JPH0643434A - Electro-optical device and its image display method - Google Patents

Electro-optical device and its image display method

Info

Publication number
JPH0643434A
JPH0643434A JP14564291A JP14564291A JPH0643434A JP H0643434 A JPH0643434 A JP H0643434A JP 14564291 A JP14564291 A JP 14564291A JP 14564291 A JP14564291 A JP 14564291A JP H0643434 A JPH0643434 A JP H0643434A
Authority
JP
Japan
Prior art keywords
electro
optical device
time
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14564291A
Other languages
Japanese (ja)
Other versions
JP2754290B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Akira Mase
晃 間瀬
Masaaki Hiroki
正明 廣木
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP14564291A priority Critical patent/JP2754290B2/en
Priority to US07/885,637 priority patent/US5680147A/en
Publication of JPH0643434A publication Critical patent/JPH0643434A/en
Application granted granted Critical
Publication of JP2754290B2 publication Critical patent/JP2754290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To decrease a variance of a characteristic, and to execute control at a high speed by inputting a reference voltage value repeated in a prescribed period, as a signal, controlling its timing by a digital value, and controlling an applied voltage. CONSTITUTION:As a reference signal waveform, a half wave of a sine wave is used. Sine waves as shown in VDD1, VDD2 are applied to signal lines Y1 303, Y2 304 lying in the scanning line direction, and bipolar signals whose polarity is inverted, as shown in VGG1, VGG2 are applied to signal lines X1 301, X2 302 lying in the information line direction. By selecting a timing for applying this bipolar signal, a voltage applied to each picture element can be controlled arbitrarily. In such a way, by varying the timing of the bipolar signal, the charge quantity and the potential accumulated in four liquid crystal picture element electrodes A-D are determined, and also, by taking arbitrarily the potential of a counter electrode, magnitude of an electric field applied to a picture element and a liquid crystal is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクティブ型電気光学
装置、特にアクティブ型液晶電気光学装置に関するもの
で、明確な階調のレベルを設定できるようにしたもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active type electro-optical device, and more particularly to an active type liquid crystal electro-optical device, in which a clear gradation level can be set.

【0002】[0002]

【従来の技術】液晶組成物はその物質特性から、分子軸
に対して水平方向と垂直方向の誘電率が異なるため、外
部の電界に対して水平方向に配列したり、垂直方向に配
列したりさせることが容易にできる。液晶電気光学装置
はこの誘電率の異方性を利用して、光の透過光量または
分散量を制御することで、ON/OFFの表示を行って
いる。
2. Description of the Related Art Liquid crystal compositions have different dielectric constants in the horizontal and vertical directions with respect to the molecular axis because of their material properties. Therefore, liquid crystal compositions may be aligned horizontally or vertically with respect to an external electric field. It can be done easily. The liquid crystal electro-optical device uses the anisotropy of the dielectric constant to control the amount of transmitted light or the amount of dispersion of light to perform ON / OFF display.

【0003】図2にネマチック液晶の電気光学特性を示
す。印加電圧が小さいVa(A点)のときには、透過光
量がほぼ0%、Vb(B点)の場合には20%ほど、V
c(C点)の場合には70%ほど、Vd(D点)の場合
には100%ほどになる。つまり、A、D点のみを利用
すれば、白黒の2階調表示が、B、C点のように電気光
学特性の立ち上がりの部分を利用すれば、中間階調表示
が可能となる。
FIG. 2 shows the electro-optical characteristics of nematic liquid crystal. When the applied voltage is Va (point A), the amount of transmitted light is almost 0%, and when Vb (point B) is about 20%,
It becomes about 70% in the case of c (point C) and about 100% in the case of Vd (point D). That is, if only points A and D are used, black and white two-gradation display can be performed, and if points at which the electro-optical characteristics rise such as points B and C are used, halftone display can be performed.

【0004】従来、TFTを利用した液晶電気光学装置
の階調表示の場合、TFTのゲート印加電圧もしくはソ
ース・ドレイン間の印加電圧を変化させてアナログ的に
電圧を調整し、階調表示をおこなっていた。
Conventionally, in the case of gradation display of a liquid crystal electro-optical device using a TFT, gradation display is performed by changing the voltage applied to the gate of the TFT or the voltage applied between the source and the drain to adjust the voltage in an analog manner. Was there.

【0005】[0005]

【発明が解決しようとする課題】TFTを利用した液晶
電気光学装置の諧調表示の方法に関して、説明をくわえ
る。従来液晶電気光学装置にもちいられる、Nチャネル
型薄膜トランジスタは、図3に示すような電圧電流特性
をもっている。図3に示した電圧電流特性はアモルファ
スシリコンを用いたNチャネル型薄膜トランジスタの特
性と、ポリシリコンを用いたNチャネル型薄膜トランジ
スタの特性である。
A description will be given of the gradation display method of the liquid crystal electro-optical device using the TFT. An N-channel type thin film transistor, which is conventionally used in a liquid crystal electro-optical device, has a voltage-current characteristic as shown in FIG. The voltage-current characteristics shown in FIG. 3 are the characteristics of the N-channel type thin film transistor using amorphous silicon and the characteristics of the N-channel type thin film transistor using polysilicon.

【0006】ゲート電極に加える電圧をアナログ的に制
御することで、ドレイン電流を制御することが出来、液
晶に加わる電界の大きさを変化させることができる。こ
れによって、階調表示が可能になっている。
By controlling the voltage applied to the gate electrode in an analog manner, the drain current can be controlled and the magnitude of the electric field applied to the liquid crystal can be changed. Thereby, gradation display is possible.

【0007】しかしながら、例えば640×400ドッ
トの画素数を有する液晶電気光学装置を想定したばあ
い、合計256,000個のTFTすべての特性をばら
つき無く作製することは、非常に困難を有し、現実的に
は量産性、歩留りを考慮すると、16階調表示が限界と
考えられている。
However, when a liquid crystal electro-optical device having a pixel number of 640.times.400 dots is assumed, it is very difficult to manufacture the characteristics of all 256,000 TFTs in total without variations. In reality, 16-gradation display is considered to be the limit in consideration of mass productivity and yield.

【0008】また、ゲート電圧を一定の値に設定し、O
N/OFFのみを制御し、ソースドレイン電圧を制御す
ることで、階調表示を行う方法も考えられているが、や
はり特性の不安定性から16階調程度が限度と考えられ
ている。アナログ的な階調表示制御は、TFTの特性に
大きく左右され、明快な表示は困難を要する。
Further, the gate voltage is set to a constant value, and O
A method of performing gradation display by controlling only N / OFF and controlling the source / drain voltage has been considered, but it is considered that about 16 gradations are the limit due to the instability of the characteristics. The analog gradation display control is greatly influenced by the characteristics of the TFT, and clear display is difficult.

【0009】また別の方法として、複数フレームを使っ
た階調表示の方法が提案されている。これは、図11に
示す様に、例えば10フレームを用いて階調表示を行う
場合、画素Aは10フレーム中2フレームを透過、残り
8フレームを非透過にすることで平均的には20%の透
過と表示できる。また画素Bでは同様に70%、画素C
では同様に50%の透過と表示できる。
As another method, a gradation display method using a plurality of frames has been proposed. As shown in FIG. 11, for example, when gradation display is performed using 10 frames, the pixel A makes 2 frames out of 10 frames transparent and the remaining 8 frames non-transparent so that the average is 20%. It can be displayed as transparent. Similarly, for pixel B, 70%, pixel C
Similarly, it can be displayed as 50% transmission.

【0010】しかしながら、この様な表示を行った場
合、実質上フレーム数の低下に繋がるために、フリッカ
ーの発生等と表示傷害が起きていた。これを解決するた
めに、フレーム周波数の増加等が考案されているが、駆
動周波数の増加に伴う消費電力の増加、またはICの高
速化が困難であるので限界がある技術であった。
However, when such a display is performed, the number of frames is substantially reduced, so that the occurrence of flicker and the display injury occur. In order to solve this, an increase in the frame frequency or the like has been devised, but it is a technology that has a limit because it is difficult to increase the power consumption accompanying the increase in the driving frequency or to speed up the IC.

【0011】[0011]

【課題を解決するための手段】そこで、本発明では、印
加電圧レベルを明確にするために、全く不確定なアナロ
グ値では無く、一定の周期で繰り返される基準電圧値を
信号としてコントローラー側から入力し、その基準信号
をTFTに接続するタイミングをデジタル値で制御する
ことによって、TFTに印加される電圧を制御すること
で、TFTの特性ばらつきをカバーする方法を本発明で
はとっている事を特徴としている。
Therefore, in the present invention, in order to clarify the applied voltage level, not a completely uncertain analog value but a reference voltage value repeated at a constant cycle is input from the controller side as a signal. However, the present invention adopts a method of covering the characteristic variation of the TFT by controlling the voltage applied to the TFT by controlling the timing of connecting the reference signal to the TFT with a digital value. I am trying.

【0012】つまり、1画面を書き込む時間Fと1画素
に書き込む時間tで関係される表示タイミングを有する
表示駆動方式を用いた電気光学装置の階調表示を、任意
の画素駆動選択に用いられる信号線の一方に前記時間t
を周期とする電圧変化を有する基準信号と他の信号線に
前記時間t内の任意のタイミングで選択信号を印加し、
液晶に加わる電圧を決定し、実際に画素に対し電圧を印
加することにより前記時間Fを変化させることなしに階
調を表示可能にした事を特徴としている。またさらに加
えれば、このタイミングをデーターの転送に頼るもので
は無く、液晶電気光学装置に搭載するドライバーIC自
体に高速のクロックを加え、信号加工部分で処理するた
めに、従来のCMOSのデーター転送速度の限界であっ
た数十MHzに制限されない高速の制御が可能になる事
を特徴としている。
That is, a signal used for arbitrary pixel drive selection is gradation display of an electro-optical device using a display drive system having a display timing related by a time F for writing one screen and a time t for writing one pixel. The time t on one of the lines
A selection signal is applied to the reference signal and the other signal line having a voltage change whose period is, at an arbitrary timing within the time t,
The feature is that the gradation can be displayed without changing the time F by determining the voltage applied to the liquid crystal and actually applying the voltage to the pixel. In addition, the timing does not depend on the data transfer, but a high-speed clock is applied to the driver IC itself mounted in the liquid crystal electro-optical device to process in the signal processing portion, so that the conventional CMOS data transfer speed is used. It is characterized in that it enables high-speed control that is not limited to tens of MHz, which was the limit of.

【0013】図1に本発明による電気光学装置の駆動波
形を具体的に示す。図1は、図4に示した、いわゆるト
ランスファー・ゲイト素子を用いた2×2のアクティブ
・マトリクス回路に本駆動波形を入れた例を示す。前記
基準信号波形としてここでは、正弦波の半波を用いてい
る。走査線方向にあたる信号線Y1 303、Y2 304
に図1VDD1 、VDD2 に示されるような正弦波を印加
し、情報線方向にあたる信号線X1 301 、X2 30
2に図1のVGG1 、VGG2 に示すように極性の反転する
2極性(以下『バイポーラ』とする)信号を加える。こ
のバイポーラ信号を加えるタイミングを選択することに
よって、各画素に加わる電圧を任意に制御することがで
きる。つまり、バイポーラ信号を加えたときの、正弦波
の電圧が画素に充電される。例えば正弦波信号がほとん
ど0のときにバイポーラ信号を加えた場合には、画素の
キャパシタに蓄えられる電圧はほとんど0であり、正弦
波信号が最大値を取るときにバイポーラ信号を加えた場
合には、画素の電圧は正弦波信号の最大値と同じ値とな
る。バイポーラ信号を加えるタイミングをその中間とす
るときには、中間的な電圧が画素に印加される。そし
て、このようにバイポーラ信号のタイミングを変化させ
ること、および各画素の選択をおこなうための適切な走
査技術を用いることによって、図4における4つの液晶
画素電極A〜Dに蓄積される電荷量および電位が決定さ
れ、さらに対向電極の電位を任意にとることで画素およ
び液晶にかかる電界の大きさが決定されるものである。
もし、対抗電極の電位を0Vとすれば、画素A〜Dにか
かる電圧は、図1に示されるようにそれぞれ、任意の値
をとることができ、階調表示が可能となる。図1では簡
単のため、2×2という極めて単純なマトリクスを用い
て説明したが、よりマトリクスの規模が大きくなっても
同様に階調表示できる。また、PTFTとNTFTの位
置関係は入れ代わっても差し支えない。
FIG. 1 specifically shows drive waveforms of the electro-optical device according to the present invention. FIG. 1 shows an example in which the main drive waveform is put in the 2 × 2 active matrix circuit using the so-called transfer gate element shown in FIG. Here, a half wave of a sine wave is used as the reference signal waveform. Signal lines Y 1 303 and Y 2 304 corresponding to the scanning line direction
To the signal line X 1 301 corresponding to the information line direction by applying a sine wave as shown in V DD1 and V DD2 in FIG. , X 2 30
A signal having two polarities (hereinafter referred to as "bipolar") whose polarities are inverted is added to 2 as shown by V GG1 and V GG2 in FIG. By selecting the timing of applying this bipolar signal, the voltage applied to each pixel can be arbitrarily controlled. That is, the pixel is charged with a sinusoidal voltage when a bipolar signal is applied. For example, when a bipolar signal is added when the sine wave signal is almost 0, the voltage stored in the pixel capacitor is almost 0, and when a bipolar signal is added when the sine wave signal has the maximum value. , The pixel voltage is the same as the maximum value of the sine wave signal. When the timing of applying the bipolar signal is set to an intermediate timing, an intermediate voltage is applied to the pixel. Then, by changing the timing of the bipolar signal and using an appropriate scanning technique for selecting each pixel in this way, the amount of charges accumulated in the four liquid crystal pixel electrodes A to D in FIG. The electric potential is determined, and the electric potential applied to the pixel and the liquid crystal is determined by arbitrarily setting the electric potential of the counter electrode.
If the potential of the counter electrode is set to 0V, the voltages applied to the pixels A to D can take arbitrary values as shown in FIG. 1, and gradation display can be performed. In FIG. 1, for the sake of simplification, an extremely simple matrix of 2 × 2 is used for description, but gradation display can be similarly performed even when the scale of the matrix becomes larger. Also, the positional relationship between PTFT and NTFT may be interchanged.

