relationship with the surface strength is shown in FIG.
同図より明らかなように、(110)面強度が2.0以上
の範囲においてB10≧1.90Tが安定して得られている。As is clear from the figure, B 10 ≧ 1.90T is stably obtained in the range where the (110) plane strength is 2.0 or more.
次に第3図に、熱間圧延における圧下率が熱延板表面層
の(110)面強度に及ぼす影響について調べた結果
を、熱延中における鋼片温度をパラメータとして示す。
なおこのときの圧延ロールと鋼片との摩擦係数は0.29前
後に制御した。Next, FIG. 3 shows the results of examining the effect of the reduction ratio in hot rolling on the (110) surface strength of the surface layer of the hot rolled sheet, using the billet temperature during hot rolling as a parameter.
The coefficient of friction between the rolling roll and the steel slab at this time was controlled to around 0.29.
またこの熱間圧延は、同表中に示した各温度を圧延スタ
ンド入側温度として、1パスで行った。Further, this hot rolling was performed in one pass with each temperature shown in the same table as the rolling stand entrance side temperature.
同図より明らかなように、(110)面強度は、熱延圧
下率が30%以上でしかも熱延中の鋼片温度が1000℃以下
の場合に、とりわけ有利に向上することが判明した。As is clear from the figure, the (110) surface strength was found to be particularly advantageous when the hot rolling reduction was 30% or more and the billet temperature during hot rolling was 1000 ° C or less.
さてこの発明において素材の成分組成を上記の範囲に限
定したのは次の理由による。The reason why the component composition of the raw material is limited to the above range in the present invention is as follows.
C:0.02〜0.08% Cは、熱延集合組織中にしばしば見受けられるゴス方位
の成長に有害な粗大伸長粒を細分化するのに有効に寄与
するが、含有量が0.02%に満たないとその添加効果に乏
しく、一方0.08を超えると後続の脱炭処理によつても満
足のいく脱炭が難しくなるので、0.02〜0.08%の範囲に
限定した。C: 0.02 to 0.08% C effectively contributes to subdivide coarse elongated grains harmful to the growth of Goss orientation often found in hot rolled textures, but if the content is less than 0.02%, The effect of addition is poor, while if it exceeds 0.08, satisfactory decarburization becomes difficult even with the subsequent decarburization treatment, so the range was limited to 0.02 to 0.08%.
Si:2.0〜4.5% Siは、比抵抗を高め渦電流損を低減させるのに有用な元
素であるが、2.0%に満たないと高温の最終仕上げ焼鈍
中にγ変態を生じてゴス強度を低下させ、一方4.5%を
超えると加工性の劣化を招くので、Si含有量は2.0〜4.5
%の範囲に限定した。Si: 2.0 to 4.5% Si is an element useful for increasing the specific resistance and reducing the eddy current loss, but if it is less than 2.0%, γ-transformation occurs during high temperature final finish annealing to reduce the Goss strength. On the other hand, if it exceeds 4.5%, the workability deteriorates, so the Si content is 2.0-4.5.
It was limited to the range of%.
Mn:0.01〜0.10% Mnは、後述のS,Seと結合してインヒビターMnS,MnSe
を形成する有用元素であるが、0.01%未満ではその添加
効果に乏しく、一方0.10%を超えるとインヒビターの鋼
中への微細分散が阻害されるので、0.01〜0.10%の範囲
に限定した。Mn: 0.01 to 0.10% Mn binds to S and Se described later and inhibits MnS and MnSe.
However, if less than 0.01%, the effect of addition is poor, while if more than 0.10%, fine dispersion of the inhibitor in the steel is hindered, so the content was limited to 0.01 to 0.10%.
Sおよび/またはSe:0.005〜0.10% SおよびSeはいずれも、上述した如くインヒビター形成
元素として有効に寄与するものであり、その効能を十分
発揮できる範囲として、添加量を上記の範囲に定めた。S and / or Se: 0.005 to 0.10% S and Se both effectively contribute as an inhibitor-forming element as described above, and the addition amount is set within the above range as a range in which the effect can be sufficiently exhibited. .
以上必須成分について説明したが、その他にもインヒビ
ターとして、Sb,Bi,Sn,Pb,AsおよびMoなどの粒界偏
析型元素やAlN,BNおよびVNなどの窒化物の添加を妨げ
るものではない。Although the essential components have been described above, other additives such as grain boundary segregation type elements such as Sb, Bi, Sn, Pb, As and Mo and nitrides such as AlN, BN and VN are not hindered as inhibitors.
次にこの発明に従う製造法を工程順に具体的に説明す
る。Next, the manufacturing method according to the present invention will be specifically described in the order of steps.
スラブの製造に当つては、連続鋳造法および造塊−分塊
法のいずれもが使用できる。Both the continuous casting method and the agglomeration-agglomeration method can be used for producing the slab.
スラブの加熱は、MnSやMnSeを十分に固溶させるため1
250℃以上の高温まで上昇させることが好ましい。The heating of the slab is necessary to fully dissolve MnS and MnSe.
It is preferable to raise the temperature to 250 ° C. or higher.
ついで熱間圧延を施して1.5〜3.5mm厚の熱延鋼帯とす
る。ここに熱間圧延は、通常、1200〜900℃程度の温度
域で実施されるが、この発明では、かかる熱間圧延に際
し、少なくとも鋼片温度が1000℃以下の温度域について
は、圧延ロールと鋼片との摩擦係数を0.27以上、圧下率
を30%以上に規制することが肝要である。Then, hot rolling is performed to form a hot rolled steel strip having a thickness of 1.5 to 3.5 mm. The hot rolling here is usually carried out in a temperature range of about 1200 to 900 ° C., but in the present invention, at the time of such hot rolling, at least a billet temperature of 1000 ° C. or less is a rolling roll. It is important to regulate the coefficient of friction with the billet to 0.27 or more and the rolling reduction to 30% or more.
というのは前掲第1,2および3図に示したとおり、鋼
片温度が1000℃以下の範囲について、圧延ロールと鋼片
との摩擦係数を0.27以上とし、さらに熱延圧下率を30%
以上とすることによって、熱延板表面層の(110)強
度ひいては製品板のB10値の向上が達成されるからで
ある。This is because, as shown in Figures 1, 2 and 3 above, the coefficient of friction between the rolling roll and the billet was 0.27 or more and the hot rolling reduction rate was 30% in the range where the billet temperature was 1000 ° C or less.
By the above, the improvement of the (110) strength of the surface layer of the hot-rolled sheet and thus the B 10 value of the product sheet is achieved.
ここに圧延ロールと鋼片との摩擦係数を高めるために
は、圧延ロールの表面粗度を粗くしたり、圧延ロールの
ロール径を小さくして該ロールと鋼片のかみ込み角度を
大きくすることが有効である。Here, in order to increase the friction coefficient between the rolling roll and the steel billet, the surface roughness of the rolling roll is roughened, or the roll diameter of the rolling roll is reduced to increase the biting angle of the roll and the billet. Is effective.
なおかかる熱間圧延は、通常粗圧延とタンデムミルによ
る仕上げ圧延によつて行われていて、熱延板表面層に形
成されるゴス方位の集合組織は主に粗圧延の後段ないし
は仕上げ圧延段陥で形成されるが、熱間仕上げ圧延をタ
ンデムミルを利用して実施する場合には、摩擦係数の増
大を図ると共に、一旦形成されたゴス方位が熱延中また
は熱延後の再結晶によつて弱まるのを防ぐために、90
0℃以下で仕上げることが望ましい。Note that such hot rolling is usually performed by rough rolling and finish rolling with a tandem mill, and the texture of the Goss orientation formed in the surface layer of the hot-rolled sheet is mainly after the rough rolling or in the finish rolling step. However, when hot finish rolling is carried out using a tandem mill, the friction coefficient is increased and the Goss orientation once formed is increased by recrystallization during or after hot rolling. 90 to prevent weakening
It is desirable to finish at 0 ° C or lower.
次に、冷間圧延を施して0.15〜0.35mm厚の最終製品板厚
に仕上げるが、この冷間圧延は、従来公知の1回法また
は2回法いずれもが適用できる。Next, cold rolling is performed to finish the final product sheet thickness of 0.15 to 0.35 mm. For this cold rolling, either of the conventionally known one-time method or two-time method can be applied.
脱炭・1次再結晶焼鈍は、湿H2雰囲気中で800〜85
0℃、1〜5分間程度の処理が好ましい。Decarburization / primary recrystallization annealing is 800 ~ 85 in wet H 2 atmosphere.
Treatment at 0 ° C. for about 1 to 5 minutes is preferable.
その後、800〜900℃、10〜100時間程度の2
次再結晶焼鈍、ついで1100〜1200℃、5〜20
時間程度の純化焼鈍を施して製品板とするわけである。After that, 800 ~ 900 ℃, 2 for about 10 to 100 hours
Next recrystallization annealing, then 1100 to 1200 ° C, 5 to 20
Purification annealing is performed for about a time to make a product plate.