【0014】バイポーラ信号を加えるタイミングは、情
報信号の転送速度によって決定されるものでは無く、本
発明による構成では液晶電気光学装置に直接接続される
ドライバーICに入力される基本クロックによって制限
される。つまり、640×400ドットの液晶電気光学
装置を考えた場合、駆動周波数はCMOSの限界から2
0MHz程度であり、この数値を使用して階調表示数を
計算するには、駆動周波数は走査線数とフレーム数とバ
イポーラパルスと階調表示数の積でしめされることよ
り、20MHzを(400×60×2)で割ればよいの
で、従って、階調表示数は416階調まで表示可能とな
る。表示画面の2分割化により832階調まで可能なこ
とは言うまでもない。以下に実施例をしるし、さらに詳
細な説明を加える。
The timing of applying the bipolar signal is not determined by the transfer rate of the information signal, but is limited by the basic clock input to the driver IC directly connected to the liquid crystal electro-optical device in the configuration according to the present invention. That is, when considering a liquid crystal electro-optical device of 640 × 400 dots, the driving frequency is 2 from the limit of CMOS.
It is about 0 MHz, and in order to calculate the gradation display number using this value, the driving frequency is determined by the product of the number of scanning lines, the number of frames, the bipolar pulse, and the gradation display number, and therefore 20 MHz ( It is only necessary to divide by 400 × 60 × 2), and therefore, it is possible to display up to 416 gradation levels. It goes without saying that the display screen can be divided into two to obtain 832 gradations. Examples will be given below, and further detailed description will be added.

【0015】[0015]

【実施例】【Example】

『実施例1』 本実施例では図5に示すような回路構成
を用いた液晶表示装置を用いて、壁掛けテレビを作製し
たので、その説明を行う。またその際のTFTは、レー
ザーアニールを用いた多結晶シリコンとした。
[Embodiment 1] In this embodiment, a wall-mounted television is manufactured by using a liquid crystal display device having a circuit configuration as shown in FIG. 5, which will be described. Further, the TFT at that time was made of polycrystalline silicon using laser annealing.

【0016】この回路構成に対応する実際の電極等の配
置構成を図6に示している。これらは説明を簡単にする
為2×2(またはそれ以下)に相当する部分のみ記載さ
れている。また、実際の駆動信号波形を図1に示す。こ
れも説明を簡単にする為に2×2のマトリクス構成とし
た場合の信号波形で説明を行う。
FIG. 6 shows the actual arrangement of electrodes and the like corresponding to this circuit structure. For simplicity of description, only the portion corresponding to 2 × 2 (or less) is shown. The actual drive signal waveform is shown in FIG. In order to simplify the description, the description will be made with the signal waveform in the case of the 2 × 2 matrix configuration.

【0017】まず、本実施例で使用する液晶パネルの作
製方法を図7を使用して説明する。図7(A)におい
て、石英ガラス等の高価でない700℃以下、例えば約
600℃の熱処理に耐え得るガラス50上にマグネトロ
ンRF(高周波) スパッタ法を用いてブロッキング層5
1としての酸化珪素膜を1000〜3000Åの厚さに
作製する。プロセス条件は酸素100%雰囲気、成膜温
度150℃、出力400〜800W、圧力0.5Paと
した。タ−ゲットに石英または単結晶シリコンを用いた
成膜速度は30〜100Å/分であった。
First, a method of manufacturing the liquid crystal panel used in this embodiment will be described with reference to FIG. In FIG. 7A, the blocking layer 5 is formed on the glass 50, such as quartz glass, which can withstand a heat treatment at 700 ° C. or less, for example, about 600 ° C., which is not expensive, by using a magnetron RF (radio frequency) sputtering method.
A silicon oxide film as No. 1 is formed to a thickness of 1000 to 3000Å. The process conditions were an atmosphere of 100% oxygen, a film forming temperature of 150 ° C., an output of 400 to 800 W, and a pressure of 0.5 Pa. The film formation rate using quartz or single crystal silicon for the target was 30 to 100 Å / min.

【0018】この上にシリコン膜をプラズマCVD法に
より珪素膜52を作製した。成膜温度は250℃〜35
0℃で行い本実施例では320℃とし、モノシラン(SiH
4)を用いた。モノシラン(SiH4)に限らず、ジシラン(Si2
H6) またトリシラン(Si3H8)を用いてもよい。これらを
PCVD装置内に3Paの圧力で導入し、13.56M
Hzの高周波電力を加えて成膜した。この際、高周波電
力は0.02〜0.10W/cm2 が適当であり、本実
施例では0.055W/cm2 を用いた。また、モノシ
ラン(SiH4)の流量は20SCCMとし、その時の成膜速
度は約120Å/ 分であった。PTFTとNTFTとの
スレッシュホ−ルド電圧(Vth)に概略同一に制御する
ため、ホウ素をジボランを用いて1×1015〜1×1018cm
-3の濃度として成膜中に添加してもよい。またTFTの
チャネル領域となるシリコン層の成膜にはこのプラズマ
CVDだけでなく、スパッタ法、減圧CVD法を用いて
も良く、以下にその方法を簡単に述べる。
A silicon film 52 was formed on this by a plasma CVD method. The film forming temperature is 250 ° C. to 35
The temperature is set to 0 ° C., and in this embodiment, the temperature is set to 320 ° C.
4 ) was used. Not only monosilane (SiH 4 ) but also disilane (Si 2
H 6 ) Alternatively, trisilane (Si 3 H 8 ) may be used. These were introduced into the PCVD device at a pressure of 3 Pa, and 13.56M
A high frequency power of Hz was applied to form a film. At this time, the high frequency power is suitably 0.02 to 0.10 W / cm 2 , and in this example, 0.055 W / cm 2 was used. The flow rate of monosilane (SiH 4 ) was 20 SCCM, and the film formation rate at that time was about 120 Å / min. In order to control the threshold voltage (Vth) of the PTFT and the NTFT to be approximately the same, boron is used in an amount of 1 × 10 15 to 1 × 10 18 cm by using diborane.
-3 may be added during film formation. Further, not only the plasma CVD but also the sputtering method or the low pressure CVD method may be used for forming the silicon layer to be the channel region of the TFT. The method will be briefly described below.

【0019】スパッタ法で行う場合、スパッタ前の背圧
を1×10-5Pa以下とし、単結晶シリコンをタ−ゲット
として、アルゴンに水素を20〜80%混入した雰囲気
で行った。例えばアルゴン20%、水素80%とした。
成膜温度は150℃、周波数は13.56MHz、スパ
ッタ出力は400〜800W、圧力は0.5Paであっ
た。
When the sputtering method is used, the back pressure before the sputtering is set to 1 × 10 -5 Pa or less, the single crystal silicon is used as the target, and the atmosphere is mixed with 20% to 80% of hydrogen in argon. For example, argon is 20% and hydrogen is 80%.
The film forming temperature was 150 ° C., the frequency was 13.56 MHz, the sputter output was 400 to 800 W, and the pressure was 0.5 Pa.

【0020】減圧気相法で形成する場合、結晶化温度よ
りも100〜200℃低い450〜550℃、例えば5
30℃でジシラン(Si2H6) またはトリシラン(Si3H8) を
CVD装置に供給して成膜した。反応炉内圧力は30〜
300Paとした。成膜速度は50〜250Å/ 分であ
った。PTFTとNTFTとのスレッシュホ−ルド電圧
(Vth)に概略同一に制御するため、ホウ素をジボラン
を用いて1×1015〜1×1018cm-3の濃度として成膜中に
添加してもよい。
When formed by the reduced pressure vapor phase method, it is 450 to 550 ° C., which is 100 to 200 ° C. lower than the crystallization temperature, for example, 5
Disilane (Si 2 H 6 ) or trisilane (Si 3 H 8 ) was supplied to a CVD apparatus at 30 ° C. to form a film. The reactor pressure is 30 ~
It was set to 300 Pa. The film forming rate was 50 to 250 Å / min. In order to control the threshold voltage (Vth) of the PTFT and the NTFT to be approximately the same, boron may be added during film formation using diborane at a concentration of 1 × 10 15 to 1 × 10 18 cm -3. .

【0021】これらの方法によって形成された被膜は、
酸素が5×1021cm-3以下であることが好ましい。結晶化
を助長させるためには、酸素濃度を7×1019cm-3以下、
好ましくは1×1019cm-3以下とすることが望ましいが、
少なすぎると、バックライトによりオフ状態のリ−ク電
流が増加してしまうため、この濃度を選択した。この酸
素濃度が高いと、結晶化させにくく、レーザーアニ−ル
温度を高くまたはレーザーアニ−ル時間を長くしなけれ
ばならない。水素は4×1020cm-3であり、珪素4×1022
cm-3として比較すると1原子%であった。
The film formed by these methods is
It is preferable that oxygen is 5 × 10 21 cm −3 or less. In order to promote crystallization, the oxygen concentration is 7 × 10 19 cm -3 or less,
It is preferable that the size is 1 × 10 19 cm -3 or less,
If the amount is too small, the leak current in the off state increases due to the backlight, so this concentration was selected. If the oxygen concentration is high, it is difficult to crystallize, and the laser annealing temperature must be high or the laser annealing time must be long. Hydrogen is 4 × 10 20 cm -3 and silicon is 4 × 10 22
It was 1 atom% when compared as cm -3 .

【0022】また、ソ−ス、ドレインに対してより結晶
化を助長させるため、酸素濃度を7×1019cm-3以下、好
ましくは1×1019cm-3以下とし、ピクセル構成するTF
Tのチャネル形成領域のみに酸素をイオン注入法により
5×1020〜5×1021cm-3となるように添加してもよい。
In order to further promote crystallization of the source and drain, the oxygen concentration is set to 7 × 10 19 cm -3 or less, preferably 1 × 10 19 cm -3 or less, and the TF for forming a pixel is set.
Oxygen may be added only to the channel forming region of T by the ion implantation method so as to have a concentration of 5 × 10 20 to 5 × 10 21 cm −3 .

【0023】上記方法によって、アモルファス状態の珪
素膜を500〜5000Å、本実施例では1000Åの
厚さに成膜した。
By the above method, a silicon film in an amorphous state was formed to a thickness of 500 to 5000 Å, 1000 Å in this embodiment.

【0024】その後、図7(B)に示すように、フォト
レジスト53をマスクP1を用いてソース・ドレイン領
域のみ開孔したパターンを形成した。その上に、プラズ
マCVD法によりn型の活性層となる珪素膜54を作製
した。成膜温度は250℃〜350℃で行い本実施例で
は320℃とし、モノシラン(SiH4)とモノシランベース
のフォスフィン(PH3) 3%濃度のものを用いた。これら
をPCVD装置内5Paの圧力でに導入し、13.56
MHzの高周波電力を加えて成膜した。この際、高周波
電力は0.05〜0.20W/cm2 が適当であり、本
実施例では0.120W/cm2 を用いた。
After that, as shown in FIG. 7B, a pattern was formed in which only the source / drain regions were opened in the photoresist 53 using the mask P1. A silicon film 54, which will be an n-type active layer, was formed thereon by a plasma CVD method. The film formation temperature is 250 ° C. to 350 ° C., and in this embodiment, it is 320 ° C., and monosilane (SiH 4 ) and monosilane-based phosphine (PH 3 ) having a concentration of 3% were used. These are introduced into the PCVD apparatus at a pressure of 5 Pa, and 13.56
A high frequency power of MHz was applied to form a film. At this time, the high-frequency power is suitably 0.05~0.20W / cm 2, in this embodiment using 0.120W / cm 2.

【0025】この方法によって出来上がったn型シリコ
ン層の比導電率は2×10-1〔Ωcm-1〕程度となっ
た。膜厚は50Åとした。その後リフトオフ法を用い
て、レジスト53を除去し、ソース・ドレイン領域5
5、56を形成した。
The specific conductivity of the n-type silicon layer produced by this method was about 2 × 10 -1 [Ωcm -1 ]. The film thickness was 50Å. After that, the lift-off method is used to remove the resist 53, and the source / drain regions 5 are removed.
5, 56 were formed.

【0026】同様のプロセスを用いて、レジスト58上
にp型の活性層57を形成した。その際の導入ガスは、
モノシラン(SiH4)とモノシランベースのジボラン(B2H6)
5%濃度のものを用いた。これらをPCVD装置内に4
Paの圧力でに導入し、13.56MHzの高周波電力
を加えて成膜した。この際、高周波電力は0.05〜
0.20W/cm2 が適当であり、本実施例では0.1
20W/cm2 を用いた。この方法によって出来上がっ
たp型シリコン層の比導電率は5×10-2〔Ωcm-1
程度となった。膜厚は50Åとした。その後N型領域と
同様にリフトオフ法を用いて、ソース・ドレイン領域5
9、60を形成した。その後、マスクP3を用いて珪素
膜52をエッチング除去し、Nチャネル型薄膜トランジ
スタ用アイランド領域63とPチャネル型薄膜トランジ
スタ用アイランド領域64を形成した。
A p-type active layer 57 was formed on the resist 58 using the same process. The gas introduced at that time is
Monosilane (SiH 4 ) and monosilane-based diborane (B 2 H 6 ).
A 5% concentration was used. Put these in the PCVD equipment.
It was introduced at a pressure of Pa and a film was formed by applying high frequency power of 13.56 MHz. At this time, the high frequency power is 0.05 to
0.20 W / cm 2 is suitable, and is 0.1 in this embodiment.
20 W / cm 2 was used. The specific conductivity of the p-type silicon layer produced by this method is 5 × 10 -2 [Ωcm -1 ]
It became a degree. The film thickness was 50Å. After that, the source / drain region 5 is formed by using the lift-off method similarly to the N-type region.
9 and 60 were formed. Then, the silicon film 52 was removed by etching using the mask P3 to form an N-channel type thin film transistor island region 63 and a P-channel type thin film transistor island region 64.