(作用) この発明に従い、鋼片温度が1000℃以下の範囲につ
いて、圧下率:30%以上、そして圧延ロールと鋼片と
の摩擦係数:0.27以上の条件下に熱間圧延を行うことに
よつて、製品板の磁気特性が格段に向上する理由は、上
記の条件下での熱延によつて結晶のすべり回転が進行
し、熱延板表面層のゴス強度が強まることによるものと
考えられる。(Operation) According to the present invention, the hot rolling is performed under the conditions that the billet temperature is 1000 ° C. or less and the rolling reduction is 30% or more and the friction coefficient between the rolling roll and the billet is 0.27 or more. The reason why the magnetic properties of the product sheet are remarkably improved is thought to be that the slip rotation of the crystal progresses due to hot rolling under the above conditions, and the Goss strength of the surface layer of the hot rolled sheet increases. .
(実施例) C:0.050%、Si:3.30%、Mn:0.080%、Se:0.025%
およびSb:0.035%を含有する組成になる厚み:230m
mの連鋳スラブを、1330℃で3時間加熱後、熱間圧
延によつて2.3mm厚の熱延鋼板とした。この熱間圧延に
おいて、粗圧延で30mm厚としたのちの仕上げ圧延条件
は表1に示したとおりである。(Example) C: 0.050%, Si: 3.30%, Mn: 0.080%, Se: 0.025%
And a composition containing Sb: 0.035% Thickness: 230 m
The m continuous cast slab was heated at 1330 ° C. for 3 hours and then hot-rolled to form a hot-rolled steel sheet having a thickness of 2.3 mm. In this hot rolling, finish rolling conditions after rough rolling to a thickness of 30 mm are as shown in Table 1.
その後1回目の冷延で0.60mm厚としたのち、H2中で10
00℃、3分間の中間焼鈍を施してから、2回目の冷延
を施して0.23mm厚の最終板厚とした。After the first cold rolling to 0.60 mm thickness, 10 in H 2
After intermediate annealing at 00 ° C. for 3 minutes, a second cold rolling was performed to obtain a final plate thickness of 0.23 mm.
ついで湿H2中で830℃、3分間の脱炭焼鈍後、MgOを
主成分とする焼鈍分離剤を塗布してから、H2中で120
0℃、10時間の最終仕上げ焼鈍を施した。Then, after decarburization annealing at 830 ° C. for 3 minutes in wet H 2 , an annealing separator containing MgO as a main component is applied, and then 120 times in H 2.
Final finishing annealing was performed at 0 ° C. for 10 hours.
かくして得られ製品板の磁気特性について調べた結果
を、表1に併記する。The results of examining the magnetic properties of the product sheet thus obtained are also shown in Table 1.
同表より明らかなように、この発明に従う熱間圧延を施
した場合に、とりわけ優れた磁気特性が得られている。 As is clear from the table, particularly excellent magnetic properties are obtained when the hot rolling according to the present invention is performed.
(発明の効果) かくしてこの発明によれば、熱延板表面層のゴス強度を
効果的に強めることによつて、磁束密度B10および鉄損
特性W17/50とも優れた一方向性けい素鋼板を容易に得
ることができる。According to (Effect of Invention) Thus the present invention, Yotsute to enhance the Goss intensity of the hot rolled sheet surface layer effectively, excellent grain-oriented silicon steel sheet with the magnetic flux density B 10 and core loss characteristic W17 / 50 Can be easily obtained.
【図面の簡単な説明】 第1図は、熱間圧延における圧延ロールと鋼片との摩擦
係数と、熱延板表面層のゴス強度との関係について示し
たグラフ、 第2図は、熱延板表面層の(110)面強度と製品板の
磁束密度B10との関係を示したグラフ、 第3図は、熱間圧延における圧下率と熱延板表面層の
(110)面強度との関係を、鋼片温度をパラメータと
して示したグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the friction coefficient between a rolling roll and a steel slab in hot rolling and the Goss strength of the surface layer of a hot rolled sheet, and FIG. Fig. 3 is a graph showing the relationship between the (110) surface strength of the plate surface layer and the magnetic flux density B 10 of the product plate. Fig. 3 shows the reduction ratio in hot rolling and the (110) surface strength of the hot rolled plate surface layer. It is a graph which showed the relation using the billet temperature as a parameter.