【0027】その後XeClエキシマレーザー61を用
いて、ソース・ドレイン・チャネル領域をレーザーアニ
ールすると同時に、活性層にレーザードーピングを行な
った。この時のレーザーエネルギーは、閾値エネルギー
が130mJ/cm2 で、膜厚全体が溶融するには22
0mJ/cm2 が必要となる。しかし、最初から220
mJ/cm2 以上のエネルギーを照射すると、膜中に含
まれる水素が急激に放出されるために、膜の破壊が起き
る。そのために低エネルギーで最初に水素を追い出した
後に溶融させる必要がある。本実施例では最初150m
J/cm2 で水素の追い出しを行なった後、230mJ
/cm2 で結晶化をおこなった。
Then, using a XeCl excimer laser 61, the source / drain / channel regions were laser-annealed, and at the same time, the active layer was laser-doped. The laser energy at this time has a threshold energy of 130 mJ / cm 2 and is 22 to melt the entire film thickness.
0 mJ / cm 2 is required. But from the beginning 220
When the energy of mJ / cm 2 or more is applied, hydrogen contained in the film is rapidly released, so that the film is broken. Therefore, it is necessary to first drive out hydrogen with low energy and then melt it. In this embodiment, first 150 m
After ejecting hydrogen at J / cm 2 , 230mJ
Crystallization was performed at / cm 2 .

【0028】アニ−ルにより、珪素膜はアモルファス構
造から秩序性の高い状態に移り、一部は結晶状態を呈す
る。特にシリコンの成膜後の状態で比較的秩序性の高い
領域は特に結晶化をして結晶状態となろうとする。しか
しこれらの領域間に存在する珪素により互いの結合がな
されるため、珪素同志は互いにひっぱりあう。レ−ザラ
マン分光により測定すると単結晶の珪素のピ−ク522
cm-1より低周波側にシフトしたピ−クが観察される。そ
れの見掛け上の粒径は半値巾から計算すると、50〜5
00Åとなっているが、実際はこの結晶性の高い領域は
多数あってクラスタ構造を有し、各クラスタ間は互いに
珪素同志で結合(アンカリング) がされた構造の被膜を
形成させることができた。
The annealing causes the silicon film to shift from an amorphous structure to a highly ordered state, and a part thereof assumes a crystalline state. In particular, a region having a relatively high degree of ordering after the film formation of silicon tends to be crystallized and become a crystalline state. However, since silicon existing between these regions is bonded to each other, the silicon members pull each other. Peak 522 of single crystal silicon as measured by laser Raman spectroscopy
Peaks shifted to lower frequencies than cm -1 are observed. The apparent particle size is 50 to 5 when calculated from the full width at half maximum.
Although it is 00 Å, in reality there are many regions with high crystallinity and they have a cluster structure, and it was possible to form a film with a structure in which the clusters are mutually anchored (anchoring) between silicon clusters. .

【0029】結果として、被膜は実質的にグレインバウ
ンダリ(以下GBという)がないといってもよい状態を
呈する。キャリアは各クラスタ間をアンカリングされた
個所を通じ互いに容易に移動し得るため、いわゆるGBの
明確に存在する多結晶珪素よりも高いキャリア移動度と
なる。即ちホ−ル移動度(μh)=10〜200cm2
VSec、電子移動度(μe )=15〜300cm2 /V
Secが得られる。
As a result, the film exhibits a state in which it can be said that it is substantially free of grain boundaries (hereinafter referred to as GB). Since the carriers can easily move between the clusters through the anchored portions, the carrier mobility is higher than that of polycrystalline silicon in which so-called GB is clearly present. That is, hole mobility (μh) = 10 to 200 cm 2 /
VSec, electron mobility (μe) = 15 to 300 cm 2 / V
Sec is obtained.

【0030】この上に酸化珪素膜65をゲイト絶縁膜と
して500〜2000Å例えば1000Åの厚さに形成
した。これはブロッキング層としての酸化珪素膜の作製
と同一条件とした。この成膜中に弗素を少量添加し、ナ
トリウムイオンの固定化をさせてもよい。
A silicon oxide film 65 is formed thereon as a gate insulating film with a thickness of 500 to 2000 Å, for example 1000 Å. This was performed under the same conditions as the production of the silicon oxide film as the blocking layer. During this film formation, a small amount of fluorine may be added to immobilize sodium ions.

【0031】この後、この上側にリンが1〜5×1021cm
-3の濃度に入ったシリコン膜またはこのシリコン膜とそ
の上にモリブデン(Mo)、タングステン(W),MoSi2 または
WSi2との多層膜を形成した。これを第4のフォトマスク
P4にてパタ−ニングして図7(E) を得た。NTFT用
のゲイト電極66、PTFT用のゲイト電極67を形成
した。例えばチャネル長7μm、ゲイト電極としてリン
ド−プ珪素を0.2μm、その上にモリブデンを0.3
μmの厚さに形成した。
After this, 1 to 5 × 10 21 cm of phosphorus is placed on the upper side.
-3 concentration silicon film or this silicon film with molybdenum (Mo), tungsten (W), MoSi 2 or
A multilayer film with WSi 2 was formed. This was patterned with a fourth photomask P4 to obtain FIG. 7 (E). A gate electrode 66 for NTFT and a gate electrode 67 for PTFT were formed. For example, the channel length is 7 μm, the gate electrode is 0.2 μm of phosphorus-doped silicon, and 0.3 molybdenum is formed thereon.
It was formed to a thickness of μm.

【0032】また、ゲート電極材料としてアルミニウム
(Al)を用いた場合、これを第4のフォトマスクP4に
てパタ−ニング後、その表面を陽極酸化することで、セ
ルファライン工法が適用可能なため、ソース・ドレイン
のコンタクトホールをよりゲートに近い位置に形成する
ことが出来るため、移動度、スレッシュホールド電圧の
低減からさらにTFTの特性を上げることができる。
When aluminum (Al) is used as the gate electrode material, the self-alignment method can be applied by patterning this with the fourth photomask P4 and then anodizing the surface. Since the source / drain contact holes can be formed at positions closer to the gate, the characteristics of the TFT can be further improved by reducing the mobility and the threshold voltage.

【0033】かくすると、400℃以上にすべての工程
で温度を加えることがなくC/TFTを作ることができ
る。そのため、基板材料として、石英等の高価な基板を
用いなくてもよく、本発明の大画面の液晶表示装置にき
わめて適したプロセスであるといえる。
In this way, a C / TFT can be manufactured without applying a temperature above 400 ° C. in all steps. Therefore, an expensive substrate such as quartz does not have to be used as the substrate material, and it can be said that the process is extremely suitable for the large-screen liquid crystal display device of the present invention.

【0034】図7(F)において、層間絶縁物68を前
記したスパッタ法により酸化珪素膜の形成として行っ
た。この酸化珪素膜の形成はLPCVD法、光CVD
法、常圧CVD法を用いてもよい。例えば0.2〜0.
6μmの厚さに形成し、その後、第5のフォトマスクP
5を用いて電極用の窓79を形成した。その後、さら
に、これら全体にアルミニウムを0.3μmの厚みにス
パッタ法により形成し第6のフォトマスクP6を用いて
リ−ド74およびコンタクト73、75を作製した後、
表面を平坦化用有機樹脂77例えば透光性ポリイミド樹
脂を塗布形成し、再度の電極穴あけを第7のフォトマス
クP7にて行った。さらに、これら全体にITO(イン
ジウム酸化錫)を0.1μmの厚みにスパッタ法により
形成し第8のフォトマスクP8を用いて画素電極71を
形成した。このITOは室温〜150℃で成膜し、20
0〜400℃の酸素または大気中のアニ−ルにより成就
した。
In FIG. 7F, the inter-layer insulator 68 was formed as a silicon oxide film by the above-mentioned sputtering method. This silicon oxide film is formed by LPCVD method, photo CVD method.
Method, atmospheric pressure CVD method may be used. For example, 0.2-0.
Formed to a thickness of 6 μm, and then a fifth photomask P
5 was used to form the window 79 for the electrode. After that, aluminum is further formed on the entire surface to a thickness of 0.3 μm by a sputtering method, and a lead 74 and contacts 73 and 75 are formed using a sixth photomask P6.
An organic resin 77 for flattening the surface, for example, a translucent polyimide resin was applied and formed, and the electrode hole was formed again using the seventh photomask P7. Further, ITO (Indium Tin Oxide) was formed on the whole of these by a sputtering method to a thickness of 0.1 μm, and the pixel electrode 71 was formed using the eighth photomask P8. This ITO film is formed at room temperature to 150 ° C.
Fulfilled by oxygen at 0-400 ° C or anneal in air.

【0035】得られたTFTの電気的な特性はPTFT
で移動度は40(cm2/Vs)、Vthは−5.9(V)で、
NTFTで移動度は80(cm2/Vs)、Vthは5.0
(V)であった。
The electric characteristics of the obtained TFT are PTFT.
The mobility is 40 (cm 2 / Vs), Vth is -5.9 (V),
Mobility is 80 (cm 2 / Vs) and Vth is 5.0 with NTFT
(V).

【0036】上記の様な方法に従って作製することによ
り液晶電気光学装置用の一方の基板を得ることが出来
た。
One substrate for a liquid crystal electro-optical device could be obtained by manufacturing according to the above method.

【0037】この液晶表示装置の電極等の配置の様子を
図6に示している。Nチャネル型薄膜トランジスタとP
チャネル型薄膜トランジスタとを第1の信号線3と第2
の信号線4のとの交差部に設けられている。このような
C/TFTを用いたマトリクス構成を有せしめた。NT
FT13は、ソース10の入力端のコンタクトを介し第
2の信号線4に連結され、ゲイト9は第1の信号線3に
連結されている。ドレイン12の出力端はコンタクトを
介して画素の電極17に連結している。
FIG. 6 shows the arrangement of electrodes and the like of this liquid crystal display device. N-channel thin film transistor and P
The channel type thin film transistor is connected to the first signal line 3 and the second signal line 3.
Are provided at the intersections of the signal lines 4 and. A matrix structure using such C / TFT is provided. NT
The FT 13 is connected to the second signal line 4 via the contact at the input end of the source 10, and the gate 9 is connected to the first signal line 3. The output end of the drain 12 is connected to the pixel electrode 17 via a contact.

【0038】他方、PTFT22はソース20の入力端
がコンタクトを介して第2の信号線4に連結され、ゲイ
ト21は信号線3に、ドレイン18の出力端はコンタク
トを介してNTFTと同様に画素電極17に連結してい
る。かかる構造を左右、上下に繰り返すことにより、6
40×480、1280×960といった大画素の液晶
表示装置とすることができる。本実施例では1920×
400とした。この様にして第1の基板を得た。
On the other hand, in the PTFT 22, the input end of the source 20 is connected to the second signal line 4 via the contact, the gate 21 is connected to the signal line 3, and the output end of the drain 18 is connected via the contact in the same manner as the NTFT. It is connected to the electrode 17. By repeating this structure horizontally and vertically, 6
A liquid crystal display device having a large pixel size of 40 × 480 and 1280 × 960 can be used. In this embodiment, 1920 ×
It was set to 400. Thus, the first substrate was obtained.

【0039】他方の基板の作製方法を図12に示す。ガ
ラス基板上にポリイミドに黒色顔料を混合したポリイミ
ド樹脂をスピンコート法を用いて1μmの厚みに成膜
し、第9のフォトマスクP9を用いてブラックストライ
プ81を作製した。その後、赤色顔料を混合したポリイ
ミド樹脂をスピンコート法を用いて1μmの厚みに成膜
し、第10のフォトマスクP10を用いて赤色フィルタ
ー83を作製した。同様にしてマスクP11、P12を
使用し、緑色フィルター85および青色フィルター86
を作製した。これらの作製中各フィルターは350℃に
て窒素中で60分の焼成を行なった。その後、やはりス
ピンコート法を用いて、レベリング層89を透明ポリイ
ミドを用いて制作した。
A method for manufacturing the other substrate is shown in FIG. A polyimide resin in which a black pigment was mixed with polyimide was formed on a glass substrate with a thickness of 1 μm by a spin coating method, and a black stripe 81 was formed using a ninth photomask P9. After that, a polyimide resin mixed with a red pigment was formed into a film with a thickness of 1 μm by a spin coating method, and a red filter 83 was manufactured using a tenth photomask P10. Similarly, the masks P11 and P12 are used, and the green filter 85 and the blue filter 86 are used.
Was produced. During manufacture of these filters, each filter was baked at 350 ° C. in nitrogen for 60 minutes. After that, the leveling layer 89 was made of transparent polyimide by using the spin coating method.

【0040】その後、これら全体にITO(インジュー
ム酸化錫)を0.1μmの厚みにスパッタ法により形成
し第5のフォトマスク91を用いて共通電極90を形成
した。このITOは室温〜150℃で成膜し、200〜
300℃の酸素または大気中のアニ−ルにより成就し、
第2の基板を得た。
After that, ITO (Indium Tin Oxide) was formed on the entire surface by sputtering to a thickness of 0.1 μm, and a common electrode 90 was formed using a fifth photomask 91. This ITO film is formed at room temperature to 150 ° C.
Achieved by oxygen at 300 ° C or annealing in the atmosphere,
A second substrate was obtained.

【0041】前記基板上に、オフセット法を用いて、ポ
リイミド前駆体を印刷し、非酸化性雰囲気たとえば窒素
中にて350℃1時間焼成を行った。その後、公知のラ
ビング法を用いて、ポリイミド表面を改質し、少なくと
も初期において、液晶分子を一定方向に配向させる手段
を設けた。
A polyimide precursor was printed on the substrate by the offset method, and baked at 350 ° C. for 1 hour in a non-oxidizing atmosphere such as nitrogen. Then, a known rubbing method was used to modify the surface of the polyimide, and a means for orienting liquid crystal molecules in a certain direction was provided at least in the initial stage.

【0042】その後、前記第一の基板と第二の基板によ
って、ネマチック液晶組成物を挟持し、周囲をエポキシ
性接着剤にて固定した。基板上のリードにTAB形状の
駆動ICと共通信号、電位配線を有するPCBを接続
し、外側に偏光板を貼り、透過型の液晶電気光学装置を
得た。
After that, the nematic liquid crystal composition was sandwiched between the first substrate and the second substrate, and the periphery was fixed with an epoxy adhesive. A TAB-shaped drive IC, a PCB having a common signal and a potential wiring were connected to the leads on the substrate, and a polarizing plate was attached to the outside to obtain a transmissive liquid crystal electro-optical device.

【0043】図8および図9に本実施例による電気光学
装置の概略構造図を示す。前記の工程にて得た液晶パネ
ル220を冷陰極管を3本配置した後部照明装置221
と組み合わせて設置を行った。その後、テレビ電波を受
信するチューナー223を接続し、電気光学装置として
完成させた。従来のCRT方式の電気光学装置と比べ
て、平面形状の装置となったために、壁等に設置するこ
とも出来る様になった。次に本発明を完結させるため
の、液晶電気光学装置の周辺回路の説明を図10を用い
て加える。
8 and 9 are schematic structural views of the electro-optical device according to this embodiment. The rear illumination device 221 in which the liquid crystal panel 220 obtained in the above process is arranged with three cold cathode tubes
It was installed in combination with. After that, a tuner 223 for receiving television radio waves was connected to complete the electro-optical device. Compared with the conventional CRT type electro-optical device, the device has a planar shape, so that it can be installed on a wall or the like. Next, the peripheral circuit of the liquid crystal electro-optical device for completing the present invention will be described with reference to FIG.

【0044】液晶電気光学装置のマトリクス回路に接続
された情報信号側配線350、351に駆動回路352
を接続した構成を取っている。駆動回路352は駆動周
波数系で分割すると2つの部分よりなっている。1つは
従来の駆動方式と同様のデーターラッチ回路系353、
これはデーター356を順に転送するための基本クロッ
クCLK355が主な構成であり、1ビット〜12ビッ
ト並列処理がおこなわれている。他の1つは本発明によ
る構成部分で、階調表示に必要な分割の割合に応じたク
ロック357とフリップフロップ回路358、カウンタ
ー360よりなっている。データーラッチ系353より
送られた階調表示データーに応じたバイポーラパルス発
生タイミングをカウンター360で作っている。さら
に、ラッチ回路の出口とデーターライン間361にΔt
→sinθ変換のROMテーブルを使用すると階調表示
データーがさらに細かく制御しやすくなることがわかっ
た。本発明で特徴としているところは、まさにこれらの
部分であり、駆動周波数を2種類とることによって、画
面書換えのフレーム数を変化させることなく、明快なデ
ジタル階調表示が可能になっていることにある。さらに
また、フレーム数の低下に伴うフリッカーの発生等が回
避できるものである。
A driving circuit 352 is connected to the information signal side wirings 350 and 351 connected to the matrix circuit of the liquid crystal electro-optical device.
It has a configuration in which is connected. The drive circuit 352 is composed of two parts when divided by the drive frequency system. One is a data latch circuit system 353 similar to the conventional drive system,
The main configuration of this is a basic clock CLK 355 for sequentially transferring the data 356, and 1-bit to 12-bit parallel processing is performed. The other one is a component according to the present invention, which is composed of a clock 357, a flip-flop circuit 358, and a counter 360 according to the ratio of division necessary for gradation display. The counter 360 makes a bipolar pulse generation timing according to the gradation display data sent from the data latch system 353. Furthermore, Δt is provided between the exit of the latch circuit and the data line 361.
It was found that the gradation display data can be controlled more finely by using the ROM table of → sin θ conversion. What is characteristic of the present invention is exactly these parts, and by adopting two kinds of drive frequencies, it is possible to perform clear digital gradation display without changing the number of frames for screen rewriting. is there. Furthermore, it is possible to avoid the occurrence of flicker due to the decrease in the number of frames.

【0045】かたや走査側の信号線363、362に接
続された駆動回路364は、正弦波発振回路365より
伝達した正弦波をクロックCLK367のフリップフロ
ップ回路366で制御し、選択信号を加える。
On the other hand, the drive circuit 364 connected to the signal lines 363 and 362 on the scanning side controls the sine wave transmitted from the sine wave oscillating circuit 365 by the flip-flop circuit 366 of the clock CLK 367 and adds a selection signal.

【0046】このようにして、走査線側の正弦波を情報
線側のバイポーラパルスによって、切り取るタイミング
をデジタル的に電圧制御することで、階調表示を可能に
している。
In this manner, gradation display is enabled by digitally voltage-controlling the timing of cutting the sine wave on the scanning line side by the bipolar pulse on the information line side.

【0047】例えば1920×400ドットの768,
000組のTFTを300mm角に作成した液晶電気光
学装置に対し通常のアナログ的な階調表示を行った場
合、TFTの特性ばらつきが約±10%存在するため
に、16階調表示が限界であった。しかしながら、本発
明によるデジタル階調表示をおこなった場合、TFT素
子の特性ばらつきの影響を受けにくいために、64階調
表示まで可能になりカラー表示では262,144色の
多彩であり微妙な色彩の表示が実現できている。
For example, 1920 × 400 dot 768,
When a normal analog gray scale display is performed on a liquid crystal electro-optical device in which 000 sets of TFTs are formed in a 300 mm square, 16 gray scale display is limited because there is about ± 10% variation in TFT characteristics. there were. However, when the digital gradation display according to the present invention is performed, since it is not easily affected by the characteristic variation of the TFT element, it is possible to display up to 64 gradations, and in the color display, there are 262,144 colorful and delicate colors. The display is realized.

【0048】『実施例2』本実施例では、対角1インチ
を有する液晶電気光学装置を用いた、ビデオカメラ用ビ
ューファインダーを作製し、本発明を実施したので説明
を加える。なお、本実施例における図面の符号の説明に
おいて、実施例と同じ部分は実施例1と同じ部分を示
す。
[Embodiment 2] In this embodiment, a viewfinder for a video camera using a liquid crystal electro-optical device having a diagonal of 1 inch was manufactured and the present invention was carried out. In the description of the reference numerals of the drawings in this embodiment, the same parts as those in the embodiment are the same as those in the first embodiment.

【0049】本実施例では、画素数が387×128の
構成にして、低温プロセスによる高移動度TFTを用い
た素子を形成し、ビューファインダーを構成した。本実
施例で使用する液晶表示装置の基板上のアクティブ素子
の配置の様子を図13に示し図13のA−A’断面およ
びB−B’断面を示す作製プロセスを図14に描く。
In this embodiment, a viewfinder is constructed by forming a device using a high-mobility TFT by a low temperature process with a structure of 387 × 128 pixels. FIG. 13 shows the arrangement of the active elements on the substrate of the liquid crystal display device used in this example, and FIG. 14 shows the manufacturing process showing the AA ′ cross section and the BB ′ cross section of FIG.

【0050】図14(A)において、安価な、700℃
以下、例えば約600℃の熱処理に耐え得るガラス50
上にマグネトロンRF(高周波) スパッタ法を用いてブ
ロッキング層51としての酸化珪素膜を1000〜30
00Åの厚さに作製する。プロセス条件は酸素100%
雰囲気、成膜温度150℃、出力400〜800W、圧
力0.5Paとした。タ−ゲットに石英または単結晶シ
リコンを用いた成膜速度は30〜100Å/分であっ
た。
In FIG. 14 (A), inexpensive, 700 ° C.
Hereinafter, for example, glass 50 that can withstand heat treatment at about 600 ° C.
A silicon oxide film as the blocking layer 51 is formed on the upper surface by a magnetron RF (radio frequency) sputtering method to a thickness of 1000 to 30.
Fabricate to a thickness of 00Å. Process conditions are 100% oxygen
The atmosphere, the film forming temperature was 150 ° C., the output was 400 to 800 W, and the pressure was 0.5 Pa. The film formation rate using quartz or single crystal silicon for the target was 30 to 100 Å / min.

【0051】この上にシリコン膜をLPCVD(減圧気
相)法、スパッタ法またはプラズマCVD法により形成
した。減圧気相法で形成する場合、結晶化温度よりも1
00〜200℃低い450〜550℃、例えば530℃
でジシラン(Si2H6) またはトリシラン(Si3H8) をCVD
装置に供給して成膜した。反応炉内圧力は30〜300
Paとした。成膜速度は50〜250Å/ 分であった。
PTFTとNTFTとのスレッシュホ−ルド電圧(Vt
h)に概略同一に制御するため、ホウ素をジボランを用
いて1×1015〜1×1018cm-3の濃度として成膜中に添加
してもよい。
A silicon film was formed thereon by LPCVD (Low Pressure Vapor Phase) method, sputtering method or plasma CVD method. When forming by the reduced pressure vapor phase method, it is 1
450-550 ° C, which is low by 00-200 ° C, for example, 530 ° C
CVD of disilane (Si 2 H 6 ) or trisilane (Si 3 H 8 )
The film was supplied to the apparatus to form a film. The reactor pressure is 30-300
It was Pa. The film forming rate was 50 to 250 Å / min.
Threshold voltage (Vt) between PTFT and NTFT
In order to control the concentration to be substantially the same as that of h), boron may be added during the film formation with diborane at a concentration of 1 × 10 15 to 1 × 10 18 cm −3 .

【0052】スパッタ法で行う場合、スパッタ前の背圧
を1×10-5Pa以下とし、単結晶シリコンをタ−ゲット
として、アルゴンに水素を20〜80%混入した雰囲気
で行った。例えばアルゴン20%、水素80%とした。
成膜温度は150℃、周波数は13.56MHz、スパ
ッタ出力は400〜800W、圧力は0.5Paであっ
た。
When the sputtering method is used, the back pressure before the sputtering is set to 1 × 10 -5 Pa or less, the single crystal silicon is used as the target, and the atmosphere is mixed with 20% to 80% of hydrogen in argon. For example, argon is 20% and hydrogen is 80%.
The film forming temperature was 150 ° C., the frequency was 13.56 MHz, the sputter output was 400 to 800 W, and the pressure was 0.5 Pa.

【0053】プラズマCVD法により珪素膜を作製する
場合、温度は例えば300℃とし、モノシラン(SiH4)ま
たはジシラン(Si2H6) を用いた。これらをPCVD装置
内に導入し、13.56MHzの高周波電力を加えて成
膜した。
When a silicon film is formed by the plasma CVD method, the temperature is set to 300 ° C., and monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used. These were introduced into a PCVD apparatus, and high-frequency power of 13.56 MHz was applied to form a film.

【0054】これらの方法によって形成された被膜は、
酸素が5×1021cm-3以下であることが好ましい。この酸
素濃度が高いと、結晶化させにくく、熱アニ−ル温度を
高くまたは熱アニ−ル時間を長くしなければならない。
また少なすぎると、バックライトによりオフ状態のリ−
ク電流が増加してしまう。そのため4×1019〜4×1021
cm-3の範囲とした。水素は4×1020cm-3であり、珪素4
×1022cm-3として比較すると1原子%であった。
The coatings formed by these methods are
It is preferable that oxygen is 5 × 10 21 cm −3 or less. If this oxygen concentration is high, it is difficult to crystallize and the thermal annealing temperature must be high or the thermal annealing time must be long.
If it is too small, the backlight will turn off the light.
The current will increase. Therefore 4 × 10 19 to 4 × 10 21
The range was cm -3 . Hydrogen is 4 × 10 20 cm -3 and silicon 4
When compared with x10 22 cm -3 , it was 1 atom%.

【0055】上記方法によって、アモルファス状態の珪
素膜を500〜5000Å、例えば1500Åの厚さに
作製の後、450〜700℃の温度にて12〜70時間
非酸化物雰囲気にて中温の加熱処理、例えば水素雰囲気
下にて600℃の温度で保持した。珪素膜の下の基板表
面にアモルファス構造の酸化珪素膜が形成されているた
め、この熱処理で特定の結晶核が形成されず、全体が均
一に加熱アニ−ルされる。即ち、成膜時はアモルファス
構造を有し、また水素は単に混入しているのみである。
By the above method, a silicon film in an amorphous state is formed to a thickness of 500 to 5000 Å, for example 1500 Å, and then a heat treatment of a medium temperature in a non-oxide atmosphere at a temperature of 450 to 700 ° C. for 12 to 70 hours, For example, it was held at a temperature of 600 ° C. in a hydrogen atmosphere. Since a silicon oxide film having an amorphous structure is formed on the surface of the substrate below the silicon film, no specific crystal nuclei are formed by this heat treatment, and the whole is annealed uniformly. That is, it has an amorphous structure at the time of film formation, and hydrogen is simply mixed therein.

【0056】アニ−ルにより、珪素膜はアモルファス構
造から秩序性の高い状態に移り、一部は結晶状態を呈す
る。特にシリコンの成膜後の状態で比較的秩序性の高い
領域は特に結晶化をして結晶状態となろうとする。しか
しこれらの領域間に存在する珪素により互いの結合がな
されるため、珪素同志は互いにひっぱりあう。レ−ザラ
マン分光により測定すると単結晶の珪素のピ−ク522
cm-1より低周波側にシフトしたピ−クが観察される。そ
れの見掛け上の粒径は半値巾から計算すると、50〜5
00Åとマイクロクリスタルのようになっているが、実
際はこの結晶性の高い領域は多数あってクラスタ構造を
有し、各クラスタ間は互いに珪素同志で結合(アンカリ
ング) がされたセミアモルファス構造の被膜を形成させ
ることができた。
The annealing causes the silicon film to shift from an amorphous structure to a highly ordered state, and a part thereof assumes a crystalline state. In particular, a region having a relatively high degree of ordering after the film formation of silicon tends to be crystallized and become a crystalline state. However, since silicon existing between these regions is bonded to each other, the silicon members pull each other. Peak 522 of single crystal silicon as measured by laser Raman spectroscopy
Peaks shifted to lower frequencies than cm -1 are observed. The apparent particle size is 50 to 5 when calculated from the full width at half maximum.
Although it is a microcrystal like 00Å, in reality there are many highly crystalline regions with a cluster structure, and each cluster has a semi-amorphous structure in which silicon is bonded (anchoring) with each other. Could be formed.

【0057】結果として、被膜は実質的にグレインバウ
ンダリ(以下GBという)がないといってもよい状態を
呈する。キャリアは各クラスタ間をアンカリングされた
個所を通じ互いに容易に移動し得るため、いわゆるGBの
明確に存在する多結晶珪素よりも高いキャリア移動度と
なる。即ちホ−ル移動度(μh)=10〜200cm2
VSec、電子移動度(μe )=15〜300cm2 /V
Secが得られる。
As a result, the coating is in a state in which it can be said that there is substantially no grain boundary (hereinafter referred to as GB). Since the carriers can easily move between the clusters through the anchored portions, the carrier mobility is higher than that of polycrystalline silicon in which so-called GB is clearly present. That is, hole mobility (μh) = 10 to 200 cm 2 /
VSec, electron mobility (μe) = 15 to 300 cm 2 / V
Sec is obtained.

【0058】他方、上記の如き中温でのアニ−ルではな
く、900〜1200℃の高温アニ−ルにより被膜を多
結晶化すると、核からの固相成長により被膜中の不純物
の偏析がおきて、GBには酸素、炭素、窒素等の不純物
が多くなり、結晶中の移動度は大きいが、GBでのバリ
ア(障壁)を作ってそこでのキャリアの移動を阻害して
しまう。結果として10cm2/Vsec以上の移動度がなかな
か得られないのが実情である。即ち、本実施例ではかく
の如き理由により、セミアモルファスまたはセミクリス
タル構造を有するシリコン半導体を用いている。
On the other hand, when the film is polycrystallized by a high temperature anneal of 900 to 1200 ° C. instead of the anneal at a medium temperature as described above, segregation of impurities in the film occurs due to solid phase growth from nuclei. , GB have a large amount of impurities such as oxygen, carbon, and nitrogen, and have a large mobility in the crystal, but they form a barrier in GB and hinder the movement of carriers there. As a result, it is difficult to obtain a mobility of 10 cm 2 / Vsec or more. That is, in this embodiment, the silicon semiconductor having the semi-amorphous or semi-crystal structure is used for the reason as described above.

【0059】図14(A) において、珪素膜を第1のフォ
トマスクにてフォトエッチングを施し、NTFT用の
領域141(チャネル巾20μm)を図面のA−A’断面
側に、PTFT用の領域142をB−B’断面側に作製
した。
In FIG. 14A, the silicon film is photoetched using a first photomask, and an NTFT region 141 (channel width 20 μm) is formed on the AA ′ cross section side of the drawing, and a PTFT region. 142 was produced on the BB ′ cross section side.

【0060】この上に酸化珪素膜をゲイト絶縁膜として
500〜2000Å例えば1000Åの厚さに形成し
た。これはブロッキング層としての酸化珪素膜の作製と
同一条件とした。この成膜中に弗素を少量添加し、ナト
リウムイオンの固定化をさせてもよい。
A silicon oxide film was formed thereon as a gate insulating film to a thickness of 500 to 2000Å, for example, 1000Å. This was performed under the same conditions as the production of the silicon oxide film as the blocking layer. During this film formation, a small amount of fluorine may be added to immobilize sodium ions.

【0061】この後、この上側にリンが1〜5×1021cm
-3の濃度に入ったシリコン膜またはこのシリコン膜とそ
の上にモリブデン(Mo)、タングステン(W),MoSi2 または
WSi2との多層膜を形成した。これを第2のフォトマスク
にてパタ−ニングして図14(B) を得た。NTFT用
のゲイト電極9、PTFT用のゲイト電極21を形成し
た。本実施例にでは、NTFT用チャネル長は10μ
m、PTFT用チャネル長は7μm、ゲイト電極として
リンド−プ珪素を0.2μm、その上にモリブデンを
0.3μmの厚さに形成した。 図14(C)におい
て、PTFT用のソ−ス18ドレイン20に対し、ホウ
素を1〜5×1015cm-2のド−ズ量でイオン注入法によ
り添加した。 次に図14(D)の如く、フォトレジス
ト61をフォトマスクを用いて形成した。NTFT用
のソ−ス10、ドレイン12としてリンを1〜5×10
15cm-2のドーズ量でイオン注入法により添加した。
After this, 1-5 × 10 21 cm of phosphorus is placed on the upper side.
-3 concentration silicon film or this silicon film with molybdenum (Mo), tungsten (W), MoSi 2 or
A multilayer film with WSi 2 was formed. This was patterned with a second photomask to obtain FIG. 14 (B). A gate electrode 9 for NTFT and a gate electrode 21 for PTFT were formed. In this embodiment, the NTFT channel length is 10 μm.
m, the channel length for the PTFT is 7 μm, the gate electrode is made of 0.2 μm of phosphorus-doped silicon, and molybdenum is formed thereon to a thickness of 0.3 μm. In FIG. 14 (C), the source for the PTFT - to scan 18 drain 20, de of boron 1~5 × 10 15 cm -2 - was added by ion implantation in amount's. Next, as shown in FIG. 14D, a photoresist 61 was formed using a photomask. Phosphorus 1-5 × 10 as source 10 and drain 12 for NTFT
It was added by the ion implantation method at a dose amount of 15 cm -2 .

【0062】また、ゲート電極材料としてアルミニウム
(Al)を用いた場合、これを第2のフォトマスクにて
パタ−ニング後、その表面を陽極酸化することで、セル
ファライン工法が適用可能なため、ソース・ドレインの
コンタクトホールをよりゲートに近い位置に形成するこ
とが出来るため、移動度、スレッシュホールド電圧の低
減からさらにTFTの特性を上げることができる。
When aluminum (Al) is used as the gate electrode material, the self-alignment method can be applied by patterning this with a second photomask and then anodizing its surface. Since the source / drain contact hole can be formed at a position closer to the gate, the characteristics of the TFT can be further improved by reducing the mobility and the threshold voltage.

【0063】次に、600℃にて10〜50時間再び加
熱アニ−ルを行った。NTFTのソ−ス10、ドレイン
12、PTFTのソ−ス18、ドレイン20を不純物を
活性化してP+ 、N+ として作製した。またゲイト電極
21、9下にはチャネル形成領域19、11がセミアモ
ルファス半導体として形成されている。
Next, heating anneal was performed again at 600 ° C. for 10 to 50 hours. The source 10 and the drain 12 of the NTFT, the source 18 and the drain 20 of the PTFT were produced as P + and N + by activating impurities. Channel forming regions 19 and 11 are formed as semi-amorphous semiconductors below the gate electrodes 21 and 9.

【0064】かくすると、セルフアライン方式でありな
がらも、700℃以上にすべての工程で温度を加えるこ
とがなくC/TFTを作ることができる。そのため、基
板材料として、石英等の高価な基板を用いなくてもよ
く、本発明の大画素の液晶表示装置にきわめて適したプ
ロセスである。
By doing so, it is possible to fabricate a C / TFT without applying a temperature above 700 ° C. in all steps even though it is a self-aligned method. Therefore, it is not necessary to use an expensive substrate such as quartz as the substrate material, and the process is very suitable for the large-pixel liquid crystal display device of the present invention.

【0065】本実施例では熱アニ−ルは図14(A)、
(D)で2回行った。しかし図14(A)のアニ−ルは
求める特性により省略し、双方を図14(D)のアニ−
ルにより兼ね製造時間の短縮を図ってもよい。図14
(E)において、層間絶縁物65を前記したスパッタ法
により酸化珪素膜の形成として行った。この酸化珪素膜
の形成はLPCVD法、光CVD法、常圧CVD法を用
いてもよい。例えば0.2〜0.6μmの厚さに形成
し、その後、フォトマスクを用いて電極用の窓79を
形成した。さらに、図14(F)に示す如くこれら全体
にアルミニウムをスパッタ法により形成し、リ−ド7
4、およびコンタクト75をフォトマスクを用いて作
製した後、表面を平坦化用有機樹脂77例えば透光性ポ
リイミド樹脂を塗布形成し、再度の電極穴あけをフォト
マスクにて行った。
In this embodiment, the thermal anneal is shown in FIG.
Done twice in (D). However, the anneal shown in FIG. 14 (A) is omitted depending on the desired characteristics, and both are omitted from the anneal shown in FIG. 14 (D).
The manufacturing time may be shortened depending on the requirements. 14
In (E), the interlayer insulator 65 was formed as a silicon oxide film by the above-described sputtering method. The silicon oxide film may be formed by using the LPCVD method, the photo CVD method, or the atmospheric pressure CVD method. For example, it is formed to a thickness of 0.2 to 0.6 μm, and then a window 79 for an electrode is formed using a photomask. Further, as shown in FIG. 14 (F), aluminum is formed on the whole by sputtering, and the lead 7
4 and the contact 75 were formed using a photomask, an organic resin 77 for flattening the surface was applied and formed on the surface, and another hole for the electrode was formed using the photomask.

【0066】2つのTFTを相補型構成とし、かつその
出力端を液晶装置の一方の画素の電極を透明電極として
それに連結するため、スパッタ法によりITO(インジ
ュ−ム・スズ酸化膜)を形成した。それをフォトマスク
によりエッチングし、電極17を構成させた。このI
TOは室温〜150℃で成膜し、200〜400℃の酸
素または大気中のアニ−ルにより成就した。かくの如く
にしてNTFT13とPTFT22と透明導電膜の電極
17とを同一ガラス基板50上に作製した。得られたT
FTの電気的な特性はPTFTで移動度は20(cm2/V
s)、Vthは−5.9(V)で、NTFTで移動度は4
0(cm2/Vs)、Vthは5.0(V)であった。
ITO (indium tin oxide film) was formed by the sputtering method in order to connect two TFTs with a complementary structure and to connect the output terminal thereof to the electrode of one pixel of the liquid crystal device as a transparent electrode. . It was etched with a photomask to form the electrode 17. This I
The TO film was formed at room temperature to 150 ° C. and was accomplished by oxygen at 200 to 400 ° C. or anneal in the atmosphere. In this way, the NTFT 13, the PTFT 22, and the transparent conductive film electrode 17 were formed on the same glass substrate 50. Obtained T
The electrical characteristics of FT are PTFT and the mobility is 20 (cm 2 / V
s), Vth is -5.9 (V), and the mobility is 4 with NTFT.
It was 0 (cm 2 / Vs) and Vth was 5.0 (V).

【0067】上記の様な方法に従って液晶装置用の一方
の基板を作製した。この液晶表示装置の電極等の配置の
様子を図13に示している。NTFT13およびPTF
T22を第1の信号線3と第2の信号線4との交差部に
設けた。このようなC/TFTを用いたマトリクス構成
を有せしめた。NTFT13は、ドレイン10の入力端
のコンタクトを介し第2の信号線4に連結され、ゲイト
9は多層配線形成がなされた信号線3に連結されてい
る。ソ−ス12の出力端はコンタクトを介して画素の電
極17に連結している。
One substrate for a liquid crystal device was manufactured according to the method as described above. FIG. 13 shows the arrangement of electrodes and the like of this liquid crystal display device. NTFT13 and PTF
T22 is provided at the intersection of the first signal line 3 and the second signal line 4. A matrix structure using such C / TFT is provided. The NTFT 13 is connected to the second signal line 4 via the contact at the input end of the drain 10, and the gate 9 is connected to the signal line 3 in which the multilayer wiring is formed. The output end of the source 12 is connected to the pixel electrode 17 via a contact.

【0068】他方、PTFT22はドレイン20の入力
端がコンタクトを介して第2の信号線4に連結され、ゲ
イト21は信号線3に、ソ−ス18の出力端はコンタク
トを介してNTFTと同様に画素電極17に連結してい
る。かかる構造を左右、上下に繰り返すことにより、本
実施例は構成されている。
On the other hand, in the PTFT 22, the input end of the drain 20 is connected to the second signal line 4 via a contact, the gate 21 is connected to the signal line 3, and the output end of the source 18 is connected via a contact like an NTFT. Is connected to the pixel electrode 17. This embodiment is constructed by repeating such a structure horizontally and vertically.

【0069】次に第二の基板として、青板ガラス上にス
パッタ法を用いて、酸化珪素膜を2000Å積層した基
板上に、やはり スパッタ法によりITO(インジュ−
ム・スズ酸化膜)を形成した。このITOは室温〜15
0℃で成膜し、200〜400℃の酸素または大気中の
アニ−ルにより成就した。また、この基板上に『実施例
1』と同様の手法を用いたカラーフィルターを形成し
て、第二の基板とした。前記基板上に、オフセット法を
用いて、ポリイミド前駆体を印刷し、非酸化性雰囲気た
とえば窒素中にて350℃1時間焼成を行った。その
後、公知のラビング法を用いて、ポリイミド表面を改質
し、少なくとも初期において、液晶分子を一定方向に配
向させる手段を設けて第一および第二の基板とした。
Next, as a second substrate, ITO (injected) was also formed on the substrate in which a silicon oxide film was laminated in 2000 liters on a soda-lime glass by the sputtering method.
A tin oxide film) was formed. This ITO is room temperature ~ 15
The film was formed at 0 ° C. and was accomplished by oxygen at 200 to 400 ° C. or annealing in the atmosphere. A color filter was formed on this substrate using the same method as in "Example 1" to obtain a second substrate. A polyimide precursor was printed on the substrate using an offset method, and baked at 350 ° C. for 1 hour in a non-oxidizing atmosphere such as nitrogen. After that, a known rubbing method was used to modify the surface of the polyimide, and at least in the initial stage, a means for orienting liquid crystal molecules in a certain direction was provided to obtain first and second substrates.

【0070】その後、前記第一の基板と第二の基板によ
って、ネマチック液晶組成物を挟持し、周囲をエポキシ
性接着剤にて固定した。基板上のリードはそのピッチが
46μmと微細なため、COG法を用いて接続をおこな
った。本実施例ではICチップ上に設けた金バンプをエ
ポキシ系の銀パラジウム樹脂で接続し、ICチップと基
板間を固着と封止を目的としたエポキシ変成アクリル樹
脂にて埋めて固定する方法を用いた。その後、外側に偏
光板を貼り、透過型の液晶表示装置を得た。
Then, the nematic liquid crystal composition was sandwiched between the first substrate and the second substrate, and the periphery was fixed with an epoxy adhesive. Since the pitch of the leads on the substrate was as fine as 46 μm, the COG method was used for connection. In this embodiment, the gold bumps provided on the IC chip are connected by an epoxy-based silver-palladium resin, and the IC chip and the substrate are embedded and fixed by epoxy modified acrylic resin for the purpose of fixing and sealing. I was there. After that, a polarizing plate was attached to the outside to obtain a transmissive liquid crystal display device.

【0071】図15(a)に本実施例で用いた駆動波形
を示す。実施例1に用いた正弦波に代わりランプ波形を
用いた。ランプ波は構成が簡単なうえ、階調データーか
らΔtへの変換が容易な点に長所を有する。図15
(a)では、図1と同様に、画素にかかるアナログ電圧
をデジタル的に得ることができるが、例えば、画素Aで
は低い電圧ながら、画素に電圧がかかっている時間は長
く、逆に画素Bでは高い電圧がかかるものの、その時間
は画素Aに比べて短い。このため、視覚的には画素Aと
画素Bの濃淡の差が予定したものより小さくなる場合が
ある。その困難を克服するためには図15(b)に示す
ようにVDD1 とVDD2 のいずれにも電圧のかからない時
間を電圧のかかる時間に比して大きくとればよい。例え
ば、その時間を電圧のかかる時間と同じだけにすれば、
理論的には各画素に電圧がかかる最長時間は最短時間の
3倍であり、実際には2倍程度である。さらに、図16
(b)のように、VDD1 、VDD2 のいずれにも電圧のか
からない時間を電圧のかかる時間の2倍とすれば、例え
ば、画素Aは、画素Bに比べて40%だけ長く電圧がか
かっているにすぎない。よって、画素の電圧とは別に、
画素にかかっている電圧による視覚的な濃淡のエラーは
大きく改善されうる。
FIG. 15A shows the drive waveform used in this embodiment. Instead of the sine wave used in Example 1, a ramp waveform was used. The ramp wave has an advantage in that the structure is simple and that the gradation data can be easily converted into Δt. Figure 15
In (a), as in FIG. 1, the analog voltage applied to the pixel can be digitally obtained. For example, in the pixel A, although the voltage is low, the time during which the voltage is applied to the pixel is long, and conversely, the pixel B is applied. However, although a high voltage is applied, the time is shorter than that of the pixel A. Therefore, visually, the difference in shade between the pixel A and the pixel B may be smaller than expected. In order to overcome the difficulty, as shown in FIG. 15B, the time when no voltage is applied to both V DD1 and V DD2 may be set larger than the time when a voltage is applied. For example, if you set the time to be the same as the voltage
Theoretically, the longest time that a voltage is applied to each pixel is three times the shortest time, and actually about twice. Furthermore, FIG.
As shown in (b), if the time during which no voltage is applied to V DD1 or V DD2 is set twice as long as the time during which voltage is applied, for example, pixel A is applied 40% longer than pixel B. It ’s just that. Therefore, apart from the pixel voltage,
The visual shading error due to the voltage applied to the pixel can be greatly improved.

【0072】図16に本実施例によるビューファインダ
ーの構成図を示す。本実施例においては、前記方法にて
作製した液晶電気光学装置370を用いた。
FIG. 16 is a block diagram of the viewfinder according to this embodiment. In this example, the liquid crystal electro-optical device 370 manufactured by the above method was used.

【0073】例えば384×128ドットの49,15
2組のTFTを50mm角(300mm角基板から36
枚の多面取り)に作成した液晶電気光学装置に対し通常
のアナログ的な階調表示を行った場合、TFTの特性ば
らつきが約±10%存在するために、16階調表示が限
界であった。しかしながら、本発明によるデジタル階調
表示をおこなった場合、TFT素子の特性ばらつきの影
響を受けにくいために、128階調表示まで可能になり
カラー表示では2,097,152色の多彩であり微妙
な色彩の表示が実現できている。
For example, 49,15 of 384 × 128 dots
Two sets of TFT are 50mm square (36mm from 300mm square substrate)
When a normal analog gradation display is performed on a liquid crystal electro-optical device formed in a multi-layered manner, 16 gradation display is the limit because there is about ± 10% variation in TFT characteristics. . However, when the digital gray scale display according to the present invention is performed, it is possible to display up to 128 gray scales because it is not easily affected by the characteristic variation of the TFT element, and in the color display, 2,097,152 colors are various and delicate. Color display is realized.

【0074】『実施例3』本実施例では、図17に示す
様なプロジェクション型画像表示装置を作製したので説
明を加える。
[Embodiment 3] In this embodiment, a projection type image display device as shown in FIG. 17 was produced, and therefore, description will be added.

【0075】本実施例では3枚の液晶電気光学装置20
1を使用して、プロジェクション型画像表示装置用造映
部を組み立てている。その一つ一つは640×480ド
ットの構成を有し、対角4インチの中に307,200
画素を作製した。1画素当りの大きさは127μm角と
した。
In this embodiment, three liquid crystal electro-optical devices 20 are used.
1 is used to assemble a projection type image display device projection unit. Each of them has a structure of 640 × 480 dots, and 307,200 in a diagonal of 4 inches.
Pixels were made. The size per pixel was 127 μm square.

【0076】プロジェクション型画像表示装置の構成と
して、液晶電気光学装置201を光の3原色である赤・
緑・青色用に分割して設置しており、赤色フィルター2
02、緑色フィルター203、青色フィルター204
と、反射板205、プリズムミラー206、207と1
50Wのメタルハライド系光源208とフォーカス用光
学系209より構成されている。
As the configuration of the projection type image display device, the liquid crystal electro-optical device 201 is used as the three primary colors of light.
Separately installed for green and blue, red filter 2
02, green filter 203, blue filter 204
And reflector plate 205, prism mirrors 206, 207 and 1
It is composed of a 50 W metal halide light source 208 and a focusing optical system 209.

【0077】本実施例の電気光学装置に用いた液晶電気
光学装置の基板は、『実施例2』にて作製したものと同
様の工程を用い、C/MOS構成のマトリクス回路を有
する基板とした。
The substrate of the liquid crystal electro-optical device used in the electro-optical device of this example was a substrate having a matrix circuit of C / MOS structure, using the same steps as those manufactured in "Example 2". .

【0078】図18に構造の概略を示す。該基板上21
0に、フマル酸系高分子樹脂とネマチック液晶を65:
35の割合で共通溶媒であるキシレンに溶解させた混合
物をダイキャスト法を用いて10μmの厚さに形成し
た。その後窒素雰囲気中120℃で180分で溶媒を取
り除いて液晶分散層211を形成した。この場合、大気
圧よりも若干減圧にすると、タクトタイムの短縮がはか
れることがわかった。
FIG. 18 shows a schematic structure. On the substrate 21
Fumaric acid-based polymer resin and nematic liquid crystal 65:
The mixture dissolved in xylene, which is a common solvent, in a ratio of 35 was formed into a thickness of 10 μm by a die casting method. After that, the solvent was removed in a nitrogen atmosphere at 120 ° C. for 180 minutes to form a liquid crystal dispersion layer 211. In this case, it was found that the takt time can be shortened by slightly reducing the pressure from the atmospheric pressure.

【0079】その後、スパッタ法によりITO(インジ
ュ−ム・スズ酸化膜)を形成し、対向電極212を得
た。このITOは室温〜150℃で成膜した。その後印
刷法を用いて、透光性のシリコン樹脂を30μmの厚み
で塗布し、100℃で30分焼成し、液晶電気光学装置
を得た。
Then, ITO (indium tin oxide film) was formed by the sputtering method to obtain the counter electrode 212. This ITO was formed at room temperature to 150 ° C. Then, using a printing method, a translucent silicone resin was applied to a thickness of 30 μm and baked at 100 ° C. for 30 minutes to obtain a liquid crystal electro-optical device.

【0080】本実施例に用いた駆動用ICの機能構成を
図19に示す。情報電極側の構成は『実施例1』と同様
である。走査側配線406、407に接続された駆動回
路400は、ランプ波発振回路405より伝達したラン
プ波をクロックCLK408のフリップフロップ回路4
03、404で制御し、選択信号を加える。
FIG. 19 shows the functional structure of the driving IC used in this embodiment. The configuration on the information electrode side is the same as in "Example 1". The drive circuit 400 connected to the scan side wirings 406 and 407 outputs the ramp wave transmitted from the ramp wave oscillation circuit 405 to the flip-flop circuit 4 of the clock CLK 408.
Control by 03 and 404, and a selection signal is added.

【0081】このようにして、走査線側のランプ波を情
報線側のバイポーラパルスによって、切り取るタイミン
グをデジタル的に電圧制御することで、階調表示を可能
にしている。
In this way, gradation display is enabled by digitally voltage-controlling the timing of cutting the ramp wave on the scanning line side by the bipolar pulse on the information line side.

【0082】例えば640×480ドットの307,2
00組のTFTを300mm角に作成した液晶電気光学
装置に対し通常のアナログ的な階調表示を行った場合、
TFTの特性ばらつきが約±10%存在するために、1
6階調表示が限界であった。しかしながら、本発明によ
るデジタル階調表示をおこなった場合、TFT素子の特
性ばらつきの影響を受けにくいために、256階調表示
まで可能になりカラー表示ではなんと16,777,2
16色の多彩であり微妙な色彩の表示が実現できてい
る。
For example, 307 × 2 of 640 × 480 dots
When normal analog gradation display is performed on a liquid crystal electro-optical device in which 00 sets of TFTs are formed in a 300 mm square,
Since there is about ± 10% variation in TFT characteristics, 1
6 gradation display was the limit. However, when the digital gray scale display according to the present invention is performed, it is possible to display up to 256 gray scales because it is hardly affected by the characteristic variation of the TFT element, and the color display is 16,777,2.
A wide variety of 16 colors and subtle colors can be displayed.

【0083】テレビ映像の様なソフトを映す場合、例え
ば同一色からなる『岩』でもその微細な窪み等にあたる
光の加減から微妙に色合いが異なる。自然の色彩に近い
表示を行おうとした場合、16階調では困難を要し、こ
れらの微妙な窪みの表現には向かない。本発明による階
調表示によって、これらの微細な色調の変化を付けるこ
とが可能になった。
In the case of displaying software such as a television image, for example, even "rock" of the same color has a slightly different shade due to the adjustment of the light hitting the minute depressions. If an attempt is made to display a color that is close to the natural color, 16 gradations are difficult and it is not suitable for expressing these subtle depressions. The gradation display according to the present invention makes it possible to impart these minute color tone changes.

【0084】この液晶電気光学は、図17に示したフロ
ント型のプロジェクションテレビだけでなく、リヤ型の
プロジェクションテレビにも使用が出来る。
The liquid crystal electro-optics can be used not only for the front type projection television shown in FIG. 17 but also for the rear type projection television.

【0085】『実施例4』本実施例では、図20に示す
ような反射型の液晶分散型表示装置を用いて、携帯用コ
ンピューター用電気光学装置を作製したので説明を加え
る。本実施例に使用した第一の基板は、『実施例1』と
同一工程で作成した物を用いた。該基板上210に、フ
マル酸系高分子樹脂と黒色色素を15%混合させたネマ
チック液晶を65:35の割合で共通溶媒であるキシレ
ンに溶解させた混合物をダイキャスト法を用いて10μ
mの厚さに形成し、その後窒素雰囲気中120℃で18
0分溶媒を取り除いて液晶分散層211を形成した。
[Embodiment 4] In this embodiment, an electro-optical device for a portable computer is manufactured by using a reflection type liquid crystal dispersion type display device as shown in FIG. As the first substrate used in this example, the one prepared in the same process as in "Example 1" was used. On the substrate 210, a nematic liquid crystal prepared by mixing a fumaric acid-based polymer resin and a black dye in an amount of 15% was dissolved in xylene as a common solvent at a ratio of 65:35 to obtain a mixture of 10 μm by a die casting method.
m to a thickness of 18 and then at 120 ° C. in a nitrogen atmosphere for 18
The liquid crystal dispersion layer 211 was formed by removing the solvent for 0 minutes.

【0086】ここで、黒色色素を用いたため、分散型液
晶表示では困難であった平面ディスプレイも、光の散乱
時(無電界時)に黒色がでて、透過時(電界印加時)に
白色を表示出来、紙上に書いた文字のような表示が可能
になっている。
Here, since a black dye is used, a flat panel display, which has been difficult to display with a dispersion type liquid crystal display, appears black when light is scattered (when no electric field is applied) and white when transmitted (when an electric field is applied). It can be displayed, and it is possible to display it like the letters written on paper.

【0087】またこの逆の構造として、黒色色素を混入
せず、散乱時に白色を表現し、透過時に黒色を表現する
ことも可能である。ただしこの際には、以下に示す裏面
側を黒色にする必要がある。これもまた紙上に書いた文
字のような表示が可能になっている。
As an opposite structure, it is also possible to express a white color when scattering and a black color when transmitting without mixing a black dye. However, in this case, it is necessary to make the back side shown below black. This is also possible to display like letters written on paper.

【0088】その後、スパッタ法によりITO(インジ
ュ−ム・スズ酸化膜)を形成し、対向電極212を得
た。このITOは室温〜150℃で成膜した。その後印
刷法を用いて、白色のシリコン樹脂を55μmの厚みで
塗布し、100℃で90分焼成し、液晶電気光学装置を
得た。
After that, ITO (indium tin oxide film) was formed by a sputtering method to obtain a counter electrode 212. This ITO was formed at room temperature to 150 ° C. Then, using a printing method, a white silicone resin was applied in a thickness of 55 μm and baked at 100 ° C. for 90 minutes to obtain a liquid crystal electro-optical device.

【0089】[0089]

【発明の効果】本発明では、従来のアナログ方式の階調
表示に対し、デジタル方式の階調表示を行うことを特徴
としている。その効果として、例えば640×400ド
ットの画素数を有する液晶電気光学装置を想定したばあ
い、合計256,000個のTFTすべての特性をばら
つき無く作製することは、非常に困難を有し、現実的に
は量産性、歩留りを考慮すると、16階調表示が限界と
考えられているのに対し印加電圧レベルを明確にするた
めに、アナログ値では無く、基準電圧値を信号としてコ
ントローラー側から入力し、その基準信号をTFTに接
続するタイミングをデジタル値で制御することによっ
て、TFTに印加される電圧を制御することで、TFT
の特性ばらつきをカバーする方法を本発明ではとってい
る事を特徴としていることから、明快なデジタル階調表
示が可能になっていることにある。また、駆動周波数を
2種類とることによって、画面書換えのフレーム数を変
化させることなく、明快なデジタル階調表示が可能にな
っていることにある。フレーム数の低下に伴うフリッカ
ーの発生等が回避できるものである。
The present invention is characterized in that digital gradation display is performed in contrast to conventional analog gradation display. As an effect, if a liquid crystal electro-optical device having a number of pixels of 640 × 400 dots is assumed, it is very difficult to manufacture the characteristics of all 256,000 TFTs in total without variations. Considering mass productivity and yield, 16-gradation display is considered to be the limit, but in order to clarify the applied voltage level, not the analog value but the reference voltage value is input as a signal from the controller side. Then, by controlling the timing of connecting the reference signal to the TFT with a digital value, the voltage applied to the TFT is controlled, thereby
The present invention is characterized by adopting a method of covering the characteristic variation of the present invention, and therefore, clear digital gradation display is possible. Further, by using two kinds of drive frequencies, it is possible to perform clear digital gradation display without changing the number of frames for screen rewriting. It is possible to avoid the occurrence of flicker due to the decrease in the number of frames.

【0090】例えば640×400ドットの256,0
00組のTFTを300mm角に作成した液晶電気光学
装置に対し通常のアナログ的な階調表示を行った場合、
TFTの特性ばらつきが約±10%存在するために、1
6階調表示が限界であった。しかしながら、本発明によ
るデジタル階調表示をおこなった場合、TFT素子の特
性ばらつきの影響を受けにくいために、256階調表示
まで可能になりカラー表示ではなんと16,777,2
16色の多彩であり微妙な色彩の表示が実現できてい
る。テレビ映像の様なソフトを映す場合、例えば同一色
からなる『岩』でもその微細な窪み等から微妙に色合い
が異なる。自然の色彩に近い表示を行おうとした場合、
16階調では困難を要する。本発明による階調表示によ
って、これらの微細な色調の変化を付けることが可能に
なった。
For example, 256,0 of 640 × 400 dots
When normal analog gradation display is performed on a liquid crystal electro-optical device in which 00 sets of TFTs are formed in a 300 mm square,
Since there is about ± 10% variation in TFT characteristics, 1
6 gradation display was the limit. However, when the digital gray scale display according to the present invention is performed, it is possible to display up to 256 gray scales because it is hardly affected by the characteristic variation of the TFT element, and the color display is 16,777,2.
A wide variety of 16 colors and subtle colors can be displayed. When displaying software such as a television image, for example, even "rocks" of the same color have slightly different shades due to their fine depressions. If you try to display something close to the natural color,
16 gradations are difficult. The gradation display according to the present invention makes it possible to impart these minute color tone changes.

【0091】本発明はフレーム数を変化させることなく
64階調、256階調あるいはそれ以上の階調表示がで
きることを特徴とするが、このことは、何もフレーム数
を、現在、一般に使用されている30〜60フレームに
限定することを意味するものではない。よりフレーム数
を高めて画質の向上を計ることは本発明の意図すること
と相反するものではないことは明らかであろう。さら
に、本発明の実施例では、シリコンを用いたTFTを中
心に説明を加えたが、ゲルマニウムを用いたTFTも同
様に使用できる。とくに、単結晶ゲルマニウムの電子移
動度は3600cm2 /Vs、ホール移動度は1800
cm2 /Vsと、単結晶シリコンの値(電子移動度で1
350cm2 /Vs、ホール移動度で480cm2 /V
s)の特性を上回っているため、高速動作が要求される
本発明を実行する上で極めて優れた材料である。また、
ゲルマニウムは非晶質状態から結晶状態へ遷移する温度
がシリコンに比べて低く、低温プロセスに向いている。
また、結晶成長の際の核発生率が小さく、したがって、
一般に、多結晶成長させた場合には大きな結晶が得られ
る。このようにゲルマニウムはシリコンと比べても遜色
のない特性を有している。
The present invention is characterized in that 64 gray scales, 256 gray scales or higher gray scales can be displayed without changing the number of frames. This means that no frame count is currently used. It does not mean that it is limited to 30 to 60 frames. It will be apparent that increasing the number of frames to improve the image quality does not contradict the intention of the present invention. Furthermore, in the embodiments of the present invention, the description has been given centering on the TFT using silicon, but a TFT using germanium can be used as well. In particular, single crystal germanium has an electron mobility of 3600 cm 2 / Vs and a hole mobility of 1800.
cm 2 / Vs and the value of single crystal silicon (electron mobility is 1
350 cm 2 / Vs, Hall mobility is 480 cm 2 / V
Since it exceeds the characteristics of s), it is an extremely excellent material for carrying out the present invention that requires high-speed operation. Also,
Germanium has a lower transition temperature from an amorphous state to a crystalline state than silicon, and is suitable for a low temperature process.
Further, the nucleation rate during crystal growth is small, and therefore,
Generally, large crystals are obtained when polycrystal growth is performed. Thus, germanium has characteristics comparable to those of silicon.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による駆動波形を示す。FIG. 1 shows a driving waveform according to the present invention.

【図2】 ネマチック液晶の電気光学特性を示す。FIG. 2 shows electro-optical characteristics of nematic liquid crystal.

【図3】 ポリシリコンとアモルファスシリコンによる
TFTの電流電圧特性を示す。
FIG. 3 shows current-voltage characteristics of TFTs made of polysilicon and amorphous silicon.

【図4】 本発明によるマトリクス構成を示す。FIG. 4 shows a matrix configuration according to the present invention.

【図5】 実施例によるマトリクス回路を示す。FIG. 5 shows a matrix circuit according to an embodiment.

【図6】 実施例による素子の平面構造を示す。FIG. 6 shows a planar structure of a device according to an example.

【図7】 実施例によるTFTのプロセスを示す。FIG. 7 shows a process of a TFT according to an example.

【図8】 実施例による液晶表示装置(テレビ)の構造
を示す。
FIG. 8 shows a structure of a liquid crystal display device (TV) according to an example.

【図9】 実施例による液晶表示装置(テレビ)の構成
を示す。
FIG. 9 shows a configuration of a liquid crystal display device (TV) according to an example.

【図10】実施例による駆動回路のシステム構成を示
す。
FIG. 10 shows a system configuration of a drive circuit according to an embodiment.

【図11】従来例によるフレーム階調表示を示す。FIG. 11 shows a frame gradation display according to a conventional example.

【図12】実施例によるカラーフィルターの工程を示
す。
FIG. 12 shows a process of a color filter according to an example.

【図13】 実施例による素子の平面構造を示す。FIG. 13 shows a planar structure of a device according to an example.

【図14】実施例によるTFTのプロセスを示す。FIG. 14 shows a process of a TFT according to an example.

【図15】(a)、(b)本発明による他の駆動波形を
示す。
15 (a) and 15 (b) show other drive waveforms according to the present invention.

【図16】実施例によるビューファインダーの構造を示
す。
FIG. 16 shows a viewfinder structure according to an embodiment.

【図17】実施例によるフロント型プロジェクションテ
レビの構造を示す。
FIG. 17 shows a structure of a front type projection television according to an embodiment.

【図18】実施例による液晶電気光学装置を示す。FIG. 18 shows a liquid crystal electro-optical device according to an example.

【図19】実施例による駆動回路のシステム構成を示
す。
FIG. 19 shows a system configuration of a drive circuit according to an example.

【図20】実施例による携帯型パソコンの構成を示す。FIG. 20 shows a configuration of a portable personal computer according to an embodiment.

【符号の説明】[Explanation of symbols]

50 ガラス基板 51 酸化珪素膜 52 珪素膜 53 レジスト 54 N型の珪素膜 55 NTFTのソース領域 56 NTFTのドレイン領域 57 P型の珪素膜 58 レジスト 59 PTFTのソース領域 60 PTFTのドレイン領域 65 酸化珪素膜 66 NTFTのゲイト電極 67 PTFTのゲイト電極 68 層間絶縁膜 79 電極用の窓 74 リード 73.75 コンタクト 77 平坦化用有機樹脂 17,71 画素電極 13 NTFT 22 PTFT 10 NTFTのソース 9 NTFTのゲイト 12 NTFTのドレイン 20 PTFTのソース 21 PTFTのゲイト 18 PTFTのドレイン 141 NTFT領域 142 PTFT領域 50 glass substrate 51 silicon oxide film 52 silicon film 53 resist 54 N-type silicon film 55 NTFT source region 56 NTFT drain region 57 P-type silicon film 58 resist 59 PTFT source region 60 PTFT drain region 65 silicon oxide film 66 Gate electrode of NTFT 67 Gate electrode of PTFT 68 Interlayer insulating film 79 Electrode window 74 Lead 73.75 Contact 77 Flattening organic resin 17,71 Pixel electrode 13 NTFT 22 PTFT 10 NTFT source 9 NTFT gate 12 NTFT Drain 20 PTFT source 21 PTFT gate 18 PTFT drain 141 NTFT region 142 PTFT region

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月24日[Submission date] June 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による駆動波形を示す。FIG. 1 shows a driving waveform according to the present invention.

【図2】 ネマチック液晶の電気光学特性を示す。FIG. 2 shows electro-optical characteristics of nematic liquid crystal.

【図3】 ポリシリコンとアモルファスシリコンによる
TFTの電流電圧特性を示す。
FIG. 3 shows current-voltage characteristics of TFTs made of polysilicon and amorphous silicon.

【図4】 本発明によるマトリクス構成を示す。FIG. 4 shows a matrix configuration according to the present invention.

【図5】 実施例によるマトリクス回路を示す。FIG. 5 shows a matrix circuit according to an embodiment.

【図6】 実施例による素子の平面構造を示す。FIG. 6 shows a planar structure of a device according to an example.

【図7】 実施例によるTFTのプロセスを示す。FIG. 7 shows a process of a TFT according to an example.

【図8】 実施例によるTFTのプロセスを示す。FIG. 8 shows a process of a TFT according to an example.

【図9】 実施例による液晶表示装置(テレビ)の構造
を示す。
FIG. 9 shows a structure of a liquid crystal display device (TV) according to an embodiment.

【図10】実施例による液晶表示装置(テレビ)の構成
を示す。
FIG. 10 shows a configuration of a liquid crystal display device (TV) according to an embodiment.

【図11】実施例による駆動回路のシステム構成を示
す。
FIG. 11 shows a system configuration of a drive circuit according to an embodiment.

【図12】従来例によるフレーム階調表示を示す。FIG. 12 shows a frame gradation display according to a conventional example.

【図13】実施例によるカラーフィルターの工程を示
す。
FIG. 13 shows a process of a color filter according to an example.

【図14】 実施例による素子の平面構造を示す。FIG. 14 shows a planar structure of a device according to an example.

【図15】実施例によるTFTのプロセスを示す。FIG. 15 shows a process of a TFT according to an example.

【図16】本発明による他の駆動波形を示す。FIG. 16 shows another drive waveform according to the present invention.

【図17】本発明による他の駆動波形を示す。FIG. 17 shows another drive waveform according to the present invention.

【図18】実施例によるビューファインダーの構造を示
す。
FIG. 18 shows a structure of a viewfinder according to an embodiment.

【図19】実施例によるフロント型プロジェクションテ
レビの構造を示す。
FIG. 19 shows a structure of a front projection television according to an embodiment.

【図20】実施例による液晶電気光学装置を示す。FIG. 20 shows a liquid crystal electro-optical device according to an example.

【図21】実施例による駆動回路のシステム構成を示
す。
FIG. 21 shows a system configuration of a drive circuit according to an example.

【図22】実施例による携帯型パソコンの構成を示す。FIG. 22 shows a configuration of a portable personal computer according to an embodiment.

【符号の説明】 50 ガラス基板 51 酸化珪素膜 52 珪素膜 53 レジスト 54 N型の珪素膜 55 NTFTのソース領域 56 NTFTのドレイン領域 57 P型の珪素膜 58 レジスト 59 PTFTのソース領域 60 PTFTのドレイン領域 65 酸化珪素膜 66 NTFTのゲイト電極 67 PTFTのゲイト電極 68 層間絶縁膜 79 電極用の窓 74 リード 73.75 コンタクト 77 平坦化用有機樹脂 17,71 画素電極 13 NTFT 22 PTFT 10 NTFTのソース 9 NTFTのゲイト 12 NTFTのドレイン 20 PTFTのソース 21 PTFTのゲイト 18 PTFTのドレイン 141 NTFT領域 142 PTFT領域[Description of Reference Signs] 50 glass substrate 51 silicon oxide film 52 silicon film 53 resist 54 N-type silicon film 55 NTFT source region 56 NTFT drain region 57 P-type silicon film 58 resist 59 PTFT source region 60 PTFT drain Region 65 Silicon oxide film 66 Gate electrode of NTFT 67 Gate electrode of PTFT 68 Interlayer insulating film 79 Electrode window 74 Lead 73.75 Contact 77 Flattening organic resin 17,71 Pixel electrode 13 NTFT 22 PTFT 10 NTFT source 9 Gate 12 of NTFT 12 Drain of NTFT 20 Source of PTFT 21 Gate of PTFT 18 Drain of PTFT 141 NTFT area 142 PTFT area

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【図20】 FIG. 20

【図1】 [Figure 1]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図9】 [Figure 9]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図10】 [Figure 10]

【図13】 [Fig. 13]

【図11】 FIG. 11

【図12】 [Fig. 12]

【図14】 FIG. 14

【図15】 FIG. 15

【図16】 FIG. 16

【図18】 FIG. 18

【図17】 FIG. 17

【図19】 FIG. 19

【図21】 FIG. 21

【図22】 FIG. 22

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 (72)発明者 竹村 保彦 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01L 29/784 (72) Inventor Yasuhiko Takemura 398 Hase, Atsugi, Kanagawa Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上にマトリクス構成からなる電気配線
および画素を有する電気光学装置であって、各マトリク
スの交差点にNチャネル型薄膜トランジスタとPチャネ
ル型薄膜トランジスタとが互いの入力側端子と出力側端
子を接続した相補型に配置され、前記Nチャネル型薄膜
トランジスタとPチャネル型薄膜トランジスタのゲート
が共通に第一の信号線に、且つ前記Nチャネル型薄膜ト
ランジスタとPチャネル型薄膜トランジスタの入力側で
あるソースまたはドレインが第二の信号線に接続され、
且つ前記Nチャネル型薄膜トランジスタとPチャネル型
薄膜トランジスタの出力側であるドレインまたはソース
が共通の画素電極に接続された電気光学装置において、
1画面を書き込む時間Fと1画素に書き込む時間tで関
係される表示タイミングを有する表示駆動方式を用いた
電気光学装置の階調表示を、任意の画素駆動選択に用い
られる信号線の一方に前記時間tを周期とする電圧変化
を有する基準信号を印加し、一方他の信号線に前記時間
t内の任意のタイミングで選択信号を印加することで、
液晶に加える電圧を決定し、実際に画素に対し電圧を印
加することにより前記時間Fを変化させることなしに階
調を表示可能にした事を特徴とする電気光学装置
1. An electro-optical device having electric wirings and pixels each having a matrix structure on a substrate, wherein an N-channel type thin film transistor and a P-channel type thin film transistor are provided at an input side terminal and an output side terminal of each other at an intersection of each matrix. Connected to each other, the gates of the N-channel thin film transistor and the P-channel thin film transistor are commonly connected to the first signal line, and the source or drain is the input side of the N-channel thin film transistor and the P-channel thin film transistor. Is connected to the second signal line,
In addition, in the electro-optical device in which drains or sources on the output sides of the N-channel type thin film transistor and the P-channel type thin film transistor are connected to a common pixel electrode,
The gradation display of the electro-optical device using the display drive method having the display timing related to the time F for writing one screen and the time t for writing one pixel is displayed on one of the signal lines used for arbitrary pixel drive selection. By applying a reference signal having a voltage change having a cycle of time t, while applying a selection signal to another signal line at an arbitrary timing within the time t,
An electro-optical device characterized in that gradations can be displayed without changing the time F by determining the voltage to be applied to the liquid crystal and actually applying the voltage to the pixel.
【請求項2】請求項1において、基準信号は、正弦波で
あることを特徴とする電気光学装置。
2. The electro-optical device according to claim 1, wherein the reference signal is a sine wave.
【請求項3】請求項1において、基準信号は、余弦波で
あることを特徴とする電気光学装置。
3. The electro-optical device according to claim 1, wherein the reference signal is a cosine wave.
【請求項4】請求項1において、基準信号は、ランプ波
であることを特徴とする電気光学装置。
4. The electro-optical device according to claim 1, wherein the reference signal is a ramp wave.
【請求項5】請求項1において、基準信号は、三角波で
あることを特徴とする電気光学装置。
5. The electro-optical device according to claim 1, wherein the reference signal is a triangular wave.
【請求項6】基板上にマトリクス構成からなる電気配線
および画素を有する電気光学装置であって、各マトリク
スの交差点にNチャネル型薄膜トランジスタとPチャネ
ル型薄膜トランジスタとが互いの入力側端子と出力側端
子を接続した相補型に配置され、前記Nチャネル型薄膜
トランジスタとPチャネル型薄膜トランジスタのゲート
が共通に第一の信号線に、且つ前記Nチャネル型薄膜ト
ランジスタとPチャネル型薄膜トランジスタの入力側で
あるソースまたはドレインが第二の信号線に接続され、
且つ前記Nチャネル型薄膜トランジスタとPチャネル型
薄膜トランジスタの出力側であるドレインまたはソース
が共通の画素電極に接続された電気光学装置において、
1画面を書き込む時間Fと1画素に書き込む時間tで関
係される表示タイミングを有する表示駆動方式を用いた
電気光学装置の階調表示を、任意の画素駆動選択に用い
られる信号線の一方に時間の関数として電圧変化を有す
る時間と、時間に無関係に一定の値を保持する時間とが
存在する基準信号を印加し、一方他の信号線に前記時間
t内の任意のタイミングで、前期時間tよりも小さな時
間幅を有し、かつ、極性が少なくとも一回反転する選択
信号を印加することで、液晶に加える電圧を決定し、実
際に画素に対し電圧を印加することにより前記時間Fを
変化させることなしに階調を表示可能にした事を特徴と
する電気光学装置
6. An electro-optical device having electric wirings and pixels each having a matrix structure on a substrate, wherein an N-channel type thin film transistor and a P-channel type thin film transistor are mutually input side terminals and output side terminals at intersections of each matrix. Connected to each other, the gates of the N-channel thin film transistor and the P-channel thin film transistor are commonly connected to the first signal line, and the source or drain is the input side of the N-channel thin film transistor and the P-channel thin film transistor. Is connected to the second signal line,
In addition, in the electro-optical device in which drains or sources on the output sides of the N-channel type thin film transistor and the P-channel type thin film transistor are connected to a common pixel electrode,
The gradation display of the electro-optical device using the display driving method having the display timing related to the time F for writing one screen and the time t for writing one pixel is displayed on one of the signal lines used for arbitrary pixel drive selection. A reference signal having a time having a voltage change as a function of and a time holding a constant value irrespective of time is applied, while the other signal line is applied at any timing within the time t at a previous time t. The voltage applied to the liquid crystal is determined by applying the selection signal having a smaller time width and the polarity inverted at least once, and the time F is changed by actually applying the voltage to the pixel. An electro-optical device characterized by being capable of displaying gradation without causing
【請求項7】基板上に複数の信号線X1,2,・・,XN
と、それに直角に別の複数の信号線Y1,2,・・, M
とによってマトリクス状に形成された配線と、各マトリ
クスの交差点領域にNチャネル型薄膜トランジスタとP
チャネル型薄膜トランジスタとによって形成された少な
くとも1つのトランスファー・ゲイト素子と、該トラン
スファー・ゲイト素子の出力端子は、各信号線の交差点
領域に設けられた画素を構成する静電装置の電極の一方
に接続され、該トランスファー・ゲイト素子の制御電極
は信号線Xn (1≦n≦N)に、入力端子は信号線Ym
(1≦m≦M)に接続された電気光学装置において、時
間tが0≦t≦T1 において、信号線Ym だけに時間の
関数として示される電圧を加え、さらに、信号線X1,
2,・・,XN に、それぞれ独立に、時間T1 よりも時間
幅が小さく、かつ、極性が少なくとも1回反転する選択
信号を任意のタイミングで印加することで、信号線X1
とYm 、X2 とYm 、・・、XN とYm の各交差点領域
に設けられた画素に任意の電圧を供給し、よって、各交
差点領域の画素の濃淡を任意に制御する過程と、T2
t≦T3 (T1 ≦T2 )において、信号線Ym+1 (m=
Mの場合はY1 )だけに時間の関数として示される電圧
を加え、さらに、信号線X1,2,・・,XN に、それぞ
れ独立に、時間T3 −T2 よりも時間幅が小さく、か
つ、極性が少なくとも1回反転する選択信号を任意のタ
イミングで印加することで、信号線X1 とYm+1 、X2
とYm+1 、・・、XN とYm+1 の各交差点領域に設けら
れた画素に任意の電圧を供給し、よって、各交差点領域
の画素の濃淡を任意に制御する過程とを有することを特
徴とする電気光学装置の画像表示方法。
7. A plurality of signal lines X 1, X 2, ..., X N on a substrate.
And a plurality of other signal lines Y 1, Y 2, ... , Y M
Wirings formed in a matrix form by, and N-channel thin film transistors and P
At least one transfer gate element formed by a channel type thin film transistor and an output terminal of the transfer gate element are connected to one of electrodes of an electrostatic device forming a pixel provided in an intersection region of each signal line. The control electrode of the transfer gate element is the signal line X n (1 ≦ n ≦ N), and the input terminal is the signal line Y m.
In the electro-optical device connected to (1 ≦ m ≦ M), when the time t is 0 ≦ t ≦ T 1 , the voltage shown as a function of time is applied only to the signal line Y m , and the signal line X 1, X
, ..., X N are independently applied with a selection signal having a time width smaller than the time T 1 and a polarity inverted at least once, at any timing, so that the signal line X 1
And Y m , X 2 and Y m , ..., X N and Y m , and an arbitrary voltage is supplied to the pixels provided in each intersection area, and thus, the density of the pixels in each intersection area is controlled arbitrarily. And T 2
At t ≦ T 3 (T 1 ≦ T 2 ), the signal line Y m + 1 (m =
In the case of M, the voltage shown as a function of time is applied only to Y 1 ), and the signal lines X 1, X 2, ..., X N are independently and independently of time T 3 −T 2. Is applied to the signal lines X 1 and Y m + 1 , X 2 by applying a selection signal whose polarity is small and whose polarity is inverted at least once at arbitrary timing.
, Y m + 1 , ..., Supplying an arbitrary voltage to the pixels provided in each intersection region of X N and Y m + 1 , and thus arbitrarily controlling the shading of the pixels in each intersection region. An image display method for an electro-optical device, comprising:
【請求項8】請求項7において、2T1 <T2 であるこ
とを特徴とする電気光学装置の画像表示方法。
8. The image display method for an electro-optical device according to claim 7, wherein 2T 1 <T 2 .
JP14564291A 1991-05-20 1991-05-20 Electro-optical device and driving method thereof Expired - Lifetime JP2754290B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14564291A JP2754290B2 (en) 1991-05-20 1991-05-20 Electro-optical device and driving method thereof
US07/885,637 US5680147A (en) 1991-05-20 1992-05-19 Electro-optical device and method of driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14564291A JP2754290B2 (en) 1991-05-20 1991-05-20 Electro-optical device and driving method thereof

Publications (2)

Publication Number Publication Date
JPH0643434A true JPH0643434A (en) 1994-02-18
JP2754290B2 JP2754290B2 (en) 1998-05-20

Family

ID=15389736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14564291A Expired - Lifetime JP2754290B2 (en) 1991-05-20 1991-05-20 Electro-optical device and driving method thereof

Country Status (1)

Country Link
JP (1) JP2754290B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180219A (en) * 1985-02-06 1986-08-12 Seiko Epson Corp Driving method of liquid-crystal element
JPH0350528A (en) * 1989-07-18 1991-03-05 Nec Corp Active matrix substrate for liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180219A (en) * 1985-02-06 1986-08-12 Seiko Epson Corp Driving method of liquid-crystal element
JPH0350528A (en) * 1989-07-18 1991-03-05 Nec Corp Active matrix substrate for liquid crystal display device

Also Published As

Publication number Publication date
JP2754290B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JP2794499B2 (en) Method for manufacturing semiconductor device
US7479939B1 (en) Electro-optical device
JP2869721B2 (en) Method for manufacturing semiconductor device
JP2676092B2 (en) Electro-optical device
JP2740886B2 (en) Electro-optical device
JP3919198B2 (en) Television and computer equipped with electro-optical device
JP2754291B2 (en) Driving method of electro-optical device
JP2754290B2 (en) Electro-optical device and driving method thereof
JP3366613B2 (en) Active matrix display
JP3554563B2 (en) Active display
JP3786278B2 (en) Active display device and television, camera and computer using the same
JP3054219B2 (en) Liquid crystal display
JP2754293B2 (en) Driving method of electro-optical device
JP2006243767A (en) Liquid crystal electrooptical apparatus and its manufacturing method
JPH0682758A (en) Image display method for electro-optical device
JPH1096961A (en) Projection type display device, portable type computer and view finder
JP2002277626A (en) Method for manufacturing color filter for electrooptical device, electrooptical device provided with color filter, and television using electrooptical device
JP3645465B2 (en) Display device
JP3566617B2 (en) Electro-optical device
JP2000330139A (en) Production of electro-optic device
JP3672785B2 (en) Method for manufacturing display device
JPH0695074A (en) Method for displaying image of electro-optical device
JP2000292813A (en) Electro-optic device, television and wall television
JP2001188257A (en) Electrooptical device, television and wall-hung television
JP2004334224A (en) Television