Claims (2)
し、ついで1回または中間焼鈍を挟む2回の冷間圧延を
施して最終板厚としたのち、湿水素中で脱炭・1次再結
晶焼鈍を施し、その後MgOを主成分とする焼鈍分離剤を
塗布してから、2次再結晶焼鈍ついで純化焼鈍を施す一
連の工程によって一方向性けい素鋼板を製造するに当
り、 上記熱間圧延を、圧延中における鋼片温度が1000℃以下
の範囲について、圧延ロールと鋼片との摩擦係数:0.27
以上および圧下率:30%以上の条件下に行うことを特徴
とする一方向性けい素鋼板の製造方法。1. C: 0.02 to 0.08 wt% Si: 2.0 to 4.5 wt% Mn: 0.01 to 0.10 wt% and at least one of S and Se: 0.005 to 0.10 wt% Silicon having a composition The steel slab is hot-rolled and then cold-rolled once or twice with intermediate annealing to obtain the final plate thickness, and then decarburized and primary recrystallization annealing in wet hydrogen, and then In producing a unidirectional silicon steel sheet by a series of steps of applying an annealing separator having MgO as a main component, and then performing secondary recrystallization annealing and then purification annealing, the above hot rolling is performed during rolling. Friction coefficient between rolling roll and billet: 0.27 for billet temperature below 1000 ℃
A method for manufacturing a unidirectional silicon steel sheet, which is performed under the above conditions and a reduction ratio of 30% or more.
仕上げ温度が900℃以下である特許請求の範囲第1項に
記載の方法。2. The method according to claim 1, wherein the hot rolling is tandem rolling and the finishing temperature is 900 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60109230A JPH0649900B2 (en) | 1985-05-23 | 1985-05-23 | Method for manufacturing unidirectional silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60109230A JPH0649900B2 (en) | 1985-05-23 | 1985-05-23 | Method for manufacturing unidirectional silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61270334A JPS61270334A (en) | 1986-11-29 |
JPH0649900B2 true JPH0649900B2 (en) | 1994-06-29 |
Family
ID=14504910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60109230A Expired - Fee Related JPH0649900B2 (en) | 1985-05-23 | 1985-05-23 | Method for manufacturing unidirectional silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649900B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238528A (en) * | 1988-07-29 | 1990-02-07 | Kawasaki Steel Corp | Manufacture of grain-oriented silicon steel sheet |
JP7231888B2 (en) * | 2020-03-30 | 2023-03-02 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935415A (en) * | 1982-08-24 | 1984-02-27 | 日立コンデンサ株式会社 | Method of producing porcelain condenser |
-
1985
- 1985-05-23 JP JP60109230A patent/JPH0649900B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935415A (en) * | 1982-08-24 | 1984-02-27 | 日立コンデンサ株式会社 | Method of producing porcelain condenser |
Also Published As
Publication number | Publication date |
---|---|
JPS61270334A (en) | 1986-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4353849A1 (en) | Method for manufacturing grain-oriented electromagnetic steel sheet | |
US5346559A (en) | Process for manufacturing double oriented electrical steel sheet having high magnetic flux density | |
JP3160281B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties | |
JPH0649900B2 (en) | Method for manufacturing unidirectional silicon steel sheet | |
JP4281119B2 (en) | Manufacturing method of electrical steel sheet | |
JPH036842B2 (en) | ||
JPH0696743B2 (en) | Method for producing unidirectional silicon steel sheet having excellent magnetic properties | |
JPH0533056A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH06212274A (en) | Production of grain-oriented silicon steel sheet having extremely low iron loss | |
JP2679927B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP2773948B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties and surface properties | |
JP2647323B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with low iron loss | |
JP3498978B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH0629461B2 (en) | Method for producing silicon steel sheet having good magnetic properties | |
JPH0699751B2 (en) | Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics | |
JPH10259422A (en) | Production of grain-oriented silicon steel sheet good in core loss characteristic | |
JP2612075B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties | |
JPH1036914A (en) | Production of grain oriented electric steel sheet excellent in magnetic characteristic | |
JPS61149432A (en) | Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss | |
JP2883224B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH0232327B2 (en) | HOKOSEIKEISOKOHANYOSURABUNONETSUKANATSUENHOHO | |
JPH07278665A (en) | Manufacture of non-oriented silicon steel sheet with high magnetic flux density | |
JPS60200916A (en) | Manufacture of anisotropic silicon steel plate | |
JPS5980727A (en) | Manufacture of cold rolled steel sheet with high drawability by continuous annealing | |
JPH07122092B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